Draft & Verify: Lossless Large Language Model Acceleration via
Self-Speculative Decoding

Anonymous ACL submission

Abstract

We present a novel inference scheme, self-
speculative decoding, for accelerating Large
Language Models (LLMs) without the need for
an auxiliary model. This approach is charac-
terized by a two-stage process: drafting and
verification. The drafting stage generates draft
tokens at a slightly lower quality but more
quickly, which is achieved by selectively skip-
ping certain intermediate layers during draft-
ing. Subsequently, the verification stage em-
ploys the original LLM to validate those draft
output tokens in one forward pass. This pro-
cess ensures the final output remains identi-
cal to that produced by the unaltered LLM.
Moreover, the proposed method requires no
additional neural network training and no extra
memory footprint, making it a plug-and-play
and cost-effective solution for inference accel-
eration. Benchmarks with LLaMA-2 and its
variants demonstrated a speedup up to 1.99x.!

1 Introduction

Transformer-based Large Language Models
(LLMs), such as GPT-3/4, PaLLM, and LLaMA,
have been widely adopted in various real-world
applications (Bommasani et al., 2021; Liang et al.,
2022; Brown et al., 2020; Min et al., 2022; Chan
et al., 2022; Touvron et al., 2023). However, their
inference costs have raised significant concerns,
especially for latency-sensitive scenarios (Pope
et al., 2022). The main efficiency bottleneck
is the autoregressive decoding process. This
process decodes each output token sequentially,
leading to a high number of Transformer calls;
furthermore, each Transformer call is typically
memory bandwidth-bound, resulting in low
computation utility and thus longer wall-clock
time (Shazeer, 2019). For instance, decoding 128
tokens autoregressively using LLaMA-2-13B on

!Code is available at provided software materials, and will
be released with the Apache-2.0 License.

an A100 GPU can take up to 100x longer than a
sequence-level forward pass on the same number
of tokens, highlighting the substantial inefficiency
inherent in the current decoding process.

Established model compression techniques such
as quantization (Han et al.,, 2015), pruning
(Molchanov et al., 2016), and distillation (Hinton
et al., 2015) have been employed to alleviate these
costs. While these solutions have proven extremely
effective, they usually require changing the model
architecture, changing the training procedure, re-
training or fine-tuning the models, and do not main-
tain identical outputs.

In parallel to model compression, speculative
execution is being explored to accelerate the autore-
gressive decoding process (Leviathan et al., 2023;
Chen et al., 2023). These methods train an auxiliary
draft model that can quickly generate some draft
output tokens. Subsequently, the original LLM,
referred to as the verify model, then checks the
acceptability of these draft tokens with one single
forward pass. This verification step ensures that
the outputs are derived from the original LLM’s
probability distribution.

However, an essential issue of existing specu-
lative execution methods is the need to identify
or train a suitable draft model that can generate
outputs consistent with the verify model. It be-
comes more tricky when the LLM is already a fine-
tuned model, e.g. LLaMA-2-Chat (Touvron et al.,
2023), CodeLLaMA (Roziere et al., 2023). How
to find or train a draft model that can effectively
mimic the outputs of such a tailored model is a
formidable task, with no straightforward or guaran-
teed solutions. Furthermore, the introduction of an
additional draft model escalates the GPU memory
overhead, increasing deployment challenges partic-
ularly on devices with restricted memory capacity.

In this paper, we present self-speculative decod-
ing, a novel approach to accelerate the inference
of LLMs. This method builds on the principles of

—— Verification
Drafting

<s> Where is Zur ich ? Ans : Zur

MLP <s> Where is Zur ich ? Ans : Zur ich is the largest city in Switzerland . It

Attention

MLP
Attention

[token]: context tokens.

[token]: accepted draft tokens.
fteken]: rejected draft tokens.
[token]: prediction from verification.
. Itis located in

. It is located in the eanten north

. It is located in the north - central

. It is located in the north - central Switzerland part

<s> Where is Zur ich ? Ans : Zur ich is the largest city in Switzerland . It is located in the north - central part of Switzerland- the

. It is located in the north - central part of the country ...

Figure 1: Visualization of the self-speculative decoding process. The verification stage evaluates all drafted tokens in
a single forward pass, with accepted tokens marked in green and rejected tokens highlighted in red. Each verification
step also predicts one more token, which is denoted in blue.

O K=4 O K=2 & K=1

1.60x
1.40x
1.20x

1.00x =

0.80x
70% 80% 90% 95%

Draft Token Acceptance Rate

Baseline

End-to-end Speedup

Figure 2: Illustration of the impact of the number of
draft tokens (K') and acceptance rate of draft tokens on
end-to-end speedup. We assume that the draft model is
2x faster than the verify model.

speculative execution, but with a unique twist: it
utilizes one LLM for both drafting and verification
stages. The key insight driving our approach is the
observation that skipping certain layers in LLMs
does not significantly compromise the generation
quality (Liu et al., 2023). As such, by selectively
bypassing some intermediate layers, we can use the
LLM itself to generate draft tokens. These tokens
are then verified by the original LLM in a single
forward pass. Figure 1 illustrates this two-stage
decoding process. The blue arrow indicates the in-
ference path of the original model, while the green
arrow depicts the inference path during the drafting
stage. Notably, both inference paths share the same
model so we do not need a standalone draft model
with extra memory overhead.

Implementing self-speculative decoding poses
two main challenges: (a) determining which layers
and the number of layers to skip during drafting,
and (b) deciding the timing to stop generating draft
tokens. To tackle the first challenge, we formulate it
as an optimization problem, which accepts the com-
binations of layers to bypass as input and aims to
minimize the average inference time per token. We
employ Bayesian optimization (Jones et al., 1998)

to solve this problem. The optimization is per-
formed offline at the model level, and the searched
layer combinations are fixed. The second challenge
pertains to determining the optimal number of draft
tokens (K) to generate. As shown in Figure 2, the
choice of K significantly influences the end-to-end
speedup: for an acceptance rate below 80%, K = 1
is optimal, and for rates above 80%, a larger K
is necessary. This observation underscores that a
static K is not universally applicable. To tackle this
variability, we introduce an adaptive draft-exiting
mechanism, which stops generating draft tokens
once its confidence level drops below a threshold.
This intervention prevents unnecessary computa-
tion and potential discard of additional draft tokens,
thereby enhancing efficiency.

To summarize, our main contributions are: (1)
Inference scheme: we propose self-speculative de-
coding, a practical, plug-and-play solution for in-
ference acceleration that does not require further
neural network training and avoids additional mem-
ory overhead; (2) Optimization strategies: we adopt
Bayesian optimization to select which layers to skip
during drafting and propose a simple yet effective
method to adaptively determine the number of draft
tokens; (3) Evaluation: we evaluate our method on
text summarization and code generation tasks, and
the experimental results indicate that our method
can achieve up to 1.99x in end-to-end speedup.

2 Related Work

Transformer-based LLM inference. As LLMs
continue to evolve rapidly, we are seeing a surge of
systems specifically engineered for LLM inference,
including Faster Transformer (NVIDIA), Orca (Yu
et al., 2022), LightSeq (Wang et al., 2021), PaLM
inference (Pope et al., 2022), TurboTransformers
(Fang et al., 2021), Deepspeed Inference (Am-

inabadi et al., 2022), FlexGen (Sheng et al., 2023),
Text Generation Inference (HuggingFace, 2023),
etc. The token generation phase typically takes up
the majority of the end-to-end inference time com-
pared to the prompting encoding phase. Despite
the introduction of system optimizations by those
state-of-the-art systems to improve the inference
speed, there is still a gap in the careful co-design of
algorithms and systems. This is necessary to fully
harness the potential of hardware efficiency during
LLM inference computation.

Model Compression. Various model compres-
sion methods have been studied for model infer-
ence. For example, quantization (Han et al., 2015;
Jacob et al., 2018; Nagel et al., 2019; Zhao et al.,
2019; Yao et al., 2022; Park et al., 2022; Dettmers
et al., 2022; Xiao et al., 2022; Frantar et al., 2022),
pruning or sparsification (Molchanov et al., 2016;
Liuetal., 2018; He et al., 2019; Hoefler et al., 2021;
Frantar and Alistarh, 2023; Liu et al., 2023; Bansal
et al., 2022), and distillation (Hinton et al., 2015;
Cho and Hariharan, 2019; Tang et al., 2019; Tou-
vron et al., 2021) have been applied to speed up the
inference of the machine learning model, particu-
larly LLMs. While these solutions are extremely
effective, they often necessitate modifications to
the model architecture and the training procedure.
This usually involves re-training or fine-tuning the
models. And it is important to note that these meth-
ods do not result in identical outputs.

Speculative Execution. Speculative execution
(Burton, 1985; Hennessy and Patterson, 2011) is
employed in computer architecture where a system
performs some task in advance if that task is known
to be required after the previous task. Speculative
decoding (Chen et al., 2023; Leviathan et al., 2023)
has been proposed as an effective strategy to boost
the inference speed of LLMs. Previously, (Stern
et al., 2018) proposed to use block-wise parallel de-
coding to accelerate greedy decoding of attention
models. However, these methods need to train or
select a high-quality draft model, and also result
in increased memory overhead. Yang et al. (2023)
proposed to copy the reference text tokens and vali-
date them in a forward pass. However, this method
relies on the repetitiveness assumption, and thus
does not apply for general scenario generation In
contrast, our approach does not incur additional
memory overhead and does not hinge on explicit
assumptions about data distribution.

Algorithm 1 Autoregressive Decoding (Greedy)

1: Given model p(z|z1, ...
sequence length T'.

2: fori=t, ..., T-1 do

3: Zit1 < argmax p(z|z1, ..., ;)

,Z¢), prompt x1, ..., T+ and target

4: return x1,...,TT

Early Exit. Early exit allows the model to choose
different calculation paths based on the input dur-
ing the inference process to achieve acceleration.
Various early exit techniques for encoder-only
Transformers (Devlin et al., 2019) have been pro-
posed (Xin et al., 2020b; Schwartz et al., 2020; Liu
et al., 2020; Xin et al., 2020a; Hou et al., 2020;
Zhou et al., 2020; Liao et al., 2021; Zhu, 2021; Li
et al., 2021; Sun et al., 2022). Recently, (Schus-
ter et al., 2022) further verified the effectiveness
of early exit on the encoder-decoder LLM (Raffel
et al., 2020). Inspired by these works, we opt to
skip certain intermediate layers during drafting.

3 Method

In this section, we first go through the standard au-
toregressive decoding. Subsequently, we provide a
detailed depiction of our proposed method, includ-
ing selectively skipping layers during drafting, and
adaptively determining the number of draft tokens.

3.1 Standard Autoregressive Decoding

Existing LLMs typically follows an autoregres-
sive decoding process. Given a prompt sequence
x1, ..., T¢, the model calculates the probability dis-
tribution of the next token p(x|z1,...,x¢). We
present a greedy decoding process in Algorithm 1.
In practice, instead of choosing the token with the
highest probability (as in greedy decoding), we
can sample tokens based on their probability dis-
tribution, which introduces some randomness and
generates more diverse outputs.

Ideally, the computational cost of autoregressive
decoding is comparable to that of sequence-level
forward processing for an equivalent number of
tokens.” However, this decoding process is signifi-
cantly bounded by the device memory bandwidth.
When decoding each token, all the model parame-
ters need to pass through the accelerator chip. So
the model size divided by the memory bandwidth
gives a hard ceiling on the decoding speed, result-
ing in a much longer inference time.

%In fact, due to the causal nature of language modeling,

autoregressive decoding could potentially save some attention
computation.

Algorithm 2 Self-Speculative Decoding (Greedy)

I: LLM p(z|z*, 21, ..., z+) Where 21, ..., z¢ is the prompt,
2™ is a vector that represents the specific layers to bypass;
target sequence length 7'; max draft tokens to generate
K. We denote the original LLM as p(x\ﬁ,ml, ey Tt)s
where 0 is a zero vector, indicating all layers are used in

inference.

2: 14+t

3: while: < T do

4: for j < i,...,i+ K do > Drafting Stage
5: Zjt1 < argmax p(z|z”, z1, ..., z;)

6: if need to exit drafting (§3.4) then

7: Break

8: for i < i,...,7 do > Verification Stage
9: if 2,11 # arg max p(z|0, 21, ..., ;) then
10: Tiy1 ¢ arg rnaxp(ac\(_f7 T1yeeny Ts)

11: Break
12: 14—1+1
13: If all draft tokens are accepted, generate next token

Tit1 < arg maxp(ar\(‘);:m7 voxi)andi «— i+ 1
14: return x1,..., 7

3.2 Self-Speculative Decoding

To mitigate the inherent inefficiency of autoregres-
sive decoding, speculative decoding can be em-
ployed to enhance the inference speed of LLMs.
This strategy involves two models: an LLM that we
want to optimize, and a draft model that runs faster,
albeit potentially at a lower quality. Speculative
decoding can be explained as a two-stage process:
(1) drafting: the draft model first generates K draft
tokens from a given prompt sequence 1, ..., Z;,
denoted as x;41, ..., i+ k. (2) verification: follow-
ing the drafting stage, the original LLM is then
employed to validate these draft tokens. This val-
idation is accomplished in a single forward pass,
where the LLLM predicts the probability distribu-
tions for each draft token and assesses whether they
align with the draft tokens. Once a draft token x; is
not validated, we use the original LLM’s prediction
to override x;, and start the next round of drafting
beginning from token x4 1.

The above process is based on the observation
that computing the forward pass of a short con-
tinuation of tokens in parallel is not much slower
than that of a single token. Consequently, the veri-
fication stage could be significantly more efficient
than decoding tokens using the original LLM in
standard autoregressive decoding.

In contrast to existing methods that use a stan-
dalone draft model to obtain draft tokens, our paper
proposes a novel ‘self-speculative’ approach. We
employ the original LLM itself for both the draft-
ing and verification stages. During the drafting
stage, the LLM selectively skips some of its in-

termediate layers so as to generate draft tokens
quicker. Subsequently, these draft tokens are veri-
fied by the original LLM. Algorithm 2 presents a
detailed description of the greedy decoding process.
A sampling-based decoding process is elaborated
in Appendix I.

Despite the simplicity of the main idea of self-
speculative decoding, it poses several challenges:

Challenge 1: First, it is non-trivial to determine
which layers and the number of layers to skip dur-
ing drafting. If an excessive number of layers are
skipped, the quality of the draft could be signifi-
cantly compromised. This could result in a low ac-
ceptance rate in the verification stage, consequently
increasing the overall inference time. On the other
hand, if fewer layers are skipped, it ensures a higher
acceptance, but also caps the maximum speedup
that could be achieved.

Challenge 2: It is hard to decide when to stop
the generation of draft tokens. As shown in Fig-
ure 2, shows that the choice of the number of draft
tokens to generate significantly influences the end-
to-end speedup. In speculative decoding, if a draft
token is rejected, all subsequent draft tokens will
be discarded. Therefore, generating an excessive
number of draft tokens could lead to unnecessary
computational effort, thereby increasing the end-to-
end inference time.

In sections 3.3 and 3.4, we will detail our ap-
proach to address these two challenges respectively.

3.3 Selection of Skipped Layers

While skipping more layers can expedite the draft-
ing process, it also carries the risk of lowering
the token acceptance rate in the verification stage,
consequently increasing the overall end-to-end in-
ference time. In this subsection, we frame the layer
selection process as an optimization problem, with
an objective of minimizing the average inference
time per token.

Objective Function: The black box function,
which we aim to minimize, is the average inference
time per token. This function takes as input a com-
bination of layers to skip and returns the average
inference time per token on a development set. We
represent this function as f(z), where z is a vector
representing the layers to skip.

Input Space: The input space is the set of all
possible combinations of layers that can be skipped.
If there are L layers in the model, including both
attention and MLP layers, the input space is the

1. Evaluate inference 2. Bayesian Optimization

0 time per token of
- If-sp lative (1) Update the gaussian
Attention] 1 decoding process model
MLP 0 4 3
;] o BIaEknE‘i:ct)_ér:Evalu*atuon Gaussian /_/;\
Attention] O unction f(2") process model ST \
o) .
P 3. Update skip layers (2) Sample suggested
] Attention | g skip layers using
cee 2 acquisition function

Figure 3: Tllustration of using Bayesian optimization to
search the best combination of skip layers that results
in the lowest average token inference time.

power set of the set {1,2, ..., L}.

The goal of the optimization is to find the in-
put z* that minimizes the objective function f(z),
which means we want to find the combination of
layers to skip that results in the lowest inference
time. This problem can be formally expressed as:

z* =argmin f(z), s.t.ze{0,1}L. (1)

z

For smaller models with a manageable solving
space, a brute force search could easily reach the
globally optimal solution. However, for LLMs with
numerous layers (L = 160 for LLaMA-2-70B),
this method becomes prohibitively expensive.

In such cases, Bayesian optimization can be em-
ployed to tackle this problem (Jones et al., 1998).
As shown in Figure 3, it iteratively selects new in-
puts z* for evaluation, based on a surrogate model
of the objective function, i.e. Gaussian process
(Rasmussen et al., 2006), and an acquisition func-
tion. The latter balances exploration (testing inputs
where the model’s prediction is uncertain) and ex-
ploitation (testing inputs where the model antici-
pates a favorable result). This procedure contin-
ues until a predetermined number of iterations is
reached. We use the obtained z* to accelerate text
generation, and z* is fixed for each model without
further updating.

Discussion We here adopt skipping intermediate
layers as a simple yet effective strategy to expedite
the drafting stage. While other acceleration tech-
niques such as quantization and structured pruning
exist, they fail to offer speed-up proportional to
their compression ratio. Meanwhile, they require
a separate copy of the altered model parameters,
thereby increasing memory overhead. This con-
tradicts the key requirement of no extra memory.
Consequently, we adopt layer skipping in our ap-
proach. However, our scheme can be integrated

with quantization (Dettmers et al., 2022) and sparsi-
fication (Sun et al., 2023) to further reduce resource
consumption, as detailed in Appendix H. Future
work could investigate other drafting techniques
that maintain these benefits while boosting speed.

3.4 Adaptive Draft-Exiting Mechanism

Our self-speculative decoding approach incorpo-
rates an adaptive draft-exiting mechanism to en-
hance computational efficiency during the drafting
stage. In speculative decoding, if a draft token is
rejected, all subsequent draft tokens will be dis-
carded accordingly. The draft-exiting mechanism
prevents the wasteful allocation of computational
resources toward draft tokens that are less likely to
be accepted in the verification stage.

Specifically, this mechanism evaluates the pre-
dicted probability of each draft token against a
threshold ~y. If the predicted probability falls be-
low this threshold such that p(z¢41|z1, ...,) < 7,
indicating a low confidence score, it immediately
stops drafting. This approach ensures a better use
of computing by focusing on the generation and
verification of high-quality tokens, thereby improv-
ing the overall efficiency.

Moreover, it is worth noting that a static thresh-
old may not accurately reflect the actual acceptance
rate between the drafting and verification stages.
For example, more challenging examples with a
lower acceptance rate would be better served by a
higher . To avoid the need for case-by-case thresh-
old determination, we use an adaptive threshold
that adjusts dynamically according to an updating
rule, thereby allowing for an accurate reflection of
the acceptance rate and better handling of examples
in different difficulties. We denote the acceptance
rate at e-th drafting stage as AR.. Consequently,
the update rule is defined as follows:

AR + B1AR+ (1 — B1)AR., 2)
- +e fAR <«
7= {” . 3)
v — €, otherwise
v Bay + (1= B2)7, “)

where o represents a target acceptance rate, e is the
update step-size, and 81 and (35 are factors designed
to mitigate fluctuations of v and AR respectively.
Notably, when e is 1, 51 = 0. We update ~ after
each verification stage. This updating rule ensures
that the acceptance rate remains in close proximity
to a target acceptance rate c.

4 Evaluation

4.1 Setup

We evaluate a diverse range of models in-
cluding LLaMA-2-13B, LLaMA-2-13B-Chat,
CodeLLLaMA-13B, and LLaMA-2-70B. Detailed
setup can be found in Appendix B.

We perform Bayesian optimization® (BO) for
1000 iterations to select the skipped layers in the
drafting stage*. Results of tuning the number of
BO iterations are reported in Appendix E.

The datasets includes CNN/Daily Mail
(CNN/DM), Extreme Summarization (XSum), and
HumanEval. These tasks cover the evaluation of
text and code generation capabilities. We perform
1-shot evaluation for CNN/DM and XSum, and
compare the ROUGE-2 (Lin, 2004). We compare
pass@1 and pass@10 (Kulal et al., 2019) for
HumanEval. We randomly sample 1000 instances
from the testset for CNN/DM and XSum.

4.2 Main Results

We evaluate the performance of our decoding
scheme, denoted as ‘Self-Speculative’, with both
greedy decoding (temperature = 0.0) and random
sampling (temperature = 0.2/0.6) versions, across
text generation and code generation. The base-
line is ‘Autoregressive’, which uses the original
model to perform standard autoregressive decod-
ing. The experiments involve models spanning var-
ious scales of LLaMA-2 and its fine-tuned models.
The summarized results can be found in Tables 1
and 2. We visualize the layer skipping distribution
for different models in Appendix C.

For text generation tasks, the results presented in
Table 1 show that our method, when applied with
temperature settings of 0.0 and 0.2 achieves consid-
erable speedups ranging from 1.210x to 1.992x.
Another important observation from these results
is the minimal to nonexistent loss in ROUGE-2
rouge’, which verifies one of the core advantages
of our decoding scheme, namely consistent output
quality. In particular, our approach can be effec-
tively applied on LLaMA-2-13B-Chat, a fine-tuned
LLaMA-2-13B for conversation scenarios, indicat-
ing the compatibility of our method with fine-tuned
models. This effectively addresses the dependency

Shttps://github.com/bayesian-optimization/
BayesianOptimization (MIT License) is used.

* Appendix B reports the offline BO time at model-level.

SWe attribute any slight differences observed in the case of
greedy decoding to numerical rounding errors.

/‘.—__”

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Number of sub-layers to skip

Figure 4: Speedup vs the number of skipped layers.
These results are derived from the BO process.

of the original speculative decoding method on
high-quality draft models, which can be challeng-
ing to train and obtain, especially for fine-tuned
models. Furthermore, the higher speedup achieved
on LLaMA-2-70B suggests that larger models in-
troduce more redundancy. This allows the drafting
stage to skip a larger percentage of intermediate
layers, thereby enhancing the overall speedup.

To evaluate the performance of our method in
code generation tasks, we utilized CodeL.LaMA-
13B, another fine-tuned variant of LLaMA-2-13B
optimized for code generation. The assessment
is carried out using the HumanEval benchmark.
Table 2 shows that our variants achieve speedups
of 1.345x and 1.456 x, respectively, while main-
taining similar task scores in terms of pass@1 and
pass@10. This further validates the model compat-
ibility of our scheme in the field of coding.

4.3 Impact of Skipped Layer Selection

To investigate the impact of skipped layer selec-
tion, we conduct experiments on the LLaMA-2-
13B model, which comprises 80 layers. Through-
out the Bayesian optimization process, we track the
number of layers skipped, denoted as ||z*||, and the
resultant end-to-end speedup relative to the autore-
gressive baseline. Figure 4 shows the results, where
the dashed line indicates the maximum speedup for
runs that skip the same number of layers.

These results reveal that: (1) The peak end-to-
end speedup is observed when about half of the
layers are skipped during the drafting stage; (2) The
specific combination of layers skipped also plays
a significant role. In particular, an inappropriate
combination of skipped layers can actually result
in a decrease in the end-to-end inference speed. (3)
There is a noticeable drop in speedup when more
than 42 layers are skipped. This suggests that the
quality of drafting significantly deteriorates when
an excessive number of layers are omitted.

https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization

Model Method Temp. CNN/DM XSum
ROUGE-2 Speedup ROUGE-2 Speedup
LLaMA-2-13B Autoregressive 0.0 0.106 1.000x 0.124 1.000x
LLaMA-2-13B Self-Speculative 0.0 0.108 1.572% 0.125 1.429%
LLaMA-2-13B Autoregressive 0.2 0.111 1.000x 0.117 1.000x
LLaMA-2-13B Self-Speculative 0.2 0.111 1.529 % 0.117 1.377x
LLaMA-2-13B-Chat Autoregressive 0.0 0.144 1.000 x 0.109 1.000 x
LLaMA-2-13B-Chat Self-Speculative 0.0 0.143 1.409 x 0.109 1.224x
LLaMA-2-13B-Chat Autoregressive 0.2 0.143 1.000 x 0.106 1.000 x
LLaMA-2-13B-Chat Self-Speculative 0.2 0.145 1.383 % 0.108 1.210x
LLaMA-2-70B Autoregressive 0.0 0.130 1.000x 0.118 1.000x
LLaMA-2-70B Self-Speculative 0.0 0.130 1.992x 0.118 1.598 x
LLaMA-2-70B Autoregressive 0.2 0.131 1.000x 0.108 1.000x
LLaMA-2-70B Self-Speculative 0.2 0.131 1.964 x 0.110 1.560 %

Table 1: Evaluation on text generation tasks. ‘Speedup’ represents the acceleration of average inference time per
token compared to the ‘Autoregressive’ baseline on the same setting.

Model Method HumanEval Speedup
CodeLLaMA-13B Autoreg. pass@1 0311 1.000x
CodeLLaMA-13B Self-Spec. pass@1 0.317 1.456x
CodeLLaMA-13B Autoreg. pass@10 0.659 1.000x
CodeLLaMA-13B Self-Spec. pass@10 0.659 1.345x

Table 2: Evaluation on code generation tasks. We use
greedy decoding for pass@1 and random sampling with
a temperature of 0.6 for pass@10.

These findings indicate the importance of layer
selection in the implementation of self-speculative
decoding. However, alternative layer skipping
strategies do not achieve satisfactory speedup com-
pared to BO, as detailed in Appendix D.

Performance degradation in drafting may be
compensated by adopting aggressive skipping strat-
egy and further training the draft model on a small
amount of data, as described in Appendix F. This
finding aligns with the Sheared-LLaMA (Xia et al.,
2023), which shows the effectiveness of pruning
followed by fine-tuning on a small corpus.

4.4 Effectiveness of Draft-Exiting

Here we explore the effectiveness of the adap-
tive draft exit mechanism, specifically examining
whether a threshold needs to be set and whether
a static threshold is sufficient. Our settings are
LLaMA-2-13B, CNN/DM, and greedy decoding.
Fixed Number of Draft Tokens. We first eval-
uate a self-speculative decoding variant where the
number of tokens generated at each drafting stage is
always equal to K. Table 3 illustrates the speedup
for different max draft token values K, showing an
initial increase and then a decrease. This trend can
be attributed to the fact that an excessively large K

(K = 8) generates a substantial number of tokens
that are likely to fail in the verification stage. This
is demonstrated by its lower acceptance rate (AR)
of only 0.748, which results in squandered compu-
tational resources during the drafting stage and a
consequent reduction in speedup.

While an appropriate K, like K = 4, can par-
tially alleviate this issue, a static setting limits
the draft model’s potential and achieves a mod-
est speedup (1.44 x). For example, we should use a
larger K for simple instances and a smaller K for
difficult instances. In addition, Table 3 shows that
the acceptance rate and speedup are not directly
proportional. When K = 2, the acceptance rate
reaches the highest 0.924, but the acceleration is
only 1.37x. The results stem from an overly small
K, which underestimates the draft model capabili-
ties, missing opportunities to generate more valid
draft tokens, thereby limiting the overall speedup.

Draft-Exiting with Static Threshold. Another
variant is to stop generating draft tokens if the
confidence score falls below a predefined static
threshold. Table 4 shows that different static
thresholds have large differences in acceleration
(1.38x~1.58x). This highlights the importance of
adaptively determining the appropriate threshold to
optimize the speedup. Specifically, we observe that
high thresholds (y=0.8) tend to underestimate the
capabilities of the drafting model. Despite a high
acceptance rate (AR=0.935), this does not necessar-
ily result in the best speedup due to a reduced num-
ber of drafting tokens (1.55x). Conversely, a lower
threshold (v=0.2) tends to overestimate the draft-
ing model’s capabilities, leading to a significantly
lower acceptance rate (AR=0.749), wasting com-

K | 2 4 6 8 Adaptive
ROUGE-2 | 0.107 0.107 0.107 0.107 0.108
AR 0924 0.865 0.807 0.748 0.919
Speedup 1.37x 144x 142x 1.36x 1.57 %

Table 3: Drafting with different K values.

v |02 0.4 0.6 0.8 Adaptive
ROUGE-2 | 0.107 0.107 0.107 0.107 0.108
AR 0749 0852 0909 0935 0919
Speedup | 1.38x 1.52x 1.58x 155x 1.57x

Table 4: Static draft-exiting threshold v with K = 12.

putational resources during the drafting stage, and
thereby leading to slower inference speed (1.38).
Draft-Exiting with Adaptive Threshold. To
address the issue of optimal threshold determina-
tion, we propose an adaptive draft-exiting mech-
anism. Specifically, we evaluate the acceptance
rate and compare it to a target acceptance rate.
The threshold is updated with an updating rule
depicted in section 3.3. Table 4 shows that the
speedup achieved by our adaptive threshold update
method (1.57 %) is comparable to, if not superior to,
the speedup achieved with careful tuning of static
thresholds. This indicates that dynamic threshold
updating yields efficient and stable inference ac-
celeration. This is mainly because the acceptance
rate gets closer to the target AR by adjusting the v
value in a timely manner for instances of varying
difficulties. Also, Appendix G reveals the adaptive
draft-exiting is insensitive to changes in K.

4.5 Trend of Threshold Change

In Figure 5, we record the changing trend of the
threshold in our decoding method under different
models and data during about 5,000 drafting and
verification processes. We can observe that our
strategy can adaptively adjust the threshold to an ap-
propriate range to achieve effective acceleration; In
addition, differences in models and data sets bring
drastically different ranges of variation, which fur-
ther highlights the limitations of static threshold
settings and the need for adaptive updates.

4.6 Breakdown of Computation

Table 5 presents a computation breakdown compar-
ing the baseline with our ‘Self-Speculative’ decod-
ing method. Our approach exhibits a significant
speedup in average inference time per token com-
pared to ‘Autoregressive’. This speedup is primar-

Threshold

—— LLaMA-2-13B (CNN/DM)
--- LLaMA-2-13B (XSum)

0.5 —— LLaMA-2-13B-Chat (CNN/DM)
-=-- LLaMA-2-13B-Chat (XSum)

0K 1K 2K 3K 4K 5K
Number of Drafting-Verification

Figure 5: Threshold ~y varies with models and data. We
calculate a moving average for every 64 cycles and plot
the standard deviation. The initial vy is set to 0.4.

Operation Autoregressive Self-Speculative
Drafting - 25.5+1.14 ms
- Attention - 14.6£0.65 ms
- MLP - 9.4640.42 ms
Verification - 10.742.81 ms
- Attention - 7.554+1.91 ms
- MLP - 2.7340.80 ms
~ update - 0.6140.14 ps
Latency * 56.3+1.23 ms 36.84+3.23 ms
- Attention 39.7+0.91 ms 22.242.33 ms
- MLP 14.340.29 ms 12.24+1.22 ms

Table 5: Breakdown of computation. * denotes the
average inference latency per token for 10 instances
randomly sampled from the CNN/DM test set after in-
ference testing on LLaMA-2-13B.

ily attributed to two key techniques: the selection
of skipped layers and the adaptive draft-exiting.
Notably, the drafting stage consumes the majority
of inference latency, highlighting the need for draft
model optimizations to improve overall inference
speedup. Importantly, our adaptive exit mechanism
(v update) incurs negligible computational cost as
it does not involve neural network calculations.

5 Conclusion

In this paper, we introduced self-speculative de-
coding, a novel and efficient inference scheme that
accelerates Transformer-based LLMs. Our method
does not depend on additional neural network train-
ing and incurs no extra device memory, making a
highly practical and cost-effective solution for in-
ference acceleration. Moreover, we used Bayesian
optimization to search for layers to skip in drafting
and proposed an adaptive draft-exiting mechanism
to improve the end-to-end inference speed. Bench-
mark tests with LLaMA-2 and its fine-tuned mod-
els demonstrated a speedup of up to 1.99x. For
future work, we aim to explore more sophisticated
model compression strategies to further accelerate
the drafting stage for low-resource scenarios.

6 Ethical Considerations

In compliance with ethical considerations, we em-
phasize that the entirety of our research revolves
around open-source datasets, models, and tools.
Notably, we exclusively focus on improving model
inference efficiency and do not engage in any com-
mercial usage or ethical implications.

7 Limitations

While our self-speculative decoding scheme
presents benefits for accelerating LLMs, there are
a few limitations to consider. Firstly, the utilization
of Bayesian optimization to determine the layers
to be skipped during the drafting stage may require
several hours. Nonetheless, this limitation is not
critical, as this process is a one-time, offline exe-
cution at the model level. Secondly, our method
does not involve in any neural network training,
which imposes a constraint on the number of lay-
ers that can be skipped. An excessive reduction
in layers could result in a significant drop in the
acceptance rate, thereby diminishing the achieved
speedup. Although fine-tuning the draft model-a
sub-graph of the original model-could potentially
mitigate this issue and yield a better speedup, as
shown in Appendix F, it incurs additional memory
overhead since the draft model no longer shares the
same parameters with the original model.

References

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. Deepspeed-inference: Enabling
efficient inference of transformer models at unprece-
dented scale. In 2022 SC22: International Confer-
ence for High Performance Computing, Networking,
Storage and Analysis (SC), pages 646—-660. IEEE
Computer Society.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal,
Sravan Bodapati, Katrin Kirchhoff, and Dan Roth.
2022. Rethinking the role of scale for in-context
learning: An interpretability-based case study at 66
billion scale. arXiv preprint arXiv:2212.09095.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

F Warren Burton. 1985. Speculative computation, par-
allelism, and functional programming. IEEE Trans-
actions on Computers, 100(12):1190-1193.

Stephanie CY Chan, Adam Santoro, Andrew Kyle
Lampinen, Jane X Wang, Aaditya K Singh,
Pierre Harvey Richemond, James McClelland, and
Felix Hill. 2022. Data distributional properties drive
emergent in-context learning in transformers. In Ad-
vances in Neural Information Processing Systems.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Jang Hyun Cho and Bharath Hariharan. 2019. On the
efficacy of knowledge distillation. In Proceedings of
the IEEE/CVF international conference on computer
vision, pages 4794-4802.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
2021. Turbotransformers: an efficient gpu serving
system for transformer models. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 389—402.

Elias Frantar and Dan Alistarh. 2023. Massive language
models can be accurately pruned in one-shot. arXiv
preprint arXiv:2301.00774.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and
Yi Yang. 2019. Filter pruning via geometric me-
dian for deep convolutional neural networks acceler-
ation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
4340-4349.

John L Hennessy and David A Patterson. 2011. Com-
puter architecture: a quantitative approach. Elsevier.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in deep
learning: Pruning and growth for efficient inference

and training in neural networks. J. Mach. Learn. Res.,
22(241):1-124.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33.

HuggingFace. 2023. Text generation inference: Fast op-
timized inference for LLMs. https://github.com/
huggingface/text-generation-inference.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2704-2713.

Donald R Jones, Matthias Schonlau, and William J
Welch. 1998. Efficient global optimization of ex-
pensive black-box functions. Journal of Global opti-
mization, 13:455-492.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,
32.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan,
Xipeng Qiu, and Xuanjing Huang. 2021. Accelerat-
ing BERT inference for sequence labeling via early-
exit. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

10

Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su,
Xu Sun, and Bin He. 2021. A global past-future
early exit method for accelerating inference of pre-
trained language models. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2013-2023.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2018. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137-22176. PMLR.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2016. Pruning convolutional
neural networks for resource efficient inference.
arXiv preprint arXiv:1611.06440.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort,
and Max Welling. 2019. Data-free quantization
through weight equalization and bias correction. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 1325-1334.

NVIDIA. Fastertransformer. https://github.com/
NVIDIA/FasterTransformer.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeong-
wook Kim, Youngjoo Lee, and Dongsoo Lee. 2022.
nugmm: Quantized matmul for efficient inference
of large-scale generative language models. arXiv
preprint arXiv:2206.09557.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and
Jeff Dean. 2022. Efficiently scaling transformer in-
ference. arXiv preprint arXiv:2211.05102.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21.

https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer

Carl Edward Rasmussen, Christopher K Williams, et al.
2006. Gaussian processes for machine learning, vol.
1.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre D’efossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. Ad-
vances in Neural Information Processing Systems,
35.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model
and instance complexities. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie, Beidi
Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023.
High-throughput generative inference of large lan-
guage models with a single gpu. arXiv preprint
arXiv:2303.06865.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng,
Lingling Wu, Yilong He, Yuan Ni, Guotong Xie, Xu-
anjing Huang, and Xipeng Qiu. 2022. A simple hash-
based early exiting approach for language understand-
ing and generation. In Findings of the Association
for Computational Linguistics: ACL 2022.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. 2021. Training data-efficient image trans-
formers & distillation through attention. In Inter-
national Conference on Machine Learning, pages

10347-10357. PMLR.

11

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang,
and Lei Li. 2021. Lightseq: A high performance in-
ference library for transformers. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies: Industry Papers, pages
113-120.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared LLaMA: Accelerating lan-
guage model pre-training via structured pruning.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien De-
mouth, and Song Han. 2022. Smoothquant: Accurate
and efficient post-training quantization for large lan-
guage models. arXiv preprint arXiv:2211.10438.

Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin.
2020a. Early exiting BERT for efficient document
ranking. In Proceedings of SustaiNLP: Workshop on
Simple and Efficient Natural Language Processing.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020b. DeeBERT: Dynamic early exit-
ing for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv
preprint arXiv:2206.01861.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for { Transformer-Based}
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521-538.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,
and Zhiru Zhang. 2019. Improving neural network
quantization without retraining using outlier channel
splitting. In International conference on machine
learning, pages 7543-7552. PMLR.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Systems,
33.

http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694

Wei Zhu. 2021. Leebert: Learned early exit for bert with
cross-level optimization. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics.

A Data

The datasets that we have selected for evaluation
are CNN/Daily Mail (CNN/DM), Extreme Sum-
marization (XSum), and HumanEval. These tasks
cover a broad spectrum of language processing
capabilities, including text and code generation
capabilities. We perform 1-shot evaluation for
CNN/DM and XSum, and compare the ROUGE-
2. We compare pass @ 10 for HumanEval. For the
results of efficiency, we randomly sample 1000
instances from the testset for CNN/DM and XSum.

CNN/Daily Mail (CNN/DM): This task involves
summarizing news articles from the CNN and Daily
Mail websites. The models are required to gener-
ate a concise summary of each article, testing their
ability to understand and condense complex infor-
mation.

Extreme Summarization (XSum): In the XSum
task, models are asked to produce a single-sentence
summary of a news article. This task tests the mod-
els’ capability to extract the most salient informa-
tion from a text and express it in a single, coherent
sentence.

HumanEval: The HumanEval task is a bench-
mark for Python programming. This task chal-
lenges the models with a variety of coding prob-
lems that require a wide range of skills, from basic
programming to complex problem-solving abilities.
It serves to evaluate the models’ understanding
of Python syntax, their ability to implement algo-
rithms, and their proficiency in problem-solving
using code. This benchmark provides a unique per-
spective on the models’ capabilities in the realm
of programming, complementing the language-
focused tasks.

B Setup

We present the hyperparameter settings of the ex-
periments in Table 6, including the parameters in-
volved in the decoding process, the adaptive draft-
exiting mechanism, and the random sampling. For
the adaptive draft-exiting mechanism, we set the
initial threshold v = 0.6, ¢ = 0.01, 5; = 0.5,
B2 = 0.9, and « is slightly tuned for the data and
model, as detailed in Table 6. For sampling-based

12

inference, we by default use top_p = 0.85 for text
summarization tasks, and 0.95 for code generation
tasks.

In addition, the key experimental environments
on the A100-40GB are CUDA 11.6, PyTorch
1.13.1, and Transformer 4.33.1; For the A100-
80GB, the environment is CUDA 11.8, PyTorch
2.0.1, and Transformer 4.33.1. We use an A100-
40GB to conduct experiments for LLaMA-2-13B,
LLaMA-2-13B-Chat, and CodeLLaMA-13B. We
use two A100-80GB with HuggingFace’s acceler-
ate® to conduct experiments for LLaMA-2-70B.

We randomly select 8 instances from the train
set and use them to evaluate the inference time
per token for Bayesian optimization. The offline
Bayesian optimization time for 1000 iterations
is about 2.5 hours for LLaMA-2-13B, LLaMA-
2-13B-Chat, and CodelLLaMA-13B, and about 6
hours for LLaMA-2-70B.

C Which layers are skipped?

Figure 6 visualizes the distinct base models corre-
sponding to layer skip distributions within the draft
model. Two key observations are made as follows:

First, we observe that there are more skips in the
attention layer compared to the MLP layer, suggest-
ing the attention layer is more effective for reducing
inference time. This is reinforced by the results in
Table 5, where the time spent in the attention layer
significantly contributes to the average inference
latency per token.

Second, regardless of whether it is the MLP layer
or the attention layer, the skipped layers tend to
cluster in the latter half of the model. This pat-
tern suggests that most tokens can be accurately
predicted in the first half of the model, leaving the
second half of the model relatively redundant.

D Effect of Skip Strategy

Here, we explore the effect of various skip strate-
gies on the performance of generated draft models.
We evaluate the CNN/DM on the LLaMA-2-13B.
Initially, we determine the number of skipped lay-
ers using Bayesian optimization, as illustrated in
Figure 6(a). We find that the attention layer skips
24 layers, while the MLP layer skips 12 layers. We
proceed to apply four strategies, each involving an
equal number of layer skips: skipping the initial
layers ("First"), middle layers ("Mid."), final layers

®https://github.com/huggingface/accelerate
(Apache-2.0 License)

https://github.com/huggingface/accelerate

Data Model Decoding Adaptive Draft-Exiting Random Sampling

T K «@ € 51 B2 Yo top_p temperature
CNN/DM LLaMA-2-13B 512 12 0.90 0.01 0.50 0.90 0.60 0.85 0.20
CNN/DM LLaMA-2-13B-Chat 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
CNN/DM LLaMA-2-70B 512 12 0.80 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-13B 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-13B-Chat 512 12 0.70 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-70B 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
HumanEval CodeLLaMA-13B 512 12 0.90 0.01 0.50 0.90 0.60 0.95 0.60

Table 6: Hyperparameter settings. 7o represents the default initial value of .
MLP 2 4 6 8 10 12 .. 18 . 22 . 26 28 30 32 34 .. 40 42 44 . 48 50 .. 56 .. 62 64 66 68 70 . 74 76 78 80
ATT s cHEE - - B> EEEE BB BEEEEEEEEEEEREE - 0 -
(a) LLaMA-2-13B
MLP 2 4 6 8 10 . 14 . 18 ... 26 28 30 32 34 36 38 40 42 44 46 .. 52 54 . 58 60 62 64 66 . 70 72 . 76 78 80
ATT 1 3 . 7 9 11 .. 17 19 .. 25 27 29 31 . 35 37 39 . 43 69 79
(b) LLaMA-2-13B-Chat
MLP 2 4 6 8 10 12 14 16 18 20 ... 28 .. 34 36 38 40 42 44 46 48 50 ... 58 60 . 64 ... 72 74 76 78 80
ATT 1 3 5 7 9 .. 15 17 ... 25 27 ... 35 37 39 41 . 45 .. 51 67 77 79
(c) CodeLLaMA-13B
MLP 2 4 6 8 10 12 14 16 32 .. 38 . 42 44 . 48 .. 54 64 . 68 70 72 74 76 78 80
ATT 1 3 5 7 9 1 13 15 . 19 .. 25 27 .. 33 .. 39 59 61 . 65 67 69 71 73 . 77 79
(d) The first half of LLaMA-2-70B

MLP 82 84 . 88 90 92 94 96 . 100 102 . 106 ... 114 116 136 . 140 142 .. 148 . 152 154 156 158 160
«~ +HN--HIHIEE-EEEEEEEEEEEEEEEEEEEEEEEE-E-H

(e) The second half of LLaMA-2-70B

Figure 6: Visualization of layer skip distributions in draft models for various base models. Gray squares indicate
retained layers, red squares denote skipped attention layers, and blue squares signify skipped MLP layers.

Strategy | First Mid. Last Rand. BO #Token | 0 20M 40M 60M 75M
ROUGE-2 | 0.108 0.108 0.107 0.107 0.108 ROUGE-2 | 0.106 0.106 0.106 0.106 0.106
AR 0.091 0.393 0508 0.592 0.919 AR 0.696 0902 0901 0900 0.893
Speedup | 0.696x 0.887x 0.951x 1.01x 1.57x Speedup 1.1I6x 191x 194x 1.96x 1.85x

Table 7: The effects of different skip strategies on the
performance of CNN/DM on LLaMA-2-13B.

Table 9: The effect of the number of tokens on aggres-
sive skip performance.

#lteration | 200 400 600 800 1000 K ‘ 10 12 14 16 18

ROUGE-2 | 0.108 0.107 0.108 0.108 0.108 ROUGE-2 | 0.107 0.108 0.108 0.108 0.107
AR 0903 0938 0920 0919 0919 AR 0924 0919 0916 0913 00911
Speedup 1.35x 1.52x 1.588x 1.57x 1.57x Speedup 1.57x 1.57x 1.58x 1.58x 1.58x

Table 8: The effect of the number of iterations of
Bayesian optimization.

("Last"), and randomly sampling layers ("Rand.").
The layer skip distribution is visualized in Figure 7.

Table 7 reveals that the fixed strategies of layer
skip (first, middle, last) or random skip yield mini-

13

Table 10: The effect of the max draft token under the
adaptive draft-exiting mechanism.

mal acceleration compared to Bayesian optimiza-
tion (BO) results. These suboptimal strategies, not
optimized for average inference time, result in a
draft model with subpar performance (manifested

Quantization \ bf16 fp8 fp4 nf4 Sparsification \ dense unstructured 4:8 2:4
ROUGE-2 1 0.107 0.105 0.101 0.114 ROUGE-2 1 0.107 0.114 0.115 0.110
AR T 0.910 0.911 0.913 0.910 AR T 0.910 0.918 0912 0911
VRAM (GB) | 372 27.5 19.6 19.7 VRAM (GB) | | 372 359 359 359
Latency (ms) | 324 113 152 126 Latency (ms) | | 32.4 30.4 29.2 30.9
Speedup 1 1.53 % 1.61x 1.36% 1.35x% Speedup 1.57x 1.50% 147x 1.48x
Table 11: Performance of self-speculative decod- Table 12: Performance of self-speculative decoding

ing combined with different quantization schemes of
LLM.int8().

as very low AR), inefficient resource utilization
in the drafting phase, and ultimately, a lack of
speedup. Furthermore, a slightly enhanced speedup
is observed when skipping the last layers, likely due
to the more severe redundancy in the model’s final
portion.

E Number of Iterations of BO

Subsequently, we explore the influence of the it-
eration number of Bayesian optimization on the
performance of our decoding scheme and report
the results in Table 8. The layer skip distribution
corresponding to different iteration numbers is de-
picted in Figure 8.

When applied to the LLaMA-2-13B for the
CNN/DM task, we observe that while a higher
number of iterations can yield increased acceler-
ation, even a relatively modest number of itera-
tions (e.g., 200) effectively reduces inference time,
achieving a speedup of 1.35x. Notably, the per-
formance metrics for the 800 and 1000 iterations
exhibit consistency due to the same layers being
skipped, as shown in Figure 8.

F Aggressive Skip

In pursuit of higher inference acceleration for users
with ample resources, we explore a more aggres-
sive skip strategy to obtain the draft model. To
mitigate the performance degradation associated
with the aggressive skip, we further train the draft
model using 50,000 instances from the Pile dataset
(Gao et al., 2020), truncating the length of each
to 512 tokens, which total up to 25 million tokens.
We repeat this training for 3 epochs, resulting in a
cumulative utilization of 75 million tokens.

The implementation of the aggressive skip in-
volves skipping the top-K layers based on Bayesian
optimization probabilities. For instance, in the case
of LLaMA-2-13B, as illustrated in Figure 9, we opt
to skip 75% of the attention layers (30 layers) and
32.5% of the MLP layers (13 layers).

14

combined with different sparsification schemes of
wanda.

Table 9 reveals that when we employ a more
aggressive skip without further training (#token
is 0), there is a noticeable decrease in the draft
model’s quality, with an average acceptance rate of
only 0.698. This leads to a significantly reduced
speedup of merely 1.16x. Nevertheless, by dedi-
cating a portion of the corpus to training, we no-
tably enhance the draft model’s quality, increasing
the AR to 0.900, in line with the target acceptance
rate of 0.90. This enhancement enables a further
improvement in speedup from 1.57x (shown in Ta-
ble 1) to 1.96 x (trained for 60M tokens), as more
layers are skipped’. After training on 75 million to-
kens, the reason for the reduced acceleration is that
we believe the model has a certain degree of overfit-
ting. It is essential to highlight that the aggressive
skip strategy necessitates both an extended train-
ing process and the additional storage of trained
draft models. However, this trade-off is deemed
acceptable for users with rich resources.

G Effect of Max # of Draft Tokens

Ideally, increasing the maximum number of draft
tokens K while maintaining a high acceptance rate
should lead to further improvements in inference
acceleration. To explore this, we test the CNN/DM
task using LLaMA-2-13B, varying the max draft
token K, and present the results in Table 10. It
is noteworthy that as K increases, the speedup re-
mains relatively stable. This observation is pri-
marily attributed to the fact that most tokens do
not benefit from excessively large K and tend to
exit early. In summary, our inference approach
shows insensitivity to K thanks to the adaptive
draft-exiting mechanism. Moreover, setting a rela-
tively large value for K (our default is 12) allows
this mechanism to perform optimally.

"This finding aligns with the recent Sheared-LLaMA (Xia
et al., 2023), which shows the effectiveness of pruning fol-
lowed by further training on a small amount of data.

Algorithm 3 Self-Speculative Decoding

1: LLM p(z|z*, x1, ..., x+) where z1, ..., 2 is the prompt, z* is a vector that represents the specific layers to bypass; target

sequence length T'; max draft tokens to generate K. We denote the original LLM as p(x\(_j, T1,...,

vector, indicating all layers are used in inference.

x¢), where 0 is a zero

2: 1+t
3: whilei < T do
4: for j < i,...,i+ K do > Drafting Stage
5 Zj41 < sample p(z|z*, z1, ..., z;)
6: if need to exit drafting (§3.4) then
7: Break
8: for i < i,...,7 do > Verification Stage
9: r < sample from a uniform distribution U0, 1]
10: if r > min(1, 2&1021.070) 1y thep
P@l=® w1, ws))
. . max(0,p(z|0,z1,...,2;)—p(z|z*,21,...,7;))
1 i1 < sample from e G e —p(zam s)
12: Break
13: 1141 .
14: If all draft tokens are accepted, generate next token ;41 < sample p(z|0, 21, ...,x;) and i i + 1
15: return x1, ..., 7
H Adaptation H.2 Sparsification

In this section, we explore the combination of self-
speculative decoding with quantization and sparsi-
fication techniques to adapt to users with limited
computing resources. We conduct experiments on
the CNN/DM task using LLaMA-2-13B, and the
layer skip distribution corresponding to the draft
model is shown in Figure 10.

H.1 Quantization

First, we integrate our inference approach with
the quantization technique, LLM.int8()® (Dettmers
et al., 2022). We evaluate the performance of three
quantization schemes: fp8 (8-bit floating-point),
fp4 (4-bit floating-point), and nf4 (4-bit normal-
ized float), in comparison to the default bf16 (16-
bit brain float point). The results are presented in
Table 11. In all quantization settings, we skip the
‘Im head’ layer of the model and do not employ
double quantization to save an additional 0.4 bits.

Table 11 illustrates that all three quantization
schemes effectively reduce the video memory de-
mand during inference. Notably, the fp4 quanti-
zation results in up to a nearly two-fold reduction
in memory demand to just 19.6 GB. While there
may be an increase in the average inference latency
per token due to the dequantization process, this
approach makes LLLM suitable for scenarios with
limited device memory.

8https://github.com/TimDettmers/bitsandbytes
(MIT License)

15

Subsequently, we assess the performance of self-
speculative decoding combined with sparsification
techniques, specifically wanda® (Sun et al., 2023),
which includes unstructured sparsity and structured
N:M sparsity (4:8 and 2:4) with the sparsity ratio
of 0.5. The N:M sparsity constraint specifies that
no more than N out of every M contiguous weights
can be non-zero.

Table 12 shows that while sparsification may
not dramatically reduce VRAM requirements, it
does result in a reduction in the average inference
latency per token to varying degrees. However, the
speedup is slightly down because the base model
is also accelerated.

I Algorithm with Sampling

In addition to the greedy version of self-speculative
decoding that we have presented in the main paper,
we also explore a variant that incorporates random
sampling, as shown in Algorithm 3. This approach
introduces an element of randomness into the selec-
tion of tokens for speculative decoding, as opposed
to the deterministic nature of the greedy version.
In our setup, random sampling is affected by two
parameters: temperature and top,. Higher values
of temperature or top,, lead to greater token diver-
sity, while lower values make token selection more
deterministic. This variant could potentially lead
to diverse decoding paths and outcomes, which
may be beneficial in certain scenarios, such as code
generation.

ghttps: //github.com/locuslab/wanda (MIT License)

https://github.com/TimDettmers/bitsandbytes
https://github.com/locuslab/wanda

M

=
o

ATT

MLP

ATT

MLP

ATT

MLP

ATT

MLP

ATT

MLP

ATT

MLP

ATT

MLP

ATT

MLP

ATT

MLP

ATT

ATT

MLP

ATT

............ 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
ST T T T T T DT 1T [

(a) First: Skip the first 24 layers of attention and 10 layers of MLP.

2 4
103
2 4
103

2 4

6

EEE - - - EEE - - - o EAEEE-E - -

12 14 16 18 20 22 24 26

= AN EEEEEEEEEEEEEEEEEEEE

S LT T T T T T P

&

67 69 71 73 75

(b) Middle: Skip the middle 24 layers of attention and 10 layers of MLP.

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
nesveasszo o jlllINNEEEEEEEEEEEEEEEEE

(c) Last: Skip the last 24 layers of attention and 10 layers of MLP.

8 . 12 14 16 18 .. 24 . 28 30 . 34 36 . 40 42 44 . 48 50 52 . 56 58 60 62 ... 70 72 74 76

(d) Random: Skip the 24 layers of attention and 10 layers of MLP randomly.

8 10 12 .. 18 . 22 . 26 28 30 32 34 .. 40 42 44 . 48 50 .. 56 .. 62 64 66 68 70 . 74 76

s H cHEE - - B> EEEE-E B BEEEEEEEEEEAA -
(e) BO: Skip the 24 layers of attention and 10 layers of MLP by Bayesian Optimization.

Figure 7: Visualization of layer skip distributions in LLaMA-2-13B using different strategies.

oo o I e o o B
N EEEE--E-

oo o o

11 . 15 17 19 21 . 25

o - -
11 .. 17 19 21 . 25

ST HHE

N -EEE---E-

e O R E
3 BN TR

. 30 . 34 36 38 40 42 44 46 48 50 52 54 . 58 . 62 64 66 68 .. 74 76
e T TP T E

(a) 200 Iterations

28 30 32 34 36 38 40 42 44 46 48 .. 54 56 . 60 .. 66 68 70 . 74 76
HAl->H- > - AlINIEINEEEEEENE N -
(b) 400 Iterations

28 30 32 34 . 38 40 42 44 . 48 50 52 . 56 .. 62 64 66 . 70 . 74 76
H-HlH-H- -HIlIIEEEEEEEEEN -

(c) 600 Iterations

28 30 32 34 .. 40 42 44 . 48 50 .. 56 .. 62 64 66 68 70 . 74 76
- HAHH-H-H-AIEEEEEEEEEEN -
(d) 800 Iterations

28 30 32 34 .. 40 42 44 . 48 50 .. 56 .. 62 64 66 68 70 . 74 76
H-AlH-H-H-HIIIEEEEEEEEEN -

(e) 1000 Iterations

Figure 8: Visualization of LLaMA-2-13B layer skip distribution for different BO iteration numbers.

2 4

77

78

78

77

78

77

78

78

77

78

77

80

80

80

s v u s EEE o2 wneew s EHEEEEEE - B o
Al -AEESEEE--EN--H-H-Hl -EEEEEEEEEEEEEEE

Figure 9: Visualize aggressive skip of 75% attention layers and 32.5% MLP layers of LLaMA-2-13B.

2 4 6 8 10 12 . 16 18 ... 26 28 30 . 34 36 38 40 42 44 46 48 .. 54 .. 60 62 64 66 68 70 . 74 76 78 80
o ECEE-E-EE-EE- -H- - - DR - SEEEE -

Figure 10: Visualization of layer skip distribution in LLaMA-2-13B for quantization and sparsification.

16

