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Abstract

We develop a self-supervised method for im-001
proving the ability of language models to rea-002
son about the dependency structure of procedu-003
ral texts. Previous work has explored using fine-004
tuned models to classify dependencies between005
procedure steps and construct flow-graphs us-006
ing these dependencies. We improve upon007
these methods by introducing a self-supervised008
step-unshuffling training objective. By learning009
to map shuffled sequences of procedure steps010
to their correct order, our method improves the011
procedural reasoning abilities of language mod-012
els. Through experiments we demonstrate that013
state-of-the-art models including GPT-4 per-014
form poorly at the task of identifying step de-015
pendencies, and we also generate significant016
improvements using our step-unshuffling train-017
ing objective, surpassing GPT-4 performance.018

1 Introduction019

Understanding procedural texts is an important020

goal of natural language processing research. Natu-021

ral language offers a versatile and accessible means022

of specifying tasks to people and agents and instruc-023

tional texts have been leveraged in many domains024

including robotics (Tellex et al., 2020), video game025

agents (Branavan et al., 2012), and computer vision026

(Ramanathan et al., 2013). Unlike commands spec-027

ifying goals, procedural texts capture additional in-028

formation about the manner in which a task should029

be performed. They are sequences of actions and030

subgoals, and also contain information about the031

necessary objects for completing a task.032

For many applications, a structured representa-033

tion of the procedural text is necessary. Momouchi034

(1980) introduces a flow-graph representation for035

procedural texts which consist of recipe steps and036

execution dependencies between the steps. These037

graphs specify the actions and objects of the pro-038

cedure as nodes and causal dependencies between039

the nodes as edges. Constructing these graphs in-040

volves parsing individual steps by identifying ac- 041

tions and objects, and then determining which steps 042

are dependent on which other steps and which steps 043

can be done in any order. This requires an under- 044

standing of the preconditions and postconditions of 045

action-steps. Recent work has utilized pretrained 046

language models (LMs) to construct flow-graphs 047

from recipes (Yamakata et al., 2020). They con- 048

struct a dataset of recipes annotated with named 049

entities and dependencies and then finetune a LM to 050

classify dependencies between the entities. These 051

approaches rely on the LM to have representations 052

which capture the information that is necessary to 053

reason about dependencies and to generalize this 054

knowledge effectively to new procedural texts. 055

However recent work has shown that even large 056

language models (LLMs) perform poorly at tasks 057

that require basic procedural reasoning abilities. 058

(Valmeekam et al., 2023) shows that state-of-the- 059

art LLMs significantly under-perform humans at 060

simple formal planning tasks, including generating 061

valid plans, reasoning about plan execution, and 062

even verifying whether provided plans are correct. 063

This appears to indicate that current large models 064

do not contain or cannot leverage representations 065

for reasoning about dependencies in procedural 066

texts. 067

To improve the construction of flow-graphs, we 068

therefore seek to augment the procedural reasoning 069

abilities of pretrained models. LLMs have demon- 070

strated high performance on semantic parsing tasks 071

involving single sentences (Shin et al., 2021). But 072

generating flow-graphs involves reasoning about 073

longer context relationships and we demonstrate 074

that even the largest models still lack the ability to 075

effectively identify procedure dependencies with- 076

out access to significant domain-specific supervised 077

training data. To help overcome this, we propose to 078

use a self-supervised learning objective: procedure 079

step unshuffling. We construct a self-supervised 080

training task where the model learns to map shuf- 081
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No-Bake Nut Cookies
In a heavy 2-quart
saucepan, mix brown sugar,
nuts, evaporated milk and
butter or margarine.

Stir over medium heat until
mixture bubbles all over top.
...

No-Bake Nut Cookies
Using 2 teaspoons, drop and
shape into 30 clusters on
wax paper.

Boil and stir 5 minutes more.
Take off heat.
...

Shuffled Corpus Unshuffled Corpus

Language
Model

Cake Recipe
Step A: Preheat the oven to
180C.
Step B: Bake in oven for 30-
35 minutes or until the sponge
springs up.
Recipe:
1. Preheat the oven to 180C.
2. In a mixing bowl, combine
flour, sugar, baking powder,
spices and salt...

Phase 1: Self-Supervised Instruction Unshuffling Phase 2: Supervised Dependency Classification

Unshuffle
Trained
Language
Model

True

Must Step A
Precede B?

Figure 1: Our method first finetunes a pretrained LM to unshuffle recipe steps. We then finetune the model on a
challenging recipe dependency classification task. This task requires determining which recipe steps must precede
others in execution order and requires reasoning about the actions and objects.

fled procedure steps to their original order. This082

method forces the model to learn representations083

that are useful for reasoning about the order and084

dependency relationships between instruction steps.085

We observe that this method improves the perfor-086

mance of the model on the downstream task of087

recognizing step dependencies in cooking recipes.088

We make the following contributions:089

• Apply step unshuffling to improve reasoning090

about the dependency structure of cooking091

recipes, significantly improving the perfor-092

mance of finetuned models. To the best of our093

knowledge, this is the first time this objective094

has been applied to improving the understand-095

ing of natural language instructions.096

• Show that state-of-the-art language models097

struggle to reason about instruction step-098

dependencies without supervised training.099

2 Method100

We use the English Recipe Flow Graph Corpus1101

(Yamakata et al., 2020) which contains 300 English102

language cooking recipes annotated with named103

entities and substep procedure dependencies. We104

are primarily interested in assessing the ability105

of LLMs to reason about dependencies and not106

the parsing of named entities within individual107

steps. Therefore, we modify the original dataset to108

construct a new sentence-level dependency corpus109

based on dependencies between sentences in the110

recipe. For each recipe, a directed acyclic graph111

(DAG) is constructed where nodes are recipe sen-112

tences and edges indicate dependencies between113

those steps. If two steps are not linked by an edge,114

they may be performed in any order without chang-115

1https://sites.google.com/view/yy-lab/resource/english-
recipe-flowgraph

ing the recipe result. We divide this corpus into a 116

70% train, 10% validation, 20% test set split. 117

2.1 Instruction Unshuffling 118

We improve the pretrained representations of the 119

language models to enable better reasoning about 120

step dependencies. For pretrained language repre- 121

sentations we utilize the Flan-T5 models (Chung 122

et al., 2022) which perform at or near state-of-the- 123

art across a variety of NLP tasks including classifi- 124

cation and natural language reasoning tasks. Start- 125

ing with a Flan-T5 model, we finetune this model 126

on the additional training task of unshuffling recipe 127

steps from the RecipeNLG corpus (Bień et al., 128

2020; Marin et al., 2019; Salvador et al., 2017). 129

We use a randomly select a subset of one million 130

recipes out of the 2,231,150 available. Figure 1 131

shows an example of the training stages and in- 132

put format used in both the recipe unshuffling and 133

dependency classification tasks. The hyperparam- 134

eters for all finetuning tasks are found in Table 3. 135

The model maps a randomly shuffled order of the 136

recipe steps to its ground-truth order in the original 137

recipe using the standard autoregressive sequence 138

modeling loss. 139

2.2 Finetuning Dependency Classifiers 140

We formulate the step-dependency recognition 141

problem as a Boolean classification problem. For 142

each pair of ordered steps in the recipe, we clas- 143

sify whether or not there should be a directional 144

dependency between them. We supply the steps, 145

complete recipe text, and title to the classifier to 146

provide the necessary context. 147

Our approach differs from past work including 148

(Yamakata et al., 2020) in that our method only de- 149

tects dependencies between pairs of ordered steps 150

and not all possible pairs of steps. From examin- 151

ing the English Recipe Flow Graph Corpus and 152
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Model Parameter Count AUC-ROC AUC-PR Pos AUC-PR Neg Accuracy Error Rate ↓

Dependency Finetune
Flan-T5 Small 80M 87.6 89.1 84.7 77.5 22.5
Flan-T5 Base 250M 93.3 93.2 93.1 85.4 14.6

Unshuffle + Dependency Finetune
Flan-T5 Small 80M 91.6 91.5 91.1 83.0 17.0
Flan-T5 Base 250M 94.2 94.3 93.9 85.6 14.4

Table 1: Performance of finetuned models on a balanced evaluation set of 1420 step dependencies from 60 recipes:
a 20% random split of all recipes. The unshuffle trained models outperform the original Flan-T5 models.

RecipeNLG corpus, it is rare that a later step must153

be done before an earlier step. Later steps can154

sometimes be done before earlier steps, but this155

is usually not causally required. This simplifying156

assumption improves dependency step recognition157

while not sacrificing applicability to our dataset.158

However, this simplification may not hold for cer-159

tain domains.160

2.3 Recipe Flow-Graph Construction161

Recipe flow-graph construction uses a trained de-162

pendency prediction model to predict dependencies163

for all ordered pairs of steps in a recipe. Similar164

to (Yamakata et al., 2020), the dependency flow-165

graph is then constructed greedily starting with the166

last step in the recipe until all nodes with predicted167

dependencies are incorporated into the graph. An168

example of a recipe graph is provided in Appendix169

A, Figure 2.170

3 Results171

We perform finetuning experiments using two Flan-172

T5 model sizes as shown in Table 1 and evaluate173

in-context learning using GPT-4 (OpenAI, 2023),174

GPT-3.5 Turbo (Brown et al., 2020), and Mis-175

tral 7B Instruct (Jiang et al., 2023). Table 1 re-176

ports accuracy, error rate, and area-under-the-curve177

(AUC) for both receiver operating characteristic178

(ROC) (Fawcett, 2006) and precision-recall (PR).179

The AUC-PR is reported for both the positive and180

negative classes, where the positive class indicates181

that the first step needs to come before the second182

i.e. there is a dependency between the steps. Ad-183

ditional training details are available in Appendix184

A.185

We observe that the unshuffling objective signif-186

icantly improves the performance of the finetuned187

classification models. For the Flan-T5 Small model,188

the accuracy increases by 5.5%, which corresponds189

to a reduction in the error rate of 24.4%. The ac-190

curacy improvements to the Flan-T5 Base model191

Model Accuracy

Zero-Shot
Mistral 7B Instruct 57.4
GPT-3.5 Turbo 52.0
GPT-4 70.2

Few-Shot
Mistral 7B Instruct (N=5) 64.2
GPT-3.5 Turbo (N=5) 57.8
GPT-4 (N=5) 73.7

Table 2: Accuracy of LLMs with in-context learning.
N indicates the number of in-context examples used.
GPT-3.5 does no better than random and GPT-4 under-
performs the smaller finetuned models.

are proportionally smaller, but this may be due to 192

a ceiling effect. The improvements in the AUC 193

metrics are comparatively larger. 194

For the Flan-T5 Small model, the accuracy im- 195

provements are primarily explained by reductions 196

in the number of false positives. As shown in 197

the AUC-PR Neg results, the model significantly 198

increases its precision and recall with respect to 199

the negative class. This is the more challenging 200

class for the original Flan-T5 Small model, and 201

as expected representations which allow for bet- 202

ter reasoning about step dependencies improve 203

the model’s ability to classify which steps are not 204

linked by a dependency. 205

For the LLMs evaluated, we utilize in-context 206

learning with examples selected from the balanced 207

training set using the BM25 (Robertson et al., 2009) 208

algorithm. Because GPT-4 and GPT-3.5 Turbo do 209

not return token probabilities, AUC-ROC and AUC- 210

PR cannot be calculated. During training we select 211

the model with the highest validation accuracy and 212

report results on the test-set using this model. As 213

shown in Table 2, GPT-4 exhibits poor performance 214

on this task, despite its state-of-the-art performance 215

on other NLP tasks. Their performance also does 216

not significantly improve with the introduction of 217

relevant in-context examples. 218
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4 Discussion219

1. In a bowl, toss chicory,
Roquefort and pecan nuts

together.

2. Make the dressing by mixing
together cream cheese,

yoghurt and salt and pepper.

3. Drizzle over
salad.

Chicory and Roquefort Salad

Figure 2: An example dependency graph. The first two
steps can be done in any order, but both must be done
before the third step.

The autoregressive (Radford et al., 2018) and220

span-masking (Raffel et al., 2020) pretraining ob-221

jectives are not well suited to learning language rep-222

resentations that are useful for reasoning about pro-223

cedural actions and their dependencies (Lin et al.,224

2021; Bubeck et al., 2023). At a basic level, these225

objectives encourage the model to learn representa-226

tions necessary for modeling the conditional gen-227

eration of text. In the case of the autoregressive228

objective the model learns how later text depends229

on earlier text; and for the span-masking objective,230

the model learns how text depends on adjacent text.231

For example, given a recipe title, the model learns232

what text sequence represents a valid recipe for233

making that food dish. However, these objectives234

do not explicitly encourage representations which235

capture relationships between constituent actions236

of a text and their relationship to the whole text.237

For example, given a set of steps, how can a valid238

recipe be constructed from them? Even a bidirec-239

tional language modeling objective does not fully240

capture this kind of representation.241

The procedure step unshuffling objective aims to242

address this limitation while building on the pow-243

erful existing pretraining objectives which have244

proven successful at diverse downstream tasks.245

However, it fills in a missing component of the au-246

toregressive and span masking objectives and pro-247

vides a means by which the model can learn to rep-248

resent dependency relationships between steps in249

the procedure. Our results show that the finetuned250

classification models and state-of-the-art LMs like251

GPT-4 fail to capture these dependencies, echoing252

previous work that has found reasoning deficits in253

out of distribution tasks (Wu et al., 2023).254

5 Related Work255

Sentence Unshuffling: Previous work has utilized256

unshuffling to improve the representations of lan-257

guage models for various applications. Lee et al. 258

(2020) train sentence embeddings using a sentence 259

unshuffling objective, but requires modifications 260

to the underlying model and a specialized decoder 261

architecture. Our approach also differs as it im- 262

proves the underlying LM representations instead 263

of learning sentence embeddings. As noted by Lee 264

et al. (2020), various language models have pro- 265

posed using sentence order prediction and unshuf- 266

fling to improve their language representations, but 267

this does not result in significant improvements on 268

downstream tasks (Lewis et al., 2020; Devlin et al., 269

2019; Lan et al., 2020). Our approach differs in 270

that we do not consider shuffling of sentences, but 271

rather procedure steps parsed from recipes. Unlike 272

autoregressive sentence order reconstruction, our 273

method results in clear improvements on our down- 274

stream task of classifying procedure dependencies. 275

Other work has improved language models to better 276

handle sequential events by finetuning on perturbed 277

sequence orders (Koupaee et al., 2021) but does 278

not explore unshuffling. 279

Procedural Text Understanding: Papadopou- 280

los et al. (2022); Kiddon et al. (2015) explore pre- 281

dicting dependencies in cooking recipes and re- 282

lated tasks like temporal step ordering of Wiki- 283

How instructions (Zhang et al., 2020). We uti- 284

lize the recipe dependency dataset of Yamakata 285

et al. (2020) but modify the dataset by extracting 286

sentence-level dependencies from their entity level 287

dependencies and therefore do not compare to their 288

results. Wu et al. (2022); Pan et al. (2020) inves- 289

tigate identifying dependencies in multimodal in- 290

structions with images and text. 291

6 Conclusion 292

We introduce a self-supervised learning objective 293

based on unshuffling procedure steps. This im- 294

proves the language models’ ability to reason abili- 295

ties about dependency relationships between steps 296

in a procedure. Our method results in significant 297

improvements in the ability of finetuned state-of- 298

the-art models to classify these relationships. Ad- 299

ditionally we show that larger state-of-the-art mod- 300

els do not perform significantly better than these 301

smaller models despite using many orders of mag- 302

nitude more computation at training and inference 303

time. This points to underlying deficits in proce- 304

dural reasoning abilities that our objective aims to 305

improve. 306
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7 Limitations307

The datasets investigated are all English-language308

datasets and this limits our results and improve-309

ments. In future work we plan on investigating310

whether these techniques can be applied to other311

languages, particularly low-resource languages312

where supervised training data is limited. Perfor-313

mance on these languages could benefit from better314

pretrained representations. While our work only315

considers the cooking recipe domain for procedu-316

ral texts, this method can in principle be applied317

to many other domains. Medical practice guide-318

lines, repair manuals, and software tutorials among319

others are domains worth investigating. Given that320

most previous work has found negligible benefit321

to utilizing sentence unshuffling as a pretraining322

objective, its worth investigating whether proce-323

dure step unshuffling could be incorporated into324

language model pretraining as a general objective325

to improve downstream performance on natural326

language reasoning tasks beyond step dependency327

classification. In our work we focus on the more328

narrow case of procedural text understanding, and329

only train on procedural texts. Given its success330

in predicting procedure step dependencies, step331

unshuffling could potentially be applied to other332

sequential reasoning tasks like planning and we333

hope to investigate these other domains in future334

work.335

8 Ethical Considerations336

As noted, our method seeks to improve machine un-337

derstanding of procedural texts, but is only demon-338

strated on a corpus English recipe dependencies339

and pretrained on a corpus of English recipes. We340

seek to remedy this in future work. While we be-341

lieve these datasets form an important domain and342

test for validating our method, only training for343

English cooking texts disproportionately benefits344

those who use English and are able to cook or oth-345

erwise take part in cooking-related activities. As346

this method improves machine understanding of347

procedural texts and could in principle be used to348

augment the capabilities of autonomous agents, par-349

ticularly those which need to follow instructions in350

the real world, which could be unsafe or promote351

bias and other social harms.352
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Michał Bień, Michał Gilski, Martyna Maciejewska, Wo- 354
jciech Taisner, Dawid Wisniewski, and Agnieszka 355
Lawrynowicz. 2020. RecipeNLG: A cooking recipes 356
dataset for semi-structured text generation. In Pro- 357
ceedings of the 13th International Conference on 358
Natural Language Generation, pages 22–28, Dublin, 359
Ireland. Association for Computational Linguistics. 360

SRK Branavan, David Silver, and Regina Barzilay. 2012. 361
Learning to win by reading manuals in a monte-carlo 362
framework. Journal of Artificial Intelligence Re- 363
search, 43:661–704. 364

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 365
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 366
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 367
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 368
Gretchen Krueger, Tom Henighan, Rewon Child, 369
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 370
Clemens Winter, Christopher Hesse, Mark Chen, Eric 371
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 372
Jack Clark, Christopher Berner, Sam McCandlish, 373
Alec Radford, Ilya Sutskever, and Dario Amodei. 374
2020. Language models are few-shot learners. 375

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 376
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe- 377
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, 378
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, 379
and Yi Zhang. 2023. Sparks of artificial general in- 380
telligence: Early experiments with GPT-4. 381

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 382
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 383
Wang, Mostafa Dehghani, Siddhartha Brahma, Al- 384
bert Webson, Shixiang Shane Gu, Zhuyun Dai, 385
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh- 386
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, 387
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams 388
Yu, Vincent Zhao, Yanping Huang, Andrew Dai, 389
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja- 390
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, 391
and Jason Wei. 2022. Scaling instruction-finetuned 392
language models. 393

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 394
Kristina Toutanova. 2019. BERT: Pre-training of 395
deep bidirectional transformers for language under- 396
standing. In Proceedings of the 2019 Conference of 397
the North American Chapter of the Association for 398
Computational Linguistics: Human Language Tech- 399
nologies, Volume 1 (Long and Short Papers), pages 400
4171–4186, Minneapolis, Minnesota. Association for 401
Computational Linguistics. 402

Tom Fawcett. 2006. An introduction to ROC analysis. 403
Pattern recognition letters, 27(8):861–874. 404

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 405
sch, Chris Bamford, Devendra Singh Chaplot, Diego 406
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 407
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 408
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 409

5

https://aclanthology.org/2020.inlg-1.4
https://aclanthology.org/2020.inlg-1.4
https://aclanthology.org/2020.inlg-1.4
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Thibaut Lavril, Thomas Wang, Timothée Lacroix,410
and William El Sayed. 2023. Mistral 7B.411

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke412
Zettlemoyer, and Yejin Choi. 2015. Mise en place:413
Unsupervised interpretation of instructional recipes.414
In Proceedings of the 2015 Conference on Empiri-415
cal Methods in Natural Language Processing, pages416
982–992, Lisbon, Portugal. Association for Compu-417
tational Linguistics.418

Mahnaz Koupaee, Greg Durrett, Nathanael Chambers,419
and Niranjan Balasubramanian. 2021. Don’t let dis-420
course confine your model: Sequence perturbations421
for improved event language models. In Proceedings422
of the 59th Annual Meeting of the Association for423
Computational Linguistics and the 11th International424
Joint Conference on Natural Language Processing425
(Volume 2: Short Papers), pages 599–604.426

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,427
Kevin Gimpel, Piyush Sharma, and Radu Soricut.428
2020. ALBERT: A lite BERT for self-supervised429
learning of language representations.430

Haejun Lee, Drew A Hudson, Kangwook Lee, and431
Christopher D Manning. 2020. SLM: Learning a432
discourse language representation with sentence un-433
shuffling. arXiv preprint arXiv:2010.16249.434

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan435
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,436
Veselin Stoyanov, and Luke Zettlemoyer. 2020.437
BART: Denoising sequence-to-sequence pre-training438
for natural language generation, translation, and com-439
prehension. In Proceedings of the 58th Annual Meet-440
ing of the Association for Computational Linguistics,441
pages 7871–7880, Online. Association for Computa-442
tional Linguistics.443

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R.444
Gormley, and Jason Eisner. 2021. Limitations of445
autoregressive models and their alternatives. In Pro-446
ceedings of the 2021 Conference of the North Amer-447
ican Chapter of the Association for Computational448
Linguistics: Human Language Technologies, pages449
5147–5173, Online. Association for Computational450
Linguistics.451

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,452
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and453
Antonio Torralba. 2019. Recipe1m+: A dataset for454
learning cross-modal embeddings for cooking recipes455
and food images. IEEE Trans. Pattern Anal. Mach.456
Intell.457

Yoshio Momouchi. 1980. Control structures for actions458
in procedural texts and PT-chart. In COLING 1980459
Volume 1: The 8th International Conference on Com-460
putational Linguistics.461

OpenAI. 2023. GPT-4 technical report.462

Liang-Ming Pan, Jingjing Chen, Jianlong Wu, Shaoteng463
Liu, Chong-Wah Ngo, Min-Yen Kan, Yugang Jiang,464
and Tat-Seng Chua. 2020. Multi-modal cooking465

workflow construction for food recipes. In Proceed- 466
ings of the 28th ACM International Conference on 467
Multimedia, MM ’20. ACM. 468

Dim P Papadopoulos, Enrique Mora, Nadiia Chepurko, 469
Kuan Wei Huang, Ferda Ofli, and Antonio Torralba. 470
2022. Learning program representations for food 471
images and cooking recipes. In Proceedings of the 472
IEEE/CVF Conference on Computer Vision and Pat- 473
tern Recognition, pages 16559–16569. 474

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, 475
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, 476
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 477
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- 478
esnay. 2011. Scikit-learn: Machine learning in 479
Python. Journal of Machine Learning Research, 480
12:2825–2830. 481

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 482
Sutskever, et al. 2018. Improving language under- 483
standing by generative pre-training. 484

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 485
ine Lee, Sharan Narang, Michael Matena, Yanqi 486
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the 487
limits of transfer learning with a unified text-to-text 488
transformer. Journal of Machine Learning Research, 489
21(140):1–67. 490

Vignesh Ramanathan, Percy Liang, and Li Fei-Fei. 2013. 491
Video event understanding using natural language de- 492
scriptions. In Proceedings of the IEEE international 493
conference on computer vision, pages 905–912. 494

Stephen Robertson, Hugo Zaragoza, et al. 2009. The 495
probabilistic relevance framework: Bm25 and be- 496
yond. Foundations and Trends® in Information Re- 497
trieval, 3(4):333–389. 498

Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier 499
Marin, Ferda Ofli, Ingmar Weber, and Antonio Tor- 500
ralba. 2017. Learning cross-modal embeddings for 501
cooking recipes and food images. In Proceedings of 502
the IEEE Conference on Computer Vision and Pat- 503
tern Recognition. 504

Noam Shazeer and Mitchell Stern. 2018. Adafactor: 505
Adaptive learning rates with sublinear memory cost. 506
In International Conference on Machine Learning, 507
pages 4596–4604. PMLR. 508

Richard Shin, Christopher H. Lin, Sam Thomson, 509
Charles Chen, Subhro Roy, Emmanouil Antonios 510
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and 511
Ben Van Durme. 2021. Constrained language models 512
yield few-shot semantic parsers. In 2021 Empirical 513
Methods in Natural Language Processing. 514

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and 515
Cynthia Matuszek. 2020. Robots that use language. 516
Annual Review of Control, Robotics, and Autonomous 517
Systems, 3:25–55. 518

6

http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.18653/v1/2021.naacl-main.405
https://aclanthology.org/C80-1016
https://aclanthology.org/C80-1016
https://aclanthology.org/C80-1016
http://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3394171.3413765
https://doi.org/10.1145/3394171.3413765
https://doi.org/10.1145/3394171.3413765
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.microsoft.com/en-us/research/publication/constrained-language-models-yield-few-shot-semantic-parsers/
https://www.microsoft.com/en-us/research/publication/constrained-language-models-yield-few-shot-semantic-parsers/
https://www.microsoft.com/en-us/research/publication/constrained-language-models-yield-few-shot-semantic-parsers/


Karthik Valmeekam, Matthew Marquez, Alberto Olmo,519
Sarath Sreedharan, and Subbarao Kambhampati.520
2023. Planbench: An extensible benchmark for eval-521
uating large language models on planning and rea-522
soning about change. In Thirty-seventh Conference523
on Neural Information Processing Systems Datasets524
and Benchmarks Track.525

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien526
Chaumond, Clement Delangue, Anthony Moi, Pier-527
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-528
icz, Joe Davison, Sam Shleifer, Patrick von Platen,529
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,530
Teven Le Scao, Sylvain Gugger, Mariama Drame,531
Quentin Lhoest, and Alexander Rush. 2020. Trans-532
formers: State-of-the-art natural language processing.533
In Proceedings of the 2020 Conference on Empirical534
Methods in Natural Language Processing: System535
Demonstrations, pages 38–45, Online. Association536
for Computational Linguistics.537

Te-Lin Wu, Alex Spangher, Pegah Alipoormolabashi,538
Marjorie Freedman, Ralph Weischedel, and Nanyun539
Peng. 2022. Understanding multimodal procedural540
knowledge by sequencing multimodal instructional541
manuals.542

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,543
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-544
dreas, and Yoon Kim. 2023. Reasoning or reciting?545
exploring the capabilities and limitations of language546
models through counterfactual tasks.547

Yoko Yamakata, Shinsuke Mori, and John A Carroll.548
2020. English recipe flow graph corpus. In Proceed-549
ings of the Twelfth Language Resources and Evalua-550
tion Conference, pages 5187–5194.551

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020.552
Reasoning about goals, steps, and temporal ordering553
with WikiHow. In Proceedings of the 2020 Con-554
ference on Empirical Methods in Natural Language555
Processing (EMNLP), pages 4630–4639, Online. As-556
sociation for Computational Linguistics.557

A Appendix558

A.1 Implementation559

For training and evaluation we utilize the Hug-560

gingFace Transformers library (Wolf et al., 2020)561

(Apache 2.0) and scikit-learn (Pedregosa et al.,562

2011) (BSD 3-Clause). All experiments are per-563

formed on a machine with a NVIDIA A100 40G564

and take approximately 40 hours to run in total.565

The Flan-T5 models (Chung et al., 2022) and Mis-566

tral 7B Instruct (Jiang et al., 2023) are available567

under an Apache 2.0 license. The OpenAI platform568

terms of service are available at https://openai.569

com/policies/terms-of-use. The RecipeNLG570

dataset’s (Bień et al., 2020; Marin et al., 2019; Sal-571

vador et al., 2017) license is not provided to our572

knowledge, but is a derivative of the Recipe1M+ 573

dataset which is available under an MIT license. 574

For all datasets used, we checked a random sam- 575

ples of approximately 200 data-points for mali- 576

cious content and personal information. For in- 577

context example selection for the LLMs we uti- 578

lize the rank_BM25 library 2 available under the 579

Apache 2.0 license. 580

Hyperparameters

Optimizer Adafactor
Learning rate 5e-4
Batch Size 16

Table 3: Hyperparameters used for training were found
by grid search. The Adafactor optimizer was introduced
by (Shazeer and Stern, 2018) and was selected for its
use in Chung et al. (2022).

2https://github.com/dorianbrown/rank_bm25
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