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Abstract

In document classification for, e.g., legal and001
biomedical text, we often deal with hundreds002
of classes, including very infrequent ones, as003
well as temporal concept drift caused by the004
influence of real world events, e.g., policy005
changes, conflicts, or pandemics. Both class006
imbalance and drift are often approached by re-007
sampling the training data to simulate (or com-008
pensate for) a known target distribution, but009
what if the target distribution is determined010
by unknown future events? Instead of resam-011
pling uniformly to hedge our bets, we focus on012
the underlying optimization algorithms used013
to train such document classifiers and eval-014
uate several group-robust optimization algo-015
rithms, initially proposed to mitigate group-016
level disparities. Reframing group-robust algo-017
rithms as adaptation algorithms under concept018
drift, we find that Invariant Risk Minimization019
and Spectral Decoupling outperform sampling-020
based approaches to class imbalance and con-021
cept drift, and lead to much better performance022
on minority classes. The effect is more pro-023
nounced the larger the label set.024

1 Introduction025

Multi-label document classification is the task of026

assigning a subset of labels from a large predefined027

set – of, say, hundreds or thousands of labels – to028

a given document. Common applications include029

labeling scientific publications with concepts from030

ontologies (Tsatsaronis et al., 2015), associating031

medical records with diagnostic and procedure la-032

bels (Johnson et al., 2017), pairing legislation with033

relevant legal concepts (Mencia and Fürnkranzand,034

2007), or categorizing product descriptions (Lewis035

et al., 2004). The task in general presents inter-036

esting challenges due to the large label space and037

two-tiered skewed label distributions.038

Class Imbalance In multi-label classification,039

datasets often exhibit class imbalance, i.e., skewed040

Figure 1: Model performance using random vs.
chronological splits across the medium-sized datasets
(Table 1). The shaded parts of the bars are the train/test
discrepancy due to over-fitting. The performance drop
from random to chronological splits demonstrates the
temporal concept drift.

label distributions (Fig. 2). Common methods in- 041

clude resampling and reweighting based on heuris- 042

tic assumptions, but methods are known to suffer 043

from unstable performance, poor applicability, and 044

high computational cost in complex tasks where 045

their assumptions do not hold (Liu et al., 2020). 046

Datasets with long-tail frequency distributions, like 047

the ones considered below – sometimes referred to 048

as power-law datasets (Rubin et al., 2012) – can 049

be particular challenging. Also, the heuristics fix 050

the trade-off between exploiting as much of the 051

training data as possible and balancing the classes, 052

instead of trying to learn the optimal trade-off. 053

Temporal Concept Drift Moreover, class distri- 054

butions may change over time. This is one di- 055

mension of the temporal generalization problem 056

(Lazaridou et al., 2021). Recently, Søgaard et al. 057

(2021) argued chronological data splits are neces- 058

sary to estimate real-world performance, contrary 059

to random splits (Gorman and Bedrick, 2019), be- 060

cause random splits artificially removes drift. Tem- 061

poral concept drift, which we focus on here – in- 062
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Figure 2: Label distributions of the medium-sized datasets. Class imbalance across labels (bars) in the x axis and
temporal concept drift across subsets depicted with different coloured bars in the y axis.

stead of covariate shift (Shimodaira, 2000), for ex-063

ample – is an instance of concept drift (Gama et al.,064

2014), often discussed in the domain adaptation065

literature, e.g., Chan and Ng (2006).066

2 Related Work067

Temporal Drift Temporal drift has been studied068

in several NLP tasks, including document classi-069

fication (Huang and Paul, 2018, 2019), sentiment070

analysis (Lukes and Søgaard, 2018), Named Entity071

Recognition (NER) (Rijhwani and Preotiuc-Pietro,072

2020), Neural Machine Translation (NMT) (Leven-073

berg et al., 2010) and Language Modelling (Lazari-074

dou et al., 2021). None of these papers focus on075

class imbalance and temporal concept drift. These076

papers have mainly been diagnostic, not providing077

technical solutions that are applicable in our case.078

Multi-label Class Imbalance Class imbalance079

in multi-label classification has so far been studied080

through the lens of network architectures, search-081

ing for the best neural architecture for handling082

few- and zero-shot labels in the multi-label setting.083

To improve the performance for underrepresented084

(few-shot) classes, (Snell et al., 2017) introduced085

Prototypical Networks that average all instances086

in each class to form prototype label vectors (en-087

codings), a form of inductive bias, which improved088

few-shot learning. In a similar direction, Mullen-089

bach et al. (2018) developed the Label-Wise At-090

tention Network (LWAN) architecture, in which091

label-wise document representations are learned by092

attending to the most informative words for each093

label, using trainable label encodings (representa- 094

tions). Rios and Kavuluru (2018) extended LWAN 095

and the idea of prototype label encodings. They 096

combined label descriptors with information from 097

a graph convolutional network (Kipf and Welling, 098

2017) that considered the relations of the label hi- 099

erarchy to improve the results in few-shot and zero- 100

shot settings. Alternatives to LWAN were consid- 101

ered by Chalkidis et al. (2020a), presenting minor 102

improvements in the few-shot setting, but harming 103

the overall performance. 104

Fairness The literature on inducing approxi- 105

mately fair models from biased data is rapidly grow- 106

ing. See Mehrabi et al. (2021) for a recent survey. 107

We rely on this literature in how we define fairness, 108

and for the algorithms that we compare in our ex- 109

periments below. The fairness-promoting learning 110

algorithms we evaluate are discussed in detail in 111

Section 4. Recent studies targeting fairness show 112

that class imbalance has connections to bias (Blak- 113

eney et al., 2021; Subramanian et al., 2021), i.e., 114

mitigating class-wise disparities has a chain effect 115

on lowering group-wise disparities. 116

We focus on (large-scale) multi-label document 117

classification and study a fundamental component 118

of the learning process leading to performance 119

disparities across labels, i.e., the underlying op- 120

timization algorithm used for training. We con- 121

sider group-robust optimization algorithms initially 122

proposed to mitigate group disparities given spe- 123

cific protected attributes (e.g., gender, race), but 124

re-frame these algorithms to optimize for good per- 125

formance across labels rather than across groups. 126
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Dataset Domain No. of Documents Setting No. of Labels Distribution Swift (WS)
Random Chronological Diff.

UK-LEX (new) UK Legislation 36,500
Small 18 / 18 0.002 0.016 (8×)

Medium 69 / 69 0.001 0.005 (5×)

EUR-LEX (Chalkidis et al., 2021) EU Legislation 65,000
Small 20 / 21 0.003 0.027 (9×)

Medium 100 / 127 0.001 0.007 (7×)

BIOASQ (Tsatsaronis et al., 2015) Biomedical Articles 100,000
Small 16 / 16 0.002 0.058 (29×)

Medium 112 / 116 0.002 0.009 (5×)

Table 1: Main characteristics of the examined datasets. We report the application domain, the number of docu-
ments, the available setting and the corresponding number of labels (used / total), and the label distribution swift
measured as the Wasserstein Distance (WS) between train-test label probability distributions.

3 Datasets127

We experiment with three datasets (Table 1) from128

two domains (legal and biomedical), which support129

two different classification settings (label granu-130

larities), i.e., label sets including more abstract or131

more specialized concepts (labels).1132

UK-LEX United Kingdom (UK) legislation is133

publicly available as part of the United Kingdom’s134

National Archives.2 Most of the laws have been cat-135

egorized in thematic categories (e.g., health-care,136

finance, education, transportation, planing) that137

are presented in the document preamble and are138

used for archival indexing purposes. We release139

a new dataset, which comprises 36.5k UK laws140

(documents). The dataset is chronologically split141

in training (20k, 1975–2002), development (8.5k,142

2002–2008), test (8.5k, 2008–2018) subsets. It sup-143

ports two different label granularities, comprising144

18, and 40 topics (labels), respectively.145

EUR-LEX European Union (EU) legislation is146

published in EUR-Lex.3 All EU laws are anno-147

tated by EU’s Publications Office with multiple148

concepts from EuroVoc, a thesaurus maintained by149

the Publications Office.4 EuroVoc has been used150

to index documents in systems of EU institutions,151

e.g., in web legislative databases, such as EUR-Lex152

and CELLAR, the EU Publications Office’s com-153

mon repository of metadata and content. We use154

the English part of the dataset of Chalkidis et al.155

(2021), which comprises 65k EU laws (documents).156

The dataset is chronologically split in training (55k,157

1958–2010), development (5k, 2010–2012), test158

(5k, 2012–2016) subsets. It supports four different159

1We originally also considered the MIMIC-III dataset of
Johnson et al. (2017) including discharge summaries fro US
hospitals annotated with ICD-9 medical codes, but the pub-
lication date of the documents has been “counterfeited” as
part of the anonymization process. Experimental results with
random splits are presented in Appendix A.

2https://www.legislation.gov.uk/
3http://eur-lex.europa.eu/
4http://eurovoc.europa.eu/

label granularities. We use the 1st and 2nd level 160

of the EuroVoc taxonomy including 21 and 127 161

categories, respectively. 162

BIOASQ The BIOASQ (Task A: Large-Scale 163

Online Biomedical Semantic Indexing) dataset 164

(Tsatsaronis et al., 2015) comprises biomedical arti- 165

cles from PubMed,5 annotated with concepts from 166

the Medical Subject Headings (MeSH) taxonomy.6 167

MeSH is a controlled and hierarchically-organized 168

vocabulary produced by the National Library of 169

Medicine. It is used for indexing, cataloging, and 170

searching of biomedical and health-related infor- 171

mation, e.g., in MEDLINE/PubMed, and the NLM 172

databases. We use a subset of 100k documents de- 173

rived from the latest version (v.2021) of the dataset. 174

We sub-sample documents in the period 2000-2021, 175

and we consider chronologically split training (80k, 176

1964–2015), development (10k, 2015–2018), test 177

(10k, 2018–2020) subsets. We use the 1st and 2nd 178

levels of MeSH, including 16 and 116 categories. 179

4 Fine-tuning Algorithms 180

In our experiments, we rely on pre-trained English 181

language models (Devlin et al., 2019) and fine-tune 182

these using different learning objectives. Our main 183

goal during fine-tuning is to find a hypothesis (h) 184

for which the risk R(h) is minimal: 185

h∗ = arg min
h∈H

R(h) (1) 186

R(h) = E[L(h(x), y)] (2) 187

where y are the targets (ground truth) and h(x) = ŷ 188

is the system hypothesis (model’s predictions). 189

Similar to previous studies, R(h) is an expecta- 190

tion of the selected loss function (L). In this work, 191

we study multi-label text classification (Section 3), 192

thus we aim to minimize the binary cross-entropy 193

loss across L classes: 194

L(x) = −y log ŷ − (1 − y) log(1 − ŷ) (3) 195

5https://pubmed.ncbi.nlm.nih.gov
6https://www.nlm.nih.gov/mesh/
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ERM (Vapnik, 1992), which stands for Empirical196

Risk Minimization, is the most standard and widely197

used optimization technique to train neural meth-198

ods. The loss is calculated as follows:199

LERM =
1
N

N∑
i=1

L(xi) (4)200

where N is the number of instances (training exam-201

ples) in a batch, and Li is the loss per instance.202

Furthermore, we consider a representative selec-203

tion of group-robust fine-tuning algorithms that try204

to mitigate performance disparities with respect to205

a given attribute (A), e.g., in a standard scenario206

that could be the gender of a document’s author in207

sentiment analysis, or the background landscape208

in image classification. In our case, the attribute209

of interest is the labeling of the documents. The210

attribute is split into G groups, which in our case211

are the classes (G = L). All algorithms rely on a212

balanced group sampler, i.e., an equal number(Ngi)213

of instances (samples) per group (gi) are included214

at each batch. Most of the algorithms are built upon215

group-wise losses (Lgi), computed as follows:216

L(gi) =
1

Ngi

Ngi∑
j=1

L(x j) (5)217

In our case, contrary to previous applications218

of group-robust algorithms, the groups (classes)219

are not mutually exclusive (documents are tagged220

with multiple labels). Hence, the group sampler221

can only guarantee that at least N groups (labels)222

will be considered at each step, but most probably223

even more. In this work, we examine the following224

group-robust algorithms in a label-wise fashion:225

Group Uniform is the more naive group robust226

algorithm that uses the average of the group-wise227

(label-wise) losses -all groups (labels) are consid-228

ered equally important-, instead of the standard229

sample-wise average, as follows:230

LGM =
1
G

G∑
i=1

L(gi) (6)231

Group DRO (Sagawa et al., 2020), stands232

for Group Distributionally Robust Optimization233

(DRO). Group DRO is an extension of the Group234

Uniform algorithm, where the group-wise (label-235

wise) losses are weighted inversely proportional236

to the group (label) performance. The total loss is237

calculated as follows:238

LDRO =

G∑
i=1

wgi ∗ L(gi), where (7) 239

240

wgi =
1
W

(ŵgi ∗ eL(gi)) and W =

G∑
i=1

wgi (8) 241

where G is the number of groups (labels), Lg are 242

the averaged group-wise (label-wise) losses, wg are 243

the group (label) weights, ŵg are the group (label) 244

weights as computed in the previous update step. 245

V-REx (Krueger et al., 2020), which stands for 246

Risk Extrapolation, is yet another proposed group- 247

robust optimization algorithm. Krueger et al. 248

(2020) hypothesize that variation across training 249

groups is representative of the variation later en- 250

countered at test time, so they also consider the 251

variance across the group-wise (label-wise) losses. 252

In V-REx the total loss is calculated as follows: 253

LREX = LERM + λ ∗ Var([Lg1 , . . . ,LgG ]) (9) 254

where Var is the variance among the group-wise 255

(label-wise) losses, and λ, a weighting hyper- 256

parameter scalar. 257

IRM (Arjovsky et al., 2020), which stands for In- 258

variant Risk Minimization, mainly aims to penalize 259

variance across multiple training dummy estima- 260

tors across groups, i.e., performance cannot vary 261

in samples that correspond to the same group. The 262

total loss is computed as follows: 263

LIRM =
1
G

G∑
i=1

[
L(gi) + λ ∗ P(gi)

]
(10) 264

265
Pgi = ∇[L

Ngi
gi=1,3,...| 1 ] ∗ ∇[L

Ngi
gi=2,4,...| 1 ] (11) 266

where Lgi is the loss of the ith instance, which is 267

part of the gth group (label). Refer to Arjovsky 268

et al. (2020) for a more detailed introduction of the 269

group penalty terms (Pg). 270

Deep CORAL (Sun and Saenko, 2016), minimizes 271

the difference in second-order statistics (covari- 272

ances) between the source and target feature activa- 273

tions. In practice, it introduces group-pair penalties: 274275

LCORAL = LERM + λ ∗
1
G

 G∑
i=1

P(gi, gi+1)

 (12) 276

277

P(gi, gi+1) = [Cgi −Cgi+1]2 + [Xgi − Xgi+1]2 (13) 278

where Cgi are the averaged covariances of the ith 279

group and Xgi are the averaged features (document 280

4



representations) of the ith group, respectively. Re-281

fer to Sun and Saenko (2016) for a more detailed282

introduction of the group penalty terms (Pg).283

Spectral Decoupling (Pezeshki et al., 2020) relies284

on the idea of Gradient Starvation. Pezeshki et al.285

state that a network could become over-confident286

in its predictions by capturing only one or a few287

dominant features. Thus, adding an L2 penalty on288

the network’s logits (ŷi) provably decouples the289

fixed points of the dynamics. The total loss is290

computed as follows:291

LS D = LERM + λ ∗
1
N

N∑
i=1

ŷ2
i (14)292

In our work, we consider the aforementioned algo-293

rithms in a label-wise setting, instead of a group-294

wise setting given a protected attribute. In our case,295

G = L, where L is the number of labels.296

5 Experimental SetUp297

Baseline Models For both legal datasets (UK-298

LEX, EUR-LEX), we use the small LEGAL-BERT299

model of Chalkidis et al. (2020b), a BERT (Devlin300

et al., 2019) model pre-trained on English legal301

corpora. For BIOASQ, we use the small English302

BERT model of Turc et al. (2019). Following De-303

vlin et al. (2019), we feed each document to the304

pre-trained model and obtain the top-level repre-305

sentation h[cls] of the special [cls] token as the306

document representation. The latter goes through307

a dense layer of L output units, one per label, fol-308

lowed by a sigmoid activation.309

We also experiment with the Label-Wise Atten-310

tion Network (LWAN) relying on a BERT encoder311

(Chalkidis et al., 2020a), dubbed BERT-LWAN.7312

Chalkidis et al. reported state-of-art results in EUR-313

LEX and AMAZON-13K using BERT-LWAN com-314

pared to several baselines. BERT-LWAN uses one315

attention head per label to generate L document316

representations dl:317

alt =
exp(K(ht)Ql)∑
t′ exp(K(ht′)Ql)

(15)318

dl =
1
T

T∑
t=1

altV(ht) (16)319

T is the document length in tokens, ht the context-320

aware representation of the t-th token, K, V are321

7The original model was proposed by Mullenbach et al.
(2018), with a CNN encoder.

linear transformations of ht, and Ql a trainable vec- 322

tor used to compute the attention scores of the l-th 323

attention head; ul can also be viewed as a label 324

representation. Intuitively, each head focuses on 325

possibly different tokens of the document to de- 326

cide if the corresponding label should be assigned. 327

BERT-LWAN employs L linear layers (ol) with 328

sigmoid activations, each operating on a different 329

label-wise document representation dl, to produce 330

the probability of the corresponding label pl: 331

pl = sigmoid(dl · ol) (17) 332

Training and Evaluation Details We fine-tune 333

all models using the AdamW (Loshchilov and Hut- 334

ter, 2019) optimizer with a learning rate of 2e-5. 335

We use a batch size of 64 and train models for up to 336

20 epochs using early stopping on the development 337

set. Across experiments, we use BERT models fol- 338

lowing a small configuration (6 transformer blocks, 339

512 hidden units and 8 attention heads), which al- 340

lows us to increase the batch size up to 64 and 341

consider samples with multiple labels (groups) in 342

the group robust algorithms. In practice, this en- 343

ables us to sample at least 4 samples per group 344

(label) for all labels in the small label sets, and at 345

least 1 sample per group (label) for 64 labels in the 346

medium-sized label sets (69-112 labels). 347

Given the large number and skewed distribution 348

of labels, retrieval measures have been favored 349

in large-scale multi-label text classification liter- 350

ature (Mullenbach et al., 2018; You et al., 2019; 351

Chalkidis et al., 2020a). Following Chalkidis et al. 352

(2020a), we report mean R-Precision (m-RP) (Man- 353

ning et al., 2009), while we also report the standard 354

micro-F1 (µ-F1) and macro-F1 (m-F1) to better 355

estimate the class-wise performance disparity. 356

In our experiments, we use and extend the 357

WILDs (Koh et al., 2021) library, which provides 358

an experimental framework for experimenting with 359

group-robust algorithms. We effectively rewrote 360

all parts of code to consider label-wise groups and 361

losses, while we also implemented the unsupported 362

methods (Group Uniform, V-REx, and Spectral 363

Decoupling). For reproducibility and further explo- 364

ration with new group-robust methods, we release 365

our code on Github.8 366

8The Github repository will be released upon acceptance.
Meanwhile, reviewers have access to the internally submitted
code (.zip).
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Algorithm
EUR-LEX UK-LEX BIO-ASQ

Small Medium Small Medium Small Medium
µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP

ERM 79.3 64.4 84.2 68.4 40.4 70.5 80.2 75.2 83.6 66.5 35.8 73.3 85.9 75.7 87.6 68.6 46.7 70.3
ERM+GS 79.2 65.7 83.1 69.0 42.8 70.9 80.1 75.4 83.9 67.8 41.4 73.8 85.3 75.9 86.3 68.4 48.2 69.8
Group Uniform 78.4 67.9 81.9 68.6 50.2 70.0 79.1 74.5 84.1 69.1 56.2 75.0 85.2 76.3 86.8 68.6 51.5 69.5
Group DRO 77.8 62.6 79.0 67.5 43.8 67.4 78.8 73.4 83.5 60.9 29.3 68.9 84.3 72.8 84.9 43.9 13.9 43.8
Deep CORAL 78.7 68.1 82.3 67.7 44.1 70.5 79.6 75.2 83.6 67.2 53.1 74.7 85.1 75.4 86.1 68.8 53.2 69.9
V-REx 78.6 68.0 82.6 69.0 49.4 69.7 80.2 75.8 84.6 68.4 52.1 74.7 85.1 76.3 86.8 69.3 51.8 71.4
IRM 78.5 67.7 81.1 69.9 54.8 70.7 79.4 74.9 84.2 69.4 58.9 75.0 85.2 76.4 86.8 69.5 54.7 70.0
SD 79.3 69.2 79.5 70.7 52.4 72.2 80.3 76.8 84.8 70.0 59.1 74.8 85.5 76.8 86.9 71.0 53.4 72.2

Table 2: Overall results of the group-robust (label-robust) algorithms across all datasets (UK-LEX, EUR-LEX,
BIOASQ) and settings (small and medium sized label sets).

Algorithm EUR-LEX UK-LEX BIOASQ
Head Tail Head Tail Head Tail

µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP
ERM 73.7 61.8 74.5 26.6 19.0 51.8 71.8 55.3 77.4 36.4 15.8 76.4 71.8 60.6 73.2 45.9 32.9 57.7
ERM+GS 74.1 62.4 74.7 30.3 23.1 52.5 72.7 57.4 77.8 40.2 28.3 77.5 72.2 61.2 72.7 47.6 38.7 57.4
Group Uniform 73.0 62.0 73.5 43.1 38.5 54.5 70.9 60.2 77.8 62.2 52.1 79.5 71.5 60.4 72.5 50.0 42.5 57.1
Group DRO 70.1 50.9 70.3 8.4 5.5 28.3 66.7 46.6 73.4 29.4 11.6 69.4 58.9 26.9 59.6 1.1 0.9 0.8
Deep CORAL 72.4 59.7 73.7 35.0 28.5 57.0 69.7 53.3 75.1 61.2 43.4 80.0 72.7 63.1 73.6 55.2 49.3 63.1
V-REx 73.2 61.7 73.1 43.1 37.1 55.1 70.4 56.6 76.7 60.6 47.6 80.2 71.3 59.5 72.4 47.1 37.4 56.7
IRM 73.8 64.3 74.1 48.8 45.2 57.0 71.3 62.6 77.8 62.6 55.2 80.7 72.0 62.5 72.7 53.3 47.0 59.2
SD 74.7 63.8 75.2 47.0 41.0 59.1 71.7 62.4 77.1 64.0 55.8 82.2 73.6 64.0 74.7 52.7 42.8 62.9

Table 3: Results of group-robust algorithms in head and tail classes in the medium-sized datasets. Head are the
50% most represented (frequent) classes in the training set, and tail are the bottom 50%.

6 Results367

Main Results To highlight the temporal concept368

drift, we initially fine-tune BERT in all datasets369

with the standard ERM optimization algorithm us-370

ing both random and chronological splits. Table 4371

shows that the real-world performance achieved372

using the chronological split is severely overesti-373

mated using the random split (approx. +10% across374

evaluation measures) in two out of threee datasets.375

While all datasets have inherently skewed distribu-376

tions (class imbalance), which is naturally demon-377

strated by the performance discrepancy between378

µ-F1 and m-F1 scores (especially when we con-379

sider the larger label sets), the temporal dimension380

further exacerbate the performance discrepancy as381

label distributions also vary across subsets (Fig 2).382

Dataset
Random Chronological

µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP
UK-LEX-SM 89.3 87.5 92.9 80.2 75.2 83.6
UK-LEX-MD 78.2 45.6 85.0 66.5 35.8 73.3
EUR-LEX-SM 86.8 76.5 89.5 79.3 64.4 84.2
EUR-LEX-MD 77.6 49.8 79.8 68.4 40.4 70.5
BIOASQ-SM 86.5 75.9 88.8 85.9 75.7 87.6
BIOASQ-MD 71.9 48.2 72.3 68.6 46.7 70.3

Table 4: Overall results across all datasets and settings
using random vs. chronological splits with ERM.

In Table 2, we present the overall results for the383

different optimization algorithms considering the384

baseline model, BERT. We observe that using a385

group sampler (ERM+GS), which equals standard386

oversampling of minority classes, slightly improve387

the results in m-F1 (+1-4%) in many cases, while 388

the performance is comparable in µ-F1 and m-RP. 389

Considering the results of group-robust algorithms, 390

we observe that most of them improve m-F1 across 391

datasets compared to ERM and ERM+GS, +1-4% 392

for small-sized datasets and +5-12% in medium- 393

sized datasets. Again the performance in µ-F1 394

and m-RP is mostly comparable or a bit lower, as 395

sample-wise averaged measures are dominated by 396

frequent classes due to class imbalance. 397

Contrary, Group DRO is consistently outper- 398

formed even by the standard ERM. Recall that 399

Group DRO uses a weighted average of the group- 400

wise (label-wise) losses (Eq. 7-8), where the group 401

weights rely on the momentum of the group-wise 402

(label-wise) losses (Eq. 8). In our case, this reg- 403

ularization acts counter-intuitively, as weights for 404

the infrequent classes, which are rarely present 405

across batches, are not updated (increased) con- 406

stantly. This leads to an asymmetry, where some 407

weights are frequently updated, while others not, 408

and in time the latter are almost zeroed-out and not 409

affect the training objective (loss). 410

The effect of group-robust algorithms in rela- 411

tion to the size of the label set. In Tables 2, 412

we can also observe that the performance gains 413

of group-robust algorithms compared to ERM are 414

greater when we use the larger label sets. This 415

is also as the class imbalance and temporal con- 416

cept drift are more severe when we consider more 417
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Figure 3: Class-wise F1-score results for ERM, IRM and Spectral Decoupling on medium-sized EUR-LEX. The
classes have been ordered (left-to-right) based on the label distribution in the training subset.

Algorithm BERT BERT-LWAN
Overall Head Tail Overall Head Tail

µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP µ-F1 m-F1 m-RP
ERM 68.4 40.4 70.5 73.7 61.8 74.5 26.6 19.0 51.8 70.2 50.3 71.8 74.4 64.3 75.6 44.2 36.2 54.8
ERM+GS 69.0 42.8 70.9 74.1 62.4 74.7 30.3 23.1 52.5 69.1 54.1 69.9 73.1 63.6 73.4 47.6 44.5 56.6
Group Uniform 68.6 50.2 70.0 73.0 62.0 73.5 43.1 38.5 54.5 68.9 54.7 69.7 73.2 63.9 73.7 47.7 45.4 56.8
Group DRO 63.5 28.2 63.4 70.1 50.9 70.3 8.4 5.5 28.3 66.8 39.8 65.9 72.1 59.4 70.7 31.0 20.2 43.6
Deep CORAL 67.7 44.1 70.5 72.4 59.7 73.7 35.0 28.5 57.0 n/a n/a n/a
V-REx 69.0 49.4 69.7 73.2 61.7 73.1 43.1 37.1 55.1 69.2 54.6 70.3 73.0 63.8 74.2 48.1 45.4 56.8
IRM 69.9 54.8 70.7 73.8 64.3 74.1 48.8 45.2 57.0 69.1 54.2 70.1 73.3 63.7 73.9 47.8 44.7 56.3
SD 70.7 52.4 72.2 74.7 63.9 75.1 47.0 41.0 59.1 70.3 54.2 70.6 74.4 64.4 73.6 47.8 44.1 58.4

Table 5: Results of group-robust algorithms with different models (BERT, and BERT-LWAN) in the medium-sized
version of EUR-LEX. Deep CORAL is not applicable (n/a) in LWAN -there is not a universal featurizer-.

refined labels, especially considering m-F1.418

The effect of group-robust algorithms in rela-419

tion to class frequency. In Table 3, we present420

results for the different optimization algorithms421

considering two groups of classes based on their422

frequency. Head classes are the 50% most frequent423

classes in the training set, while tail are the bottom424

50%. As expected, the performance in head classes425

is much better compared to tail ones across datasets426

(approx. +20-40% in m-F1). We observe that the427

performance gains of group-robust algorithms com-428

pared to ERM are greater in the tail classes (+10-429

20% in m-F1). This is further highlighted in Fig-430

ure 3, where we observe that IRM and Spectral431

Decoupling have larger gains in the right part (tail432

labels). This is highly expected as the goal of the433

group-robust algorithms is to minimize the group-434

wise (in our case, label-wise) disparity. Group435

DRO is severely out-performed in both head and436

tail, especially in the tail classes (whose weights437

have been zeroed-out, as previously noticed).438

The effect of group-robust algorithms using439

BERT-LWAN. In this part, we compare the ef-440

fect of the group-robust algorithms in between stan-441

dard BERT and BERT-LWAN. In Table 5, we ob-442

serve that BERT-LWAN closes the gap between443

ERM and the best-of group-robust algorithms. The444

results of ERM when we use BERT-LWAN are im-445

proved across measures, especially when we con- 446

sider m-F1 with a 10% improvement over the stan- 447

dard BERT. Both IRM and Spectral Decoupling 448

seem quite insensitive to the underlying model 449

(Fig. 4). Similarly, the results for the rest of the 450

group-robust algorithms are improved. Nonethe- 451

less, there are still benefits in m-F1 and less repre- 452

sented (rare) labels in general. Interestingly, Spec- 453

tral Decoupling improves results in both F1 scores. 454

Although, we observe a mild performance drop (- 455

1-2%) in m-RP when we consider overall and head 456

classes. We hypothesize that group-robust algo- 457

rithms negatively affect the ability of the model to 458

correctly rank labels, as they force the model to 459

consider all labels and be less confident (discrimi- 460

natory) with one way or another. 461

Why IRM and Spectral Decoupling are a better 462

fit compared to the rest of the algorithms? To 463

answer this question, we need to identify the main 464

differentiation between IRM, Spectral Decoupling 465

and the rest of the methods. Both IRM and Spec- 466

tral Decoupling follow similar incentives. IRM 467

penalizes variance across losses in the same group 468

(Eq. 10), i.e., in our case, the network is penalized 469

if there is a performance disparity between samples 470

labeled with the same classes using as a reference 471

a dummy classifier. Spectral Decoupling penalizes 472

the variance across label predictions (Eq. 14), i.e., 473
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Figure 4: LWAN-BERT performance using ERM, IRM,
and Spectral Decoupling across all EUR-LEX settings.
The shaded part denotes the performance improvement
compared to the standard BERT.

the network is penalized for being over-confident.474

The rest of the algorithms mainly rely on an equal475

consideration of the group-wise (in our case, label-476

wise) losses (Eq. 6), i.e., in our case, all classes are477

equally important for the training objective.478

The latter incentive (averaging across group-479

wise losses) seems very intuitive, although in prac-480

tice the groups (labels) co-occur (are not mutually481

exclusive) in a multi-label setting, thus frequent la-482

bels remain “first class citizens” in the optimization483

process, biasing parameter updates in their favor.484

Contrary, both IRM and Spectral Decoupling485

use a learning component (loss term), which penal-486

izes label degeneration. This is particularly impor-487

tant in multi-label classification, especially when488

we consider large label sets, as networks tend to489

over-fit (specialize) in few dominant (frequent) la-490

bels that shape the training loss and finally ignore491

(zero-out) the rest of the labels. This is quite dif-492

ferent from the concept of Gradient Starvation,493

introduced by Pezeshki et al. (2020), where a net-494

work becomes over-confident in its predictions by495

capturing only few dominant features, as in our496

case the main issue is the label degeneration rather497

than possible spurious correlations learned by the498

network. Moreover, Spectral Decoupling does not499

rely on group-wise losses, similar to the rest.500

In Figure 4, we compare the performance of501

ERM, IRM, and Spectral Decoupling across three502

EUR-LEX settings, small-sized, medium-sized,503

and one extra large-sized considering the 3rd level504

of EuroVoc including 500 concepts (labels). In the505

small label set, we observe that the use of LWAN-506

BERT slightly improves the performance when507

trained with ERM compared to standard BERT508

(shaded part of the bars). In the medium label set, 509

as already discussed, we observe a 10% improve- 510

ment with ERM, while in case of the large label set, 511

using LWAN-BERT leads to a 25% improvement 512

with ERM, and 15% with Spectral Decoupling, 513

while IRM proves to be robust across all settings 514

and both neural methods. 515

7 Conclusions & Future Work 516

We considered one of the main challenges in large- 517

scale multi-label text classification, which comes 518

from the fact that not all labels are well represented 519

in the training set due to the class imbalance and 520

the effect of temporal concept drift. To mitigate la- 521

bel disparities, we considered several group-robust 522

optimization algorithms initially proposed to miti- 523

gate group disparities given specific attributes. Ex- 524

perimenting with three datasets in two different 525

settings, we empirically find that group-robust al- 526

gorithms vastly improve performance considering 527

macro-averaged measures, while two of the group- 528

robust algorithms (Invariant Risk Minimization and 529

Spectral Decoupling) improve performance across 530

all measures. Considering a more well-suited neu- 531

ral method (LWAN-BERT), we observe a vast per- 532

formance improvement using ERM, which is still 533

outperformed by both group-robust algorithms. 534

In the future, we would like to further investigate 535

the two-tier anomaly (class imbalance and temporal 536

concept drift). In this direction, we would like to 537

directly take into consideration the time dimension 538

by utilizing this information in group sampling and 539

algorithms (e.g., groups over period of time). We 540

would also like to consider data augmentation tech- 541

niques (e.g., paraphrasing via masked-language 542

modeling (Ng et al., 2020), and teacher forcing ex- 543

ploiting unlabeled data (Eisenschlos et al., 2019)) 544

to improve the data (feature) sampling variability, 545

as the group sampler used in group-robust algo- 546

rithms over-sample minority classes with the same 547

limited instances. Further on, we would like to in- 548

vestigate the use of zero-shot LWAN methods (Rios 549

and Kavuluru, 2018; Chalkidis et al., 2020a), which 550

currently harm averaged performance in favor of 551

improved worst case performance. 552
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Algorithm Small Medium
m-F1 µ-F1 m-F1 µ-F1

ERM 71.8 60.2 47.4 10.3
ERM+GS 71.7 62.4 47.5 12.6
Group Uniform 71.9 66.1 48.2 13.3
Group DRO 65.2 47.4 14.0 3.8
Deep CORAL 72.1 67.1 47.1 12.3
V-REx 71.9 65.9 47.6 11.3
IRM 72.0 66.6 53.3 18.3
Spectral Decoupling 72.3 67.2 53.1 16.1

Table 6: Overall results of the group-robust algo-
rithms across all datasets.

A Additional Results784

MIMIC-III dataset (Johnson et al., 2017) con-785

tains approx. 50k discharge summaries from US786

hospitals. Each summary is annotated with one787

or more codes (labels) from the ICD-9 hierarchy,788

which has 8 levels.9. The International Classifi-789

cation of Diseases, Ninth Revision (ICD-9) is the790

official system of assigning codes to diagnoses and791

procedures associated with hospital utilization in792

the United States and is maintained by the World793

Health Organization (WHO).794

MIMIC-III has been anonymized to protect pa-795

tients privacy, including chronological information796

(e.g., entry/discharge dates). We split the dataset797

randomly in training (30k), development (10k), test798

(10k) subsets. We use the 1st and 2nd level of ICD-799

9 including 19 and 184 categories, respectively. In800

Table 6, we present the results, which lead to the801

very same observations discussed for the rest of the802

datasets.803

Figure 5: LWAN-BERT performance using ERM, IRM,
Spectral Decoupling, and LW-DRO across all EUR-
LEX settings. The shaded part denotes the performance
improvement over standard BERT.

9www.who.int/classifications/icd/en/

B Alternative Combined Algorithm 804

Having a clear understanding of what IRM and 805

Spectral Decoupling offer, it seems that we could 806

combine both to leverage all features: (a) rely on 807

group-wise (label-wise) losses as the main driver 808

of the optimization process (Eq. 6); (b) penalize 809

the classifier if there is a performance disparity 810

between samples labeled with the same classes 811

(Eq. 10–11); and (c) penalize the classifier for be- 812

ing over-confident (Eq. 14). We name the new 813

algorithm Label-Wise Distributional Robust Op- 814

timization (LW-DRO), where the total loss term 815

(LLW−DRO), is computed as follows: 816

1
G

 G∑
i=1

L(gi) + λ1P(gi)

 + λ2
1
N

N∑
i=1

ŷ2
i (18) 817

In Fig. 5, we present the results of the 3 over- 818

all best group-robust algorithms (IRM, Spectral 819

Decoupling, and LW-DRO) across all EUR-LEX 820

settings. LW-DRO has comparable perfomance in 821

the first two setting (small, medium), while being 822

the best in the large-sized setting. 823

C Measuring class-wise bias 824

Blakeney et al. (2021) recently introduced two eval- 825

uation measures to estimate class-wise bias of two 826

models in comparison to one another in a multi- 827

class setting, and show that these metrics can be 828

also used to measure fairness and bias with respect 829

to protected attributes. 830

Following Blakeney et al. (2021), in Figure 6 831

we present the normalized Combined Error Vari- 832

ance (CEV) in-between algorithms. CEV estimates 833

the class-wise bias of a model A relative to an- 834

other model B has increased of the change between 835

model A and a random predictor.10 In our case, as 836

different models, we consider BERT trained with 837

a different algorithm. In both UK-LEX and EUR- 838

LEX, swapping Group Uniform, IRM, or Spectral 839

Decoupling with ERM, or Group DRO leads to a 840

higher class-wise bias, which is highly expected 841

given the aforementioned performance analysis, 842

i.e., improved m-F1 scores. 843

10For a detailed analysis of the CEV metric, please refer to
Blakeney et al. (2021).

11
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Figure 6: Class-wise bias in-between algorithms across datasets, measured with the normalized Combined Error
Variance (CEV) as defined by Blakeney et al. (2021).
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