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ABSTRACT

Current practices to apply temperature scaling assume either a fixed, or a
manually-crafted dynamically changing schedule. However, our studies indicate
that the individual optimal trajectory for each class can change with the context.
To this end, we propose context-aware temperature, a generalized approach to pro-
vide an individual optimal temperature trajectory over the context for each vocabu-
lary, while allowing the temperature to be learned along with the remaining model
parameters during training. Experiment results confirm that the proposed method
significantly improves state-of-the-art language models, achieving a perplexity of
19.90 on Penn Treebank, 33.88 on WikiText-2, and 4.7 on WikiText-103.1

1 INTRODUCTION

Temperature scaling has been widely used in various domains, such as natural language process-
ing, model calibration, and knowledge distillation, to adjust the smoothness of a distribution, and
achieve great performances or control the attribute of generated outputs (Norouzi et al., 2016; Hu
et al., 2017; Caccia et al., 2018). Generally, a temperature scalar (or vector) τ is applied as a denom-
inator to the logits, and then the divided logits pass through a Softmax layer to yield a probability
distribution. If the temperature value τ →∞, the distribution becomes more uniform, thus increas-
ing the uncertainty. Contrarily, when τ → 0, the distribution collapses to a point mass. Although
temperature scaling has been justified to achieve great success, existing implementations are lim-
ited. They assume either a constant value, or a manually-defined schedule for the temperature (Jang
et al., 2017; Ma et al., 2017; Xie et al., 2019). Most importantly, none of them studies the effects on
different word tokens when the temperature changes.

To this end, we propose context-aware temperature, which is capable of generating an unique tem-
perature value for each token. Through taking the change of contexts into consideration, context-
aware temperature serves as a generalized method to provide an optimal temperature for each word.
Figure 1 illustrates the temperature trajectories of the tokens during the course of training. The word
tokens along the Y-axis are from an input sentence, and the tokens along the X-axis are a selected
subset of the vocabulary. At each row i, we show the contextual temperature values generated for
the tokens along the X-axis, taking the context of the i-th input token in consideration. As shown
in the figure, the temperatures of tokens gradually “heat up” or “cool down” as we sequentially pro-
cess the input tokens. For instance, at row 5 (for the input token “old”), we see that “years” and
“months” have obviously heated-up temperatures, while the temperature of “old” is slightly cooling
down. These temperatures at row 5 are generated by our proposed model, considering the context
of preceding tokens “pierre <unk> N years”, with the goal of predicting the token “old”.

Furthermore, the diagonal pattern indicates that our context-aware model assigns high temperature
values to the token that just occurred, effectively suppressing the same token to appear repeatedly in a
sentence. Such context-aware behavior of our model intuitively matches human intuition that words
do not usually occur consecutively in a sentence. With these observations, we argue that existing
methods limit themselves to some fixed schedules, and thus have great difficulty to generalize. The
proposed context-aware temperature provides a more generalized temperature mechanism.

Our experimental results on language modeling datasets, including Penn Treebank, WikiText-2 and
WikiText-103, demonstrate significant improvements. We also conduct comprehensive analyses

1We will release the code upon paper acceptance.
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and ablation studies to confirm the improvements of the proposed method. The proposed method is
capable of regulating the uncertainties as the context changes, allowing language models to achieve
much better performances. To the best of our knowledge, this is the first systematic work that studies
the role of temperature changing over contexts on a per-token basis.

(a) Epoch 11. (b) Epoch 351. (c) Epoch 1000.

Figure 1: The learned temperature trajectories of the tokens during the course of training.

2 RELATED WORK

2.1 LANGUAGE MODELING

Given an input sequence x1:T = x1, ..., xT of tokens xt ∈ V , with the sequence length T and the
vocabulary V , the objective of language modeling is to predict the next token xT+1. A language
model factorizes P (x1:T+1), the joint probability of x1:T+1, as the product of a series of conditional
probabilities P (xi|xi−1), i = 0, ..., T + 1. Specifically, P (x1:T+1) =

∏T+1
t=1 P (xt|x1:t−1).

Modern neural language models are comprised of two parts: a mapping function and a probability
function. A mapping function θemb ∈ R|V |×d maps a token xt into a real-value vector xembt ∈ Rd,
where d is the dimension of the vector and |V | is the size of vocabulary. A probability function then
converts xembt into a |V | dimensional vector using a weight matrix θmodel ∈ Rd×|V |. Afterwards, a
Softmax function σ is used to obtain a probability distribution. So, at timestep t, we have

P (xt|x1:t−1) = σ(f(x1:t−1; θemb ∪ θmodel)) (1)
where f is a nonlinear mapping parameterized by θemb and θmodel. Current language models adopt
various architectures as θmodel, for instance, recurrent-based networks (Hochreiter & Schmidhuber,
1997), convolution-based ones (Dauphin et al., 2017), and attention-based ones (Dai et al., 2019).

2.2 SOFTMAX LAYER

A Softmax layer σ normalizes a |V | dimensional, real-value vector z to make it sum to 1. Specif-
ically, σ(z)i = zi/

∑|V |
j ezj , where z = f(x1:t−1; θemb ∪ θmodel) and zi is the i-th element in

z.

Recent progress suggests that Mixture of Softmaxes (MoS) (Yang et al., 2018) significantly improves
the performance by computing multiple Softmax distributions, and summing them up through a set
of weights to provide the final probability distribution. Specifically, a set of M matrices Wm is
applied to z, that is, zm = zT ·Wm. The probability distribution under the MoS model is thus

PMoS(xt|x1:t−1; Θ) =

M∑
m=1

πm · σ(zm) (2)

where Θ = ∪Mm=1Wm ∪ θemb ∪ θmodel.

2.3 TEMPERATURE SCALING

Temperature, denoted as τ , often serves as a hyper-parameter in the Softmax layer to control the
smoothness of the distribution. Applying temperature scaling on logits z gives

P (xt|x1:t−1; θemb, θmodel, τ ) = σ(z/τ ) (3)
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Here τ is a vector with a same dimension |V | as z, and is normally set to 1. Below we divide related
works into three categories: (a) constant temperature, where each element in τ has the same value,
(b) dynamic temperature over training iterations, where τ is constant in one single iteration, but
has different values in every iteration, and (c) dynamic temperature over word position, where τ is
dynamic in one iteration, and besides, τ could change in every iteration.

Constant Temperature. Earlier works can be traced back to model distillation (Hinton et al.,
2014), where τ is constant and chosen empirically. Constant temperature is also used during training
(Norouzi et al., 2016; Ma et al., 2017) to control the degree of augmentation. Other works that
incorporate τ at inference time include model calibration (Guo et al., 2017), and controlling the
trade-off between quality and diversity in text generation tasks (Caccia et al., 2018).

Dynamic Temperature Over Training Iterations. Most works adopt dynamic temperature
through a manually-crafted schedule. Notably, Hu et al. (2017) uses an approximation based on Soft-
max with a decreasing temperature to enable gradient propagation. Similar techniques are adopted
in gumbel-softmax (Jang et al., 2017). In addition, Zhang et al. (2018) shows that with a heating up
temperature scaling, embedding vectors are more compact.

Dynamic Temperature Over Attention. Another work that is closely related to our work, is
the adaptive temperature over an attention model (Lin et al., 2018). The model learns to output a
dynamic temperature to control the softness of the attention. The temperature is learned based on
the information of decoding at the current step and the attention in previous steps.

3 METHODS

3.1 CONTEXT-AWARE TEMPERATURE

Context-aware temperature is a mechanism that chooses the optimal temperature for each vocabulary
token, by considering the “context” of a token xt, which is the history x1:t−1.

In this work, the temperature vector τ ∈ R|V | is generated based on the hidden representations
learned from a non-linear mapping function f (as described in Equation 1). The function f can
be any sequential models. In this work, we explore two parameterizations of the function f , based
on two different models, AWD-LSTM (Merity et al., 2018) and Transformer-XL (Dai et al., 2019).
As an example, Figure 2 illustrates the architecture of our model when implemented on top of the
MoS model (Yang et al., 2018). In this figure, the above-mentioned function f is the output of
the AWD-LSTM layer, and the components colored in blue constitute the proposed mechanism of
context-aware temperature, which we will describe next.

The output from f is then multiplied with Wτ to produce the logits of the temperatures, denoted as
zτ , which subsequently are scaled using a Softmax layer and two parameters (α,β):

τ =
σ(zτ ) + α

β
, where zτ = f(x1:t−1; θemb, θmodel)T ·Wτ . (4)

Note that while the values of (α, β) could be assigned manually, they could be learnt by the model
itself. We choose to implement them as learnable parameters in this work.

3.2 CONTEXT-AWARE TEMPERATURE MOS

The first model that we explored is the Context-aware Temperature Mixture of Softmaxes (CT-MoS),
which extends the MoS model for language modeling with our proposed context-aware temperature
mechanism. Equation 5 shows the modified mechanism with the context-aware temperatures.

PCT-MoS(xt = k|x1:t−1; Θ) =

M∑
m

πm · σ(zm � τ )) (5)

where � represents element-wise division. Θ = ∪Mm=1Wm ∪ θemb ∪ θmodel ∪ Wτ is the set of
all of the parameters of CT-MoS. And, πm are the weights for the logits, which are defined by the
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Figure 2: The architecture of the proposed CT-MoS model. Black components are those the same
as the MoS model, while the blue ones are the newly added ones in the proposed approach.

MoS model. Please note that using a single matrix Wτ may increase the number of parameters
significantly, and thus in practice we factorize it into two matricesWτ1 andWτ2 . Figure 2 highlights
the difference between the proposed CT-MoS model and the MoS model.

Compared to prior works, the proposed context-aware temperature is not only dynamic over training
iterations, but also dynamic over the word positions in a sentence (see Figure 1). That is, for the
same token at different positions with different context, the proposed method would learn a different
temperature vector dependent on the token’s history context.

3.3 CONTEXT-AWARE TEMPERATURE TRANSFORMER-XL

Besides experimenting with the MoS model, we apply the context-aware temperature mechanism
on the Transformer-XL (Dai et al., 2019) model for language modeling. Compared to MoS,
Transformer-XL is a purely self-attentive model. We apply the context-aware temperature on the
logits zTXL of the Transformer-XL model, and denote the resulting model as “CT-Transformer-XL”.

PCT-Transformer-XL(xt = k|x1:t−1; Θ) = σ(zTXL � τ )) (6)

where Θ = θemb ∪ θmodel ∪Wτ .

3.4 EFFECTS OF CONTEXT-AWARE TEMPERATURE

In this section, we discuss how context-aware temperature effects the logits z and the temperature
itself τ , through illustrating their corresponding gradients. We consider a language modeling task
with a small vocabulary of only two words, i.e., |V | = 2. In this setting, the dimensionality of logits
z is 2 and so is that of the temperature vector τ . The range of τ is set to [0, 1], that is, (α, β) = (0, 1).

Gradient of the logit At a given input, assume that the ground-truth token is i = 0, thus the
cross-entropy loss is L = − ln p0, where p0 is the model’s output probability for word token i = 0.
In this case, the gradients of logits z are illustrated in Figure 3 (the derivation of the gradients is in
Appendix A.1). In Figure 3(a), we consider the gradient of z1 of token i = 1. When no temperature
mechanism is applied, it can be seen that the magnitude of the gradient is bounded within [0, 1] (as
shown by the red mesh), with the largest magnitude 1 (most aggressive update) happens when the
probability p1 is closer to 1 (note that the ideal value for p1 should be close to 0, as the other token
i = 0 is assumed to be the ground truth).

On the other hand, when the context-aware temperature is applied, the gradient can now be set to a
much more substantial magnitude by setting a smaller temperature value τ1 (as shown by the blue
mesh). The additional flexibility of magnifying the gradient by temperature enables the model to be
more efficient (or aggressive) in adjusting the parameters to reduce the training loss.

Gradient of the temperature Next, we analyze how the model with context-aware temperature
updates the value of the temperature. We recall that Equation 4 defines the formulation of the
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temperature. We leave the detailed derivation of the gradient of the temperature in Appendix A.1.
Figure 4 visualizes the gradients ∂L

∂zτ0
and ∂L

∂zτ1
when z0 is either positive or negative. We will use

the case in Figure 4(a) (where z0 ∈ R−) as an example to explain the effect of the gradient on
the temperature. In this case, if p0 is close to 0, then we expect that the model should be more
aggressive to update the parameters (since we assume that the ground-truth class is i = 0, meaning
that p0 should ideally be close to 1). This aggressive response is indeed visible in the figure, showing
values of larger magnitude when p0 → 0.

The amount of update on the temperature τ0 also depends on its current value. In the same Fig-
ure 4(a), let’s consider a fixed p0, say, p0 = 0.1. In this case, as described above, the model wants to
increase the value of p0 to closer to 1. To do that, the model will attempt to increase the term ez0/τ0 .
Since τ0 is a positive value in [0, 1] and z0 < 0 in this case, to maximize z0/τ0, the optimal is to
have the temperature value τ0 → 1. When the model is updating the value of τ0, if its current value
is already close to 1, then the gradient will be small, since it is already close to the optimal value.
On the other hand, if the temperature τ0 is still far from 1, then the gradient will update it’s value
more aggressively. This behavior is exactly visualized in the figure.

(a) i = 1 (b) i = 0

Figure 3: Gradients of loss with respect to (a) logit z0 and (b) logit z1. In each figure, the x-axis is
the probability pi of class i, y-axis is the temperature value τi of class i, and z-axis is the gradient
∂L
∂zi

. The colorful mesh represents the gradients when the context-aware temperature is applied,
while the red mesh represents the case without temperature.

(a) z0 ∈ R−, i = 0 (b) z0 ∈ R−, i = 1 (c) z0 ∈ R+, i = 0 (d) z0 ∈ R+, i = 1

Figure 4: Gradients of loss with respect to zτi . The x-axis is the probability pi of class i, y-axis is
the temperature value τi of class i, and z-axis is the gradient ∂L

∂zτi
.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

We evaluate context-aware temperature on three datasets for language modeling: Penn Treebank,
WikiText-2 and WikiText-103 (Marcus et al., 1993; Mikolov et al., 2011; Merity et al., 2017).

CT-MoS. We conduct experiments on PTB and WT2 using one and four 1080 Ti GPUs, respec-
tively. The environment is PyTorch (Paszke et al., 2017). We follow the training configurations as
reported in the MoS paper and their github2. For both data sets, we use the same number of param-

2https://github.com/zihangdai/mos
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eters as MoS. That is, we use three layers of LSTM with embedding sizes of 960-960-620 on PTB;
and for WT2, three layers of LSTM with embedding sizes of 1150-1150-650. The only difference
is on the choice of the optimizer, where we use the Adam optimizer with a learning rate of 1e−4.

CT Transformer-XL. The experiments on WikiText-103 is conducted with four 1080 Ti GPUs.
The baseline model is Transformer-XL, and the environment we use is PyTorch. We follow the
training configurations as reported in the official Transformer-XL github3. There are two training
configurations: standard and large. We adopt the standard one, which has 16 layers, 10 attention
heads and the hidden size of 410. Adaptive input representations (Baevski & Auli, 2018) and adap-
tive softmax (Grave et al., 2016) are used.

4.2 MAIN RESULTS

Penn Treebank. We compare the proposed method with MoS and AWD-LSTM, including the
performance with and without dynamic evaluation (Krause et al., 2017). Since the original MoS
model has approximately 22M parameters, to make a fair comparison, we augment its number of
parameters to have 24M parameters. We increase the size of each layer proportionally, giving the
word embedding size d = 300, and making the sizes of the three LSTM layers be 1030, 1030 and
670. We denote this augmented model as MoS+.

In Table 1, experimental results show that our CT-MoS model outperforms AWD-LSTM, MoS, and
MoS+ on both validation and test sets. Our model achieves 22.92 perplexity on the validation set
and 19.90 on the test set without dynamic evaluation. When using dynamic evaluation, the proposed
CT-MoS model also achieves significant better perplexities of 10.63 and 10.04.

Table 1: Perplexity comparison on the Penn Treebank dataset. † indicates using dynamic evaluation.

Model Paras Validation Test

AWD-LSTM 24M 60.7 58.8
AWD-LSTM † 24M 51.6 51.1

MoS 22M 58.08 55.97
MoS † 22M 48.33 47.69

MoS+ 24M 57.96 55.78
MoS+ † 24M 48.89 48.28

CT-MoS 24M 22.92 19.90
CT-MoS † 24M 10.63 10.04

WikiText-2. Table 2 presents our experimental results for WT2. Similar to the results in Table 1,
CT-MoS also outperforms the state-of-the-art models in this case. Compared to the MoS model,
CT-MoS achieves great improvements, with perplexity 34.81 and 33.88 on the validation and test
sets, respectively. With dynamic evaluation, CT-MoS obtains even better perplexity of 14.51 and
13.93. To conduct a fair comparison, we enlarge the number of parameters of MoS to have 45M
parameters. The size of each layer is increased proportionally: the embedding size is d = 360 and
sizes of the three LSTM layers are 1320-1320-760. We denote the enlarged model as WT2+.

WikiText-103. Table 3 shows the experimental results on the WikiText-103 data set. We report
the performances of both standard and large Transformer-XL models. The better results achieved
by CT-Transformer-XL not only indicates the effectiveness of context-aware temperature, but also
demonstrates its applicability on modeling the long-term dependency in an article-based corpus.

4.3 ABLATION STUDIES

To further illustrate the effects of the context-aware temperature, we compare it with conventional
temperature scaling method, that is, using a constant temperature. We experiment with different

3https://github.com/kimiyoung/transformer-xl
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Table 2: Perplexity comparison on the WikiText-2 dataset. † indicates using dynamic evaluation.

Model Paras Validation Test

AWD-LSTM 33M 69.1 66.0
AWD-LSTM † 33M 46.4 44.3

MoS 35M 66.01 63.33
MoS † 35M 42.41 40.68

MoS+ 45M 65.33 62.66
MoS+ † 45M 42.73 40.74

CT-MoS 45M 34.81 33.88
CT-MoS † 45M 14.51 13.93

Table 3: Perplexity comparison on the WikiText-103 dataset.

Model Paras Validation Test

Transformer XL Standard 151M 24.0 23.1
Transformer-XL Large 257M 18.3 18.2
CT Transformer-XL 261M 4.1 4.7

constant values {0.5,1,2,4} on the MoS model. Results in Table 4 show that employing context-
aware temperature provides better performance than the conventional method. This indicates that the
proposed method indeed has merits on adjusting the model parameters, by considering the context
and providing a dynamic and optimized temperature value for each token.

Table 4: Effects of context-awareness. Experiments are conducted on the PTB dataset.

Model Validation Test

MoS (τ = 0.5) 60.73 58.38
MoS (τ = 1.0) 58.08 55.97
MoS (τ = 2.0) 57.25 55.11
MoS (τ = 4.0) 57.39 55.21
CT-MoS 22.92 19.90

Furthermore, we conduct two ablation studies regarding (a) the model size, and (b) the value range
of the temperature vector. Details are left in Appendix A.2 and A.3, respectively.

4.4 ANALYSIS

Language Uncertainties Another interesting observation of the proposed context-aware temper-
ature is the correlation between a word’s relative position in a sentence and its learned temperature.
Figure 5 shows the means of temperature vectors at different positions in a sentence. We analyze
sentences of three different lengths. For instance, the purple line corresponds to our analysis on
sentences that are longer than 21 words and shorter than 35 words. For each of these sentences, we
consider positions in three disjoint segments: the first 7, middle 7 and last 7 words. The three seg-
ments are concatenated to form a “normalized” sentence. This pre-processing ensures the positions
of a token only have relative effects to the analysis, and are not effected by the sentence length.

In Figure 5, we observe that the temperature value is low at beginning positions of a sentence. As
the position gets further away, the averaged temperature value first has a sharp increase and then
decreases at positions near the end. Our intuition is as the following: at the beginning positions the
model has little confidence, since there is limited information in the history. The model recognizes
this fact and learns a uniform temperature vector over the tokens, to be less assertive and assigns
relatively uniform probability over the tokens. As the history builds up at later positions, the model

7



Under review as a conference paper at ICLR 2021

Figure 5: Means of the temperature vectors over positions in a sentence. The average temperature is
low at the beginning of a sentence and gradually increases towards latter positions.

Table 5: Analysis of model performance on a sample from the PTB dataset. τ denotes the tempera-
ture of a certain token. More examples can be found in Appendix A.4.

Reference $ N million of general obligation veterans ’ tax notes series N via competitive bid

CT-MoS $ N million of general obligation veterans ’ tax notes series N via a bid

MoS $ N million of general obligation bonds bonds bonds bonds series N via a bid

CT-MoS top-3 veterans 0.874 tax 0.082 <unk> 0.034
MoS top-3 bonds 0.495 revenue 0.062 veterans 0.031

Temperature veterans τ = 0.0011 bonds τ = 0.0099

CT-MoS top-3 tax 0.943 N 0.056 <unk> 0.001
MoS top-3 bonds 0.135 revenue 0.101 tax 0.064

Temperature tax τ = 0.0063 bonds τ = 0.0096

becomes more confident about the next token and outputs a more spiky probability distribution on
plausible tokens. The formation of the spiky distribution is done by having high temperature values
for implausible tokens. These higher temperature values increases the average temperature value as
shown in Figure 5. The uncertainties drop sharply as we reach the end of the sentence.

Case Study: Effectiveness. In Table 5, we present a sentence from the PTB dataset to illustrate
the differences between MoS and CT-MoS, against the Reference. We highlight two differences in
red and blue colors. At the location highlighted in red, we see that CT-MoS successfully predicts the
answer “veterans” with a high probability of 0.874. On the other hand, MoS predicts “bonds”, which
deviates from the ground truth. The word “veterans” has a temperature of 0.0011, which is much
smaller than that of the word “bonds” (0.0099). This contributes to CT-MoS chooses “veterans”
over “bonds”. Similar observations can be found at the blue location. We also observe that MoS
tends to output a same word repeatedly, such as the four “bonds” tokens predicted for this example.
The context-aware temperature mechanism does not have this issue. As illustrated in Figure 1, the
context-aware temperature inclines to suppress the token appearing at previous time step by raising
the temperature value, which effectively discouraging the same token to be predicted consecutively.

5 CONCLUSION AND FUTURE WORK

We propose a fully automated temperature mechanism, which learns an optimal temperature for
each individual token based on the history of the context. The proposed context-aware temperature
obtains strong results on various widely-adopted language modeling datasets. Our work opens up
the research directions along the line of fully automated temperature mechanism in various NLP
tasks, such as summarization, machine translation, and dialogue generation.
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A APPENDIX

A.1 PARTIAL DERIVATIVES OF LOSS TO LOGITS OF TEMPERATURE

Take the case of two classes as example, assume that the ground-truth class is i = 0. In this case,
the loss L is − ln p0, where p0 is the probability of class 0 output by the model. The probabilities of
the two classes are p = σ(z� τ ) = [p0, p1]. Let u = z� τ = [u0, u1], and ui = zi/τi. Then, we
have

pi =
eui

eu0 + eu1
. (7)

τ is defined in Equation 4, and is essentially σ(zτ ). Therefore,

τi =
ezτi

ezτ0 + ezτ1
. (8)

The gradients of the loss with respect to logits z0 and z1 are

∂L

∂zi
=
∂(− ln p0)

∂zi
=

{
(pi − 1) 1

τi
i = 0

pi
1
τi

i 6= 0
(9)

The gradient of zτ0 is calculated as below

∂L

∂zτ0
=

∂L

∂p0

∂p0
∂u0

∂u0
∂τ0

∂τ0
∂zτ0

+
∂L

∂p0

∂p0
∂u1

∂u1
∂τ1

∂τ1
∂zτ0

= −p1
−z0
τ20

ezτ0+zτ1

(ezτ0 + ezτ1 )2
+ p1

−z1
τ21

−ezτ0+zτ1
(ezτ0 + ezτ1 )2

=
1

τ0
p1z0τ1 +

1

τ1
p1z1τ0

(10)

Similarly, the gradient of zτ1 is calculated as

∂L

∂zτ1
=

∂L

∂p0

∂p0
∂u0

∂u0
∂τ0

∂τ0
∂zτ1

+
∂L

∂p0

∂p1
∂u1

∂u1
∂τ1

∂τ1
∂zτ1

= −p1
−z0
τ20

−ezτ0+zτ1
(ezτ0 + ezτ1 )2

+ p1
−z1
τ21

ezτ0+zτ1

(ezτ0 + ezτ1 )2

= − 1

τ0
p1z0τ1 −

1

τ1
p1z1τ0

(11)

A.2 MODEL SIZE

We have demonstrated the results of MoS+ in both Table 1 and 2. Here we notice that MoS+ has
a similar perplexity compared to MoS, indicating that directly increasing model parameters cannot
improve the performance. Similar observation and results are also reported by Yang et al. (2018).
This shows that the improvements brought by CT-MoS are more than the mere growth of parameters.
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As for Transformer-XL, two results achieved by different sizes of the model are reported. We com-
pare with the large one (257M parameters), which has a comparable parameter size to our model
(261M parameters). Results in Table 6 demonstrate the significant improvements brought by the
proposed method. Again, this shows that the mere growth of parameters do not account for the
improvements. In addition, we report the performance of several state-of-the-art models, including
Megatron-LM (Shoeybi et al., 2019) and the widely-known GPT-2 (Radford et al., 2019) models.
Please note that these models use extra training data during the training procedure. However, the
proposed model outperforms these baseline models without using any extra data.

Table 6: Perplexity comparison on the WikiText-103 dataset.

Model Paras Validation Test extra training data

Transformer XL Standard 151M 24.0 23.1 7
Transformer-XL Large 257M 18.3 18.2 7
CT Transformer-XL 261M 4.1 4.7 7

Megatron-LM 8300M - 10.81 3
GPT-2 Full 1542M - 17.48 3
GPT-2 Medium 355M - 26.37 3

A.3 TEMPERATURE NORMALIZATION RANGE

The value range of the temperature vector is bounded by a Softmax layer and two parameters (α, β).
Throughout all the experiments, we let (α, β) be learnable parameters and find their values to be
(0,1). To further examine the learned value range, we conducted experiments with manually-defined
temperature value ranges. The experiments are conducted on the Penn Treebank dataset.

Table 7 shows that the learned value ranges bring better performance than others. Even if we use
a manually defined range that is same as the learned range (0, 1), using the learned (α, β) slightly
outperforms. Furthermore, the proposed method achieves great improvements when the temperature
range is either wide or limited. For instance, using (α, β) = (1, 2) gives the range of (2, 4) and the
test perplexity of 41.09; using (α, β) = (0.2, 5) gives the range of (1, 6) and the test perplexity of
22.12. Both results are obviously better than the test perplexity (47.69) of baseline MoS model.

Table 7: Performance of different value ranges of the temperature vector.

(α, β) Validation Test

(0, 1) 23.04 20.08
(0.01, 2) 23.12 20.09
(0.2, 5) 24.47 22.12
(1, 3) 43.97 41.09
(1, 2) 44.71 41.42

learned 22.92 19.90

A.4 CASE STUDIES: EFFECTIVENESS

We present two other cases on the Penn Treebank dataset to visualize the effect of context-aware
temperature, in Table 8 and 9. We highlight the five differences in red, brown, purple, blue and
teal colors, respectively. Let’s first see Table 8. At the colored locations, we see that the proposed
model successfully predicts the correct words, while MoS fails to do so. When taking a look at the
temperature value for the specified word, we see that CT-MoS gives the ground-truth tokens smaller
temperature values, whereas giving the non ground-truth tokens (such as “the”, “debt”, “its” and
“in”) high temperature values. This contributes to the results that our model chooses the correct
tokens over the wrong ones. Similar observations can be found in Table 9.
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Table 8: Analysis of model performance on a sample from the PTB dataset.
Reference in august resorts international inc. which sold more than $ N million of junk bonds

suspended interest payments

CT-MoS in august the international inc. filed filed $ than $ N million of junk bonds under
interest payments

MoS the the the had inc. said has N than N N billion of debt bonds to its in

CT-MoS top-3 in 0.413 the 0.163 more 0.094
MoS top-3 the 0.322 in 0.076 a 0.044

Temperature in τ = 0.0094 the τ = 0.0122

CT-MoS top-3 august 0.418 september 0.246 the 0.153
MoS top-3 the 0.299 addition 0.087 a 0.083

Temperature august τ = 0.0043 the τ = 0.0111

CT-MoS top-3 junk 0.677 u.s. 0.107 the 0.066
MoS top-3 debt 0.150 assets 0.147 high-yield 0.099

Temperature junk τ = 0.0056 debt τ = 0.0096

CT-MoS top-3 interest 0.323 its 0.212 from 0.099
MoS top-3 its 0.273 the 0.166 a 0.096

Temperature interest τ = 0.0046 its τ = 0.0068

CT-MoS top-3 payments 0.800 in 0.053 rates 0.042
MoS top-3 in 0.270 payments 0.240 rates 0.072

Temperature payments τ = 0.0038 in τ = 0.0095

One thing worth noticing is that, as mentioned in Section 4.4, the MoS model tends to predict a same
word repeatedly. In Table 8, the MoS model consecutively predicts “the the the”. This is again in
accordance with our observations that the proposed CT-MoS model tends to give the previous token
a high temperature value, so as to suppress the corresponding probability.

A.5 CASE STUDY: TEMPERATURE AND TOKEN POSITION.

Another aspect to examine how context-aware temperature works is to look at the change of the
temperature from a specific token across different positions in a sentence. In Table 10, we present
a sample from the PTB dataset, and highlight the occurrences of the word “mortgage” in red. As
the position changes, the proposed method chooses a different temperature value, adjusting its con-
fidence of the model’s belief. In this case, the temperature at the third occurrence of “mortgage”
is 0.0023, and gradually decreases at subsequent occurrences. Such a decrease indicates that the
model gains more confidence in making the prediction, most likely due to richer information from
the longer history context.
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Table 9: Analysis of model performance on a sample from the PTB dataset.
Reference imperial corp. based in san diego is the parent of imperial savings & loan

CT-MoS imperial corp. based in san diego said attempting parent of imperial corp. & loan

MoS the said said in <unk> francisco said a largest of the bank & loan

CT-MoS top-3 corp. 0.443 is 0.272 savings 0.104
MoS top-3 said 0.189 ’s 0.071 savings 0.067

Temperature corp. τ = 0.0060 said τ = 0.0073

CT-MoS top-3 based 0.370 is 0.219 said 0.207
MoS top-3 said 0.333 a 0.071 ’s 0.070

Temperature based τ = 0.0046 said τ = 0.0089

CT-MoS top-3 san 0.718 <unk> 0.171 imperial 0.029
MoS top-3 <unk> 0.270 new 0.097 los 0.070

Temperature san τ = 0.0065 <unk> τ = 0.103

CT-MoS top-3 parent 0.517 first 0.364 <unk> 0.077
MoS top-3 largest 0.161 <unk> 0.097 parent 0.072

Temperature parent τ = 0.0040 largest τ = 0.0107

CT-MoS top-3 imperial 0.750 the 0.124 <unk> 0.093
MoS top-3 the 0.150 <unk> 0.132 american 0.075

Temperature imperial τ = 0.0012 the τ = 0.0113

Table 10: Analysis of the temperature for one specific word but at different positions.

CT-MoS

N N standard conventional fixed-rate mortgages(1) N N N N rate capped one-
year adjustable rate mortgages(2) <eos> federal national mortgage(3) asso-
ciation fannie mae <eos> posted yields on N year mortgage(4) commitments
for delivery within N days priced at par <eos> N N standard conventional
fixed-rate mortgages(5) N N N rate capped one-year adjustable rate mort-
gages(6) <eos>

Temperature τ (1) 0.0020 (2) 0.0009 (3) 0.0023 (4) 0.0019 (5) 0.0010 (6) 0.0010
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