Learning Procedural Dependencies
from Self-Supervised Instruction Unshuffling

Anonymous ACL submission

Abstract

We develop a self-supervised method for im-
proving the ability of language models to rea-
son about the dependency structure of procedu-
ral texts. Previous work has explored using fine-
tuned models to classify dependencies between
procedure steps and construct flow-graphs us-
ing these dependencies. We improve upon
these methods by introducing a self-supervised
step-unshuffling training objective. By learning
to map shuffled sequences of procedure steps
to their correct order, our method improves the
procedural reasoning abilities of language mod-
els. Through experiments we demonstrate that
state-of-the-art models including GPT-4 per-
form poorly at the task of identifying step de-
pendencies, and we also generate significant
improvements using our step-unshuffling train-
ing objective, surpassing GPT-4 performance.

1 Introduction

Understanding procedural texts is an important
goal of natural language processing research. Natu-
ral language offers a versatile and accessible means
of specifying tasks to people and agents and instruc-
tional texts have been leveraged in many domains
including robotics (Tellex et al., 2020), video game
agents (Branavan et al., 2012), and computer vision
(Ramanathan et al., 2013). Unlike commands spec-
ifying goals, procedural texts capture additional in-
formation about the manner in which a task should
be performed. They are sequences of actions and
subgoals, and also contain information about the
necessary objects for completing a task.

For many applications, a structured representa-
tion of the procedural text is necessary. Momouchi
(1980) introduces a flow-graph representation for
procedural texts which consist of recipe steps and
execution dependencies between the steps. These
graphs specify the actions and objects of the pro-
cedure as nodes and causal dependencies between
the nodes as edges. Constructing these graphs in-

volves parsing individual steps by identifying ac-
tions and objects, and then determining which steps
are dependent on which other steps and which steps
can be done in any order. This requires an under-
standing of the preconditions and postconditions of
action-steps. Recent work has utilized pretrained
language models (LMs) to construct flow-graphs
from recipes (Yamakata et al., 2020). They con-
struct a dataset of recipes annotated with named
entities and dependencies and then finetune a LM to
classify dependencies between the entities. These
approaches rely on the LM to have representations
which capture the information that is necessary to
reason about dependencies and to generalize this
knowledge effectively to new procedural texts.

However recent work has shown that even large
language models (LLMs) perform poorly at tasks
that require basic procedural reasoning abilities.
(Valmeekam et al., 2023) shows that state-of-the-
art LL.Ms significantly under-perform humans at
simple formal planning tasks, including generating
valid plans, reasoning about plan execution, and
even verifying whether provided plans are correct.
This appears to indicate that current large models
do not contain or cannot leverage representations
for reasoning about dependencies in procedural
texts.

To improve the construction of flow-graphs, we
therefore seek to augment the procedural reasoning
abilities of pretrained models. LLMs have demon-
strated high performance on semantic parsing tasks
involving single sentences (Shin et al., 2021). But
generating flow-graphs involves reasoning about
longer context relationships and we demonstrate
that even the largest models still lack the ability to
effectively identify procedure dependencies with-
out access to significant domain-specific supervised
training data. To help overcome this, we propose to
use a self-supervised learning objective: procedure
step unshuffling. We construct a self-supervised
training task where the model learns to map shuf-

Shuffled Corpus Unshuffled Corpus

No-Bake Nut Cookies

No-Bake Nut Cookies
In a heavy 2-quart

1

1

1

‘

. Using 2 teaspoons, drop and
E \sﬂlzips;;;oréo CNEER @ nuts, evaporated milk and
:

1

1

1

1

1

1

1

Sanapace - butter or margarine.

Model
Boil and stir 5 minutes more.

Take off heat. Stir over medium heat until

Phase 1: Self-Supervised Instruction Unshuffling

saucepan, mix brown sugar,

mixture bubbles all over top.

1. Preheat the oven to 180C.
2. In a mixing bowl, combine
flour, sugar, baking powder,
spices and salt...

! 1 Cake Recipe Must Step A ;
! | Step A: Preheat the oven to Precede B?
11 180C. '
! | Step B: Bake in oven for 30- Unshuffle ,
1 35 minutes or until the sponge 3 !
o) Trained '
| 1 springs up. —> —> True '
1 ' Recipe: Language !
v Model ,
. '
o 1
o 1
o 1
o 1

1 1

Phase 2: Supervised Dependency Classification

Figure 1: Our method first finetunes a pretrained LM to unshuffle recipe steps. We then finetune the model on a
challenging recipe dependency classification task. This task requires determining which recipe steps must precede
others in execution order and requires reasoning about the actions and objects.

fled procedure steps to their original order. This
method forces the model to learn representations
that are useful for reasoning about the order and
dependency relationships between instruction steps.
We observe that this method improves the perfor-
mance of the model on the downstream task of
recognizing step dependencies in cooking recipes.
We make the following contributions:

* Apply step unshuffling to improve reasoning
about the dependency structure of cooking
recipes, significantly improving the perfor-
mance of finetuned models. To the best of our
knowledge, this is the first time this objective
has been applied to improving the understand-
ing of natural language instructions.

* Show that state-of-the-art language models
struggle to reason about instruction step-
dependencies without supervised training.

2 Method

We use the English Recipe Flow Graph Corpus!
(Yamakata et al., 2020) which contains 300 English
language cooking recipes annotated with named
entities and substep procedure dependencies. We
are primarily interested in assessing the ability
of LLMs to reason about dependencies and not
the parsing of named entities within individual
steps. Therefore, we modify the original dataset to
construct a new sentence-level dependency corpus
based on dependencies between sentences in the
recipe. For each recipe, a directed acyclic graph
(DAG) is constructed where nodes are recipe sen-
tences and edges indicate dependencies between
those steps. If two steps are not linked by an edge,
they may be performed in any order without chang-

Thttps://sites.google.com/view/yy-lab/resource/english-
recipe-flowgraph

ing the recipe result. We divide this corpus into a
70% train, 10% validation, 20% test set split.

2.1 Instruction Unshuffling

We improve the pretrained representations of the
language models to enable better reasoning about
step dependencies. For pretrained language repre-
sentations we utilize the Flan-T5 models (Chung
et al., 2022) which perform at or near state-of-the-
art across a variety of NLP tasks including classifi-
cation and natural language reasoning tasks. Start-
ing with a Flan-T5 model, we finetune this model
on the additional training task of unshuffling recipe
steps from the RecipeNLG corpus (Bieni et al.,
2020; Marin et al., 2019; Salvador et al., 2017).
We use a randomly select a subset of one million
recipes out of the 2,231,150 available. Figure 1
shows an example of the training stages and in-
put format used in both the recipe unshuffling and
dependency classification tasks. The hyperparam-
eters for all finetuning tasks are found in Table 3.
The model maps a randomly shuffled order of the
recipe steps to its ground-truth order in the original
recipe using the standard autoregressive sequence
modeling loss.

2.2 Finetuning Dependency Classifiers

We formulate the step-dependency recognition
problem as a Boolean classification problem. For
each pair of ordered steps in the recipe, we clas-
sify whether or not there should be a directional
dependency between them. We supply the steps,
complete recipe text, and title to the classifier to
provide the necessary context.

Our approach differs from past work including
(Yamakata et al., 2020) in that our method only de-
tects dependencies between pairs of ordered steps
and not all possible pairs of steps. From examin-
ing the English Recipe Flow Graph Corpus and

Model

Parameter Count AUC-ROC AUC-PR Pos AUC-PR Neg Accuracy Error Rate |

Dependency Finetune

Flan-T5 Small 80M 87.6 89.1 84.7 77.5 22.5
Flan-T5 Base 250M 93.3 93.2 93.1 85.4 14.6
Unshuffle + Dependency Finetune

Flan-T5 Small 80M 91.6 91.5 91.1 83.0 17.0
Flan-T5 Base 250M 94.2 94.3 93.9 85.6 14.4

Table 1: Performance of finetuned models on a balanced evaluation set of 1420 step dependencies from 60 recipes:
a 20% random split of all recipes. The unshuffle trained models outperform the original Flan-T5 models.

RecipeNLG corpus, it is rare that a later step must
be done before an earlier step. Later steps can
sometimes be done before earlier steps, but this
is usually not causally required. This simplifying
assumption improves dependency step recognition
while not sacrificing applicability to our dataset.
However, this simplification may not hold for cer-
tain domains.

2.3 Recipe Flow-Graph Construction

Recipe flow-graph construction uses a trained de-
pendency prediction model to predict dependencies
for all ordered pairs of steps in a recipe. Similar
to (Yamakata et al., 2020), the dependency flow-
graph is then constructed greedily starting with the
last step in the recipe until all nodes with predicted
dependencies are incorporated into the graph. An
example of a recipe graph is provided in Appendix
A, Figure 2.

3 Results

We perform finetuning experiments using two Flan-
TS5 model sizes as shown in Table 1 and evaluate
in-context learning using GPT-4 (OpenAl, 2023),
GPT-3.5 Turbo (Brown et al., 2020), and Mis-
tral 7B Instruct (Jiang et al., 2023). Table 1 re-
ports accuracy, error rate, and area-under-the-curve
(AUC) for both receiver operating characteristic
(ROC) (Fawcett, 2006) and precision-recall (PR).
The AUC-PR is reported for both the positive and
negative classes, where the positive class indicates
that the first step needs to come before the second
i.e. there is a dependency between the steps. Ad-
ditional training details are available in Appendix
A.

We observe that the unshuffling objective signif-
icantly improves the performance of the finetuned
classification models. For the Flan-T5 Small model,
the accuracy increases by 5.5%, which corresponds
to a reduction in the error rate of 24.4%. The ac-
curacy improvements to the Flan-T5 Base model

Model Accuracy
Zero-Shot

Mistral 7B Instruct 57.4
GPT-3.5 Turbo 52.0
GPT-4 70.2
Few-Shot

Mistral 7B Instruct (N=5) 64.2
GPT-3.5 Turbo (N=5) 57.8
GPT-4 (N=5) 73.7

Table 2: Accuracy of LLMs with in-context learning.
N indicates the number of in-context examples used.
GPT-3.5 does no better than random and GPT-4 under-
performs the smaller finetuned models.

are proportionally smaller, but this may be due to
a ceiling effect. The improvements in the AUC
metrics are comparatively larger.

For the Flan-T5 Small model, the accuracy im-
provements are primarily explained by reductions
in the number of false positives. As shown in
the AUC-PR Neg results, the model significantly
increases its precision and recall with respect to
the negative class. This is the more challenging
class for the original Flan-T5 Small model, and
as expected representations which allow for bet-
ter reasoning about step dependencies improve
the model’s ability to classify which steps are not
linked by a dependency.

For the LLMs evaluated, we utilize in-context
learning with examples selected from the balanced
training set using the BM25 (Robertson et al., 2009)
algorithm. Because GPT-4 and GPT-3.5 Turbo do
not return token probabilities, AUC-ROC and AUC-
PR cannot be calculated. During training we select
the model with the highest validation accuracy and
report results on the test-set using this model. As
shown in Table 2, GPT-4 exhibits poor performance
on this task, despite its state-of-the-art performance
on other NLP tasks. Their performance also does
not significantly improve with the introduction of
relevant in-context examples.

4 Discussion

Chicory and Roquefort Salad

1. In a bowl, toss chicory, 2. Make the dressing by mixing
Roquefort and pecan nuts together cream cheese,
together. yoghurt and salt and pepper.

L ¢ |

3. Drizzle over
salad.

Figure 2: An example dependency graph. The first two
steps can be done in any order, but both must be done
before the third step.

The autoregressive (Radford et al., 2018) and
span-masking (Raffel et al., 2020) pretraining ob-
jectives are not well suited to learning language rep-
resentations that are useful for reasoning about pro-
cedural actions and their dependencies (Lin et al.,
2021; Bubeck et al., 2023). At a basic level, these
objectives encourage the model to learn representa-
tions necessary for modeling the conditional gen-
eration of text. In the case of the autoregressive
objective the model learns how later text depends
on earlier text; and for the span-masking objective,
the model learns how text depends on adjacent text.
For example, given a recipe title, the model learns
what text sequence represents a valid recipe for
making that food dish. However, these objectives
do not explicitly encourage representations which
capture relationships between constituent actions
of a text and their relationship to the whole text.
For example, given a set of steps, how can a valid
recipe be constructed from them? Even a bidirec-
tional language modeling objective does not fully
capture this kind of representation.

The procedure step unshuffling objective aims to
address this limitation while building on the pow-
erful existing pretraining objectives which have
proven successful at diverse downstream tasks.
However, it fills in a missing component of the au-
toregressive and span masking objectives and pro-
vides a means by which the model can learn to rep-
resent dependency relationships between steps in
the procedure. Our results show that the finetuned
classification models and state-of-the-art LMs like
GPT-4 fail to capture these dependencies, echoing
previous work that has found reasoning deficits in
out of distribution tasks (Wu et al., 2023).

5 Related Work

Sentence Unshuffling: Previous work has utilized
unshuffling to improve the representations of lan-

guage models for various applications. Lee et al.
(2020) train sentence embeddings using a sentence
unshuffling objective, but requires modifications
to the underlying model and a specialized decoder
architecture. Our approach also differs as it im-
proves the underlying LM representations instead
of learning sentence embeddings. As noted by Lee
et al. (2020), various language models have pro-
posed using sentence order prediction and unshuf-
fling to improve their language representations, but
this does not result in significant improvements on
downstream tasks (Lewis et al., 2020; Devlin et al.,
2019; Lan et al., 2020). Our approach differs in
that we do not consider shuffling of sentences, but
rather procedure steps parsed from recipes. Unlike
autoregressive sentence order reconstruction, our
method results in clear improvements on our down-
stream task of classifying procedure dependencies.
Other work has improved language models to better
handle sequential events by finetuning on perturbed
sequence orders (Koupaee et al., 2021) but does
not explore unshuffling.

Procedural Text Understanding: Papadopou-
los et al. (2022); Kiddon et al. (2015) explore pre-
dicting dependencies in cooking recipes and re-
lated tasks like temporal step ordering of Wiki-
How instructions (Zhang et al., 2020). We uti-
lize the recipe dependency dataset of Yamakata
et al. (2020) but modify the dataset by extracting
sentence-level dependencies from their entity level
dependencies and therefore do not compare to their
results. Wu et al. (2022); Pan et al. (2020) inves-
tigate identifying dependencies in multimodal in-
structions with images and text.

6 Conclusion

We introduce a self-supervised learning objective
based on unshuffling procedure steps. This im-
proves the language models’ ability to reason abili-
ties about dependency relationships between steps
in a procedure. Our method results in significant
improvements in the ability of finetuned state-of-
the-art models to classify these relationships. Ad-
ditionally we show that larger state-of-the-art mod-
els do not perform significantly better than these
smaller models despite using many orders of mag-
nitude more computation at training and inference
time. This points to underlying deficits in proce-
dural reasoning abilities that our objective aims to
improve.

7 Limitations

The datasets investigated are all English-language
datasets and this limits our results and improve-
ments. In future work we plan on investigating
whether these techniques can be applied to other
languages, particularly low-resource languages
where supervised training data is limited. Perfor-
mance on these languages could benefit from better
pretrained representations. While our work only
considers the cooking recipe domain for procedu-
ral texts, this method can in principle be applied
to many other domains. Medical practice guide-
lines, repair manuals, and software tutorials among
others are domains worth investigating. Given that
most previous work has found negligible benefit
to utilizing sentence unshuffling as a pretraining
objective, its worth investigating whether proce-
dure step unshuffling could be incorporated into
language model pretraining as a general objective
to improve downstream performance on natural
language reasoning tasks beyond step dependency
classification. In our work we focus on the more
narrow case of procedural text understanding, and
only train on procedural texts. Given its success
in predicting procedure step dependencies, step
unshuffling could potentially be applied to other
sequential reasoning tasks like planning and we
hope to investigate these other domains in future
work.

8 Ethical Considerations

As noted, our method seeks to improve machine un-
derstanding of procedural texts, but is only demon-
strated on a corpus English recipe dependencies
and pretrained on a corpus of English recipes. We
seek to remedy this in future work. While we be-
lieve these datasets form an important domain and
test for validating our method, only training for
English cooking texts disproportionately benefits
those who use English and are able to cook or oth-
erwise take part in cooking-related activities. As
this method improves machine understanding of
procedural texts and could in principle be used to
augment the capabilities of autonomous agents, par-
ticularly those which need to follow instructions in
the real world, which could be unsafe or promote
bias and other social harms.

References

Michat Biefi, Michat Gilski, Martyna Maciejewska, Wo-
jciech Taisner, Dawid Wisniewski, and Agnieszka
Lawrynowicz. 2020. RecipeNLG: A cooking recipes
dataset for semi-structured text generation. In Pro-
ceedings of the 13th International Conference on
Natural Language Generation, pages 22—28, Dublin,
Ireland. Association for Computational Linguistics.

SRK Branavan, David Silver, and Regina Barzilay. 2012.
Learning to win by reading manuals in a monte-carlo
framework. Journal of Artificial Intelligence Re-
search, 43:661-704.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with GPT-4.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tom Fawcett. 2006. An introduction to ROC analysis.
Pattern recognition letters, 27(8):861-874.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,

https://aclanthology.org/2020.inlg-1.4
https://aclanthology.org/2020.inlg-1.4
https://aclanthology.org/2020.inlg-1.4
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en place:
Unsupervised interpretation of instructional recipes.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
982-992, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Mahnaz Koupaee, Greg Durrett, Nathanael Chambers,
and Niranjan Balasubramanian. 2021. Don’t let dis-
course confine your model: Sequence perturbations
for improved event language models. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 599-604.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations.

Haejun Lee, Drew A Hudson, Kangwook Lee, and
Christopher D Manning. 2020. SLM: Learning a
discourse language representation with sentence un-
shuffling. arXiv preprint arXiv:2010.16249.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R.
Gormley, and Jason Eisner. 2021. Limitations of
autoregressive models and their alternatives. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5147-5173, Online. Association for Computational
Linguistics.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and
Antonio Torralba. 2019. Recipelm+: A dataset for
learning cross-modal embeddings for cooking recipes
and food images. IEEE Trans. Pattern Anal. Mach.
Intell.

Yoshio Momouchi. 1980. Control structures for actions
in procedural texts and PT-chart. In COLING 1980
Volume 1: The 8th International Conference on Com-
putational Linguistics.

OpenAl. 2023. GPT-4 technical report.

Liang-Ming Pan, Jingjing Chen, Jianlong Wu, Shaoteng
Liu, Chong-Wah Ngo, Min-Yen Kan, Yugang Jiang,
and Tat-Seng Chua. 2020. Multi-modal cooking

workflow construction for food recipes. In Proceed-
ings of the 28th ACM International Conference on
Multimedia, MM ’20. ACM.

Dim P Papadopoulos, Enrique Mora, Nadiia Chepurko,
Kuan Wei Huang, Ferda Ofli, and Antonio Torralba.
2022. Learning program representations for food
images and cooking recipes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 16559-16569.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Vignesh Ramanathan, Percy Liang, and Li Fei-Fei. 2013.
Video event understanding using natural language de-
scriptions. In Proceedings of the IEEE international
conference on computer vision, pages 905-912.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-

yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-3809.

Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier
Marin, Ferda Ofli, Ingmar Weber, and Antonio Tor-
ralba. 2017. Learning cross-modal embeddings for
cooking recipes and food images. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,

pages 4596-4604. PMLR.

Richard Shin, Christopher H. Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and
Ben Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In 2021 Empirical
Methods in Natural Language Processing.

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and
Cynthia Matuszek. 2020. Robots that use language.
Annual Review of Control, Robotics, and Autonomous
Systems, 3:25-55.

http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.18653/v1/2021.naacl-main.405
https://aclanthology.org/C80-1016
https://aclanthology.org/C80-1016
https://aclanthology.org/C80-1016
http://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3394171.3413765
https://doi.org/10.1145/3394171.3413765
https://doi.org/10.1145/3394171.3413765
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.microsoft.com/en-us/research/publication/constrained-language-models-yield-few-shot-semantic-parsers/
https://www.microsoft.com/en-us/research/publication/constrained-language-models-yield-few-shot-semantic-parsers/
https://www.microsoft.com/en-us/research/publication/constrained-language-models-yield-few-shot-semantic-parsers/

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023. Planbench: An extensible benchmark for eval-
uating large language models on planning and rea-
soning about change. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Te-Lin Wu, Alex Spangher, Pegah Alipoormolabashi,
Marjorie Freedman, Ralph Weischedel, and Nanyun
Peng. 2022. Understanding multimodal procedural
knowledge by sequencing multimodal instructional
manuals.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyiirek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2023. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks.

Yoko Yamakata, Shinsuke Mori, and John A Carroll.
2020. English recipe flow graph corpus. In Proceed-
ings of the Twelfth Language Resources and Evalua-
tion Conference, pages 5187-5194.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020.
Reasoning about goals, steps, and temporal ordering
with WikiHow. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4630—4639, Online. As-
sociation for Computational Linguistics.

A Appendix

A.1 Implementation

For training and evaluation we utilize the Hug-
gingFace Transformers library (Wolf et al., 2020)
(Apache 2.0) and scikit-learn (Pedregosa et al.,
2011) (BSD 3-Clause). All experiments are per-
formed on a machine with a NVIDIA A100 40G
and take approximately 40 hours to run in total.
The Flan-T5 models (Chung et al., 2022) and Mis-
tral 7B Instruct (Jiang et al., 2023) are available
under an Apache 2.0 license. The OpenAl platform
terms of service are available at https://openai.
com/policies/terms-of-use. The RecipeNLG
dataset’s (Bien et al., 2020; Marin et al., 2019; Sal-
vador et al., 2017) license is not provided to our

knowledge, but is a derivative of the Recipel M+
dataset which is available under an MIT license.
For all datasets used, we checked a random sam-
ples of approximately 200 data-points for mali-
cious content and personal information. For in-
context example selection for the LLMs we uti-
lize the rank_BM?25 library 2 available under the
Apache 2.0 license.

Hyperparameters

Optimizer Adafactor
Learning rate 5Se-4
Batch Size 16

Table 3: Hyperparameters used for training were found
by grid search. The Adafactor optimizer was introduced
by (Shazeer and Stern, 2018) and was selected for its
use in Chung et al. (2022).

2https://github.com/dorianbrown/rank_bm25

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2110.08486
http://arxiv.org/abs/2110.08486
http://arxiv.org/abs/2110.08486
http://arxiv.org/abs/2110.08486
http://arxiv.org/abs/2110.08486
http://arxiv.org/abs/2307.02477
http://arxiv.org/abs/2307.02477
http://arxiv.org/abs/2307.02477
http://arxiv.org/abs/2307.02477
http://arxiv.org/abs/2307.02477
https://doi.org/10.18653/v1/2020.emnlp-main.374
https://doi.org/10.18653/v1/2020.emnlp-main.374
https://doi.org/10.18653/v1/2020.emnlp-main.374
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use
https://github.com/dorianbrown/rank_bm25

	Introduction
	Method
	Instruction Unshuffling
	Finetuning Dependency Classifiers
	Recipe Flow-Graph Construction

	Results
	Discussion
	Related Work
	Conclusion
	Limitations
	Ethical Considerations
	Appendix
	Implementation

