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Abstract

We present a novel inference scheme, self-001
speculative decoding, for accelerating Large002
Language Models (LLMs) without the need for003
an auxiliary model. This approach is charac-004
terized by a two-stage process: drafting and005
verification. The drafting stage generates draft006
tokens at a slightly lower quality but more007
quickly, which is achieved by selectively skip-008
ping certain intermediate layers during draft-009
ing. Subsequently, the verification stage em-010
ploys the original LLM to validate those draft011
output tokens in one forward pass. This pro-012
cess ensures the final output remains identi-013
cal to that produced by the unaltered LLM.014
Moreover, the proposed method requires no015
additional neural network training and no extra016
memory footprint, making it a plug-and-play017
and cost-effective solution for inference accel-018
eration. Benchmarks with LLaMA-2 and its019
variants demonstrated a speedup up to 1.99×.1020

1 Introduction021

Transformer-based Large Language Models022

(LLMs), such as GPT-3/4, PaLM, and LLaMA,023

have been widely adopted in various real-world024

applications (Bommasani et al., 2021; Liang et al.,025

2022; Brown et al., 2020; Min et al., 2022; Chan026

et al., 2022; Touvron et al., 2023). However, their027

inference costs have raised significant concerns,028

especially for latency-sensitive scenarios (Pope029

et al., 2022). The main efficiency bottleneck030

is the autoregressive decoding process. This031

process decodes each output token sequentially,032

leading to a high number of Transformer calls;033

furthermore, each Transformer call is typically034

memory bandwidth-bound, resulting in low035

computation utility and thus longer wall-clock036

time (Shazeer, 2019). For instance, decoding 128037

tokens autoregressively using LLaMA-2-13B on038

1Code is available at provided software materials, and will
be released with the Apache-2.0 License.

an A100 GPU can take up to 100× longer than a 039

sequence-level forward pass on the same number 040

of tokens, highlighting the substantial inefficiency 041

inherent in the current decoding process. 042

Established model compression techniques such 043

as quantization (Han et al., 2015), pruning 044

(Molchanov et al., 2016), and distillation (Hinton 045

et al., 2015) have been employed to alleviate these 046

costs. While these solutions have proven extremely 047

effective, they usually require changing the model 048

architecture, changing the training procedure, re- 049

training or fine-tuning the models, and do not main- 050

tain identical outputs. 051

In parallel to model compression, speculative 052

execution is being explored to accelerate the autore- 053

gressive decoding process (Leviathan et al., 2023; 054

Chen et al., 2023). These methods train an auxiliary 055

draft model that can quickly generate some draft 056

output tokens. Subsequently, the original LLM, 057

referred to as the verify model, then checks the 058

acceptability of these draft tokens with one single 059

forward pass. This verification step ensures that 060

the outputs are derived from the original LLM’s 061

probability distribution. 062

However, an essential issue of existing specu- 063

lative execution methods is the need to identify 064

or train a suitable draft model that can generate 065

outputs consistent with the verify model. It be- 066

comes more tricky when the LLM is already a fine- 067

tuned model, e.g. LLaMA-2-Chat (Touvron et al., 068

2023), CodeLLaMA (Rozière et al., 2023). How 069

to find or train a draft model that can effectively 070

mimic the outputs of such a tailored model is a 071

formidable task, with no straightforward or guaran- 072

teed solutions. Furthermore, the introduction of an 073

additional draft model escalates the GPU memory 074

overhead, increasing deployment challenges partic- 075

ularly on devices with restricted memory capacity. 076

In this paper, we present self-speculative decod- 077

ing, a novel approach to accelerate the inference 078

of LLMs. This method builds on the principles of 079
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Verification
Drafting

[token]: context tokens.  
[token]: accepted draft tokens. 
[token]: rejected draft tokens.  
[token]: prediction from verification.

Figure 1: Visualization of the self-speculative decoding process. The verification stage evaluates all drafted tokens in
a single forward pass, with accepted tokens marked in green and rejected tokens highlighted in red. Each verification
step also predicts one more token, which is denoted in blue.

Figure 2: Illustration of the impact of the number of
draft tokens (K) and acceptance rate of draft tokens on
end-to-end speedup. We assume that the draft model is
2× faster than the verify model.

speculative execution, but with a unique twist: it080

utilizes one LLM for both drafting and verification081

stages. The key insight driving our approach is the082

observation that skipping certain layers in LLMs083

does not significantly compromise the generation084

quality (Liu et al., 2023). As such, by selectively085

bypassing some intermediate layers, we can use the086

LLM itself to generate draft tokens. These tokens087

are then verified by the original LLM in a single088

forward pass. Figure 1 illustrates this two-stage089

decoding process. The blue arrow indicates the in-090

ference path of the original model, while the green091

arrow depicts the inference path during the drafting092

stage. Notably, both inference paths share the same093

model so we do not need a standalone draft model094

with extra memory overhead.095

Implementing self-speculative decoding poses096

two main challenges: (a) determining which layers097

and the number of layers to skip during drafting,098

and (b) deciding the timing to stop generating draft099

tokens. To tackle the first challenge, we formulate it100

as an optimization problem, which accepts the com-101

binations of layers to bypass as input and aims to102

minimize the average inference time per token. We103

employ Bayesian optimization (Jones et al., 1998)104

to solve this problem. The optimization is per- 105

formed offline at the model level, and the searched 106

layer combinations are fixed. The second challenge 107

pertains to determining the optimal number of draft 108

tokens (K) to generate. As shown in Figure 2, the 109

choice of K significantly influences the end-to-end 110

speedup: for an acceptance rate below 80%, K = 1 111

is optimal, and for rates above 80%, a larger K 112

is necessary. This observation underscores that a 113

static K is not universally applicable. To tackle this 114

variability, we introduce an adaptive draft-exiting 115

mechanism, which stops generating draft tokens 116

once its confidence level drops below a threshold. 117

This intervention prevents unnecessary computa- 118

tion and potential discard of additional draft tokens, 119

thereby enhancing efficiency. 120

To summarize, our main contributions are: (1) 121

Inference scheme: we propose self-speculative de- 122

coding, a practical, plug-and-play solution for in- 123

ference acceleration that does not require further 124

neural network training and avoids additional mem- 125

ory overhead; (2) Optimization strategies: we adopt 126

Bayesian optimization to select which layers to skip 127

during drafting and propose a simple yet effective 128

method to adaptively determine the number of draft 129

tokens; (3) Evaluation: we evaluate our method on 130

text summarization and code generation tasks, and 131

the experimental results indicate that our method 132

can achieve up to 1.99× in end-to-end speedup. 133

2 Related Work 134

Transformer-based LLM inference. As LLMs 135

continue to evolve rapidly, we are seeing a surge of 136

systems specifically engineered for LLM inference, 137

including Faster Transformer (NVIDIA), Orca (Yu 138

et al., 2022), LightSeq (Wang et al., 2021), PaLM 139

inference (Pope et al., 2022), TurboTransformers 140

(Fang et al., 2021), Deepspeed Inference (Am- 141

2



inabadi et al., 2022), FlexGen (Sheng et al., 2023),142

Text Generation Inference (HuggingFace, 2023),143

etc. The token generation phase typically takes up144

the majority of the end-to-end inference time com-145

pared to the prompting encoding phase. Despite146

the introduction of system optimizations by those147

state-of-the-art systems to improve the inference148

speed, there is still a gap in the careful co-design of149

algorithms and systems. This is necessary to fully150

harness the potential of hardware efficiency during151

LLM inference computation.152

Model Compression. Various model compres-153

sion methods have been studied for model infer-154

ence. For example, quantization (Han et al., 2015;155

Jacob et al., 2018; Nagel et al., 2019; Zhao et al.,156

2019; Yao et al., 2022; Park et al., 2022; Dettmers157

et al., 2022; Xiao et al., 2022; Frantar et al., 2022),158

pruning or sparsification (Molchanov et al., 2016;159

Liu et al., 2018; He et al., 2019; Hoefler et al., 2021;160

Frantar and Alistarh, 2023; Liu et al., 2023; Bansal161

et al., 2022), and distillation (Hinton et al., 2015;162

Cho and Hariharan, 2019; Tang et al., 2019; Tou-163

vron et al., 2021) have been applied to speed up the164

inference of the machine learning model, particu-165

larly LLMs. While these solutions are extremely166

effective, they often necessitate modifications to167

the model architecture and the training procedure.168

This usually involves re-training or fine-tuning the169

models. And it is important to note that these meth-170

ods do not result in identical outputs.171

Speculative Execution. Speculative execution172

(Burton, 1985; Hennessy and Patterson, 2011) is173

employed in computer architecture where a system174

performs some task in advance if that task is known175

to be required after the previous task. Speculative176

decoding (Chen et al., 2023; Leviathan et al., 2023)177

has been proposed as an effective strategy to boost178

the inference speed of LLMs. Previously, (Stern179

et al., 2018) proposed to use block-wise parallel de-180

coding to accelerate greedy decoding of attention181

models. However, these methods need to train or182

select a high-quality draft model, and also result183

in increased memory overhead. Yang et al. (2023)184

proposed to copy the reference text tokens and vali-185

date them in a forward pass. However, this method186

relies on the repetitiveness assumption, and thus187

does not apply for general scenario generation In188

contrast, our approach does not incur additional189

memory overhead and does not hinge on explicit190

assumptions about data distribution.191

Algorithm 1 Autoregressive Decoding (Greedy)
1: Given model p(x|x1, ..., xt), prompt x1, ..., xt and target

sequence length T .
2: for i = t, ..., T-1 do
3: xi+1 ← argmax p(x|x1, ..., xi)

4: return x1, ..., xT

Early Exit. Early exit allows the model to choose 192

different calculation paths based on the input dur- 193

ing the inference process to achieve acceleration. 194

Various early exit techniques for encoder-only 195

Transformers (Devlin et al., 2019) have been pro- 196

posed (Xin et al., 2020b; Schwartz et al., 2020; Liu 197

et al., 2020; Xin et al., 2020a; Hou et al., 2020; 198

Zhou et al., 2020; Liao et al., 2021; Zhu, 2021; Li 199

et al., 2021; Sun et al., 2022). Recently, (Schus- 200

ter et al., 2022) further verified the effectiveness 201

of early exit on the encoder-decoder LLM (Raffel 202

et al., 2020). Inspired by these works, we opt to 203

skip certain intermediate layers during drafting. 204

3 Method 205

In this section, we first go through the standard au- 206

toregressive decoding. Subsequently, we provide a 207

detailed depiction of our proposed method, includ- 208

ing selectively skipping layers during drafting, and 209

adaptively determining the number of draft tokens. 210

3.1 Standard Autoregressive Decoding 211

Existing LLMs typically follows an autoregres- 212

sive decoding process. Given a prompt sequence 213

x1, ..., xt, the model calculates the probability dis- 214

tribution of the next token p(x|x1, ..., xt). We 215

present a greedy decoding process in Algorithm 1. 216

In practice, instead of choosing the token with the 217

highest probability (as in greedy decoding), we 218

can sample tokens based on their probability dis- 219

tribution, which introduces some randomness and 220

generates more diverse outputs. 221

Ideally, the computational cost of autoregressive 222

decoding is comparable to that of sequence-level 223

forward processing for an equivalent number of 224

tokens.2 However, this decoding process is signifi- 225

cantly bounded by the device memory bandwidth. 226

When decoding each token, all the model parame- 227

ters need to pass through the accelerator chip. So 228

the model size divided by the memory bandwidth 229

gives a hard ceiling on the decoding speed, result- 230

ing in a much longer inference time. 231

2In fact, due to the causal nature of language modeling,
autoregressive decoding could potentially save some attention
computation.
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Algorithm 2 Self-Speculative Decoding (Greedy)
1: LLM p(x|z∗, x1, ..., xt) where x1, ..., xt is the prompt,

z∗ is a vector that represents the specific layers to bypass;
target sequence length T ; max draft tokens to generate
K. We denote the original LLM as p(x|⃗0, x1, ..., xt),
where 0⃗ is a zero vector, indicating all layers are used in
inference.

2: i← t
3: while i < T do
4: for j ← i, ..., i+K do ▷ Drafting Stage
5: xj+1 ← argmax p(x|z∗, x1, ..., xj)
6: if need to exit drafting (§3.4) then
7: Break
8: for i← i, ..., j do ▷ Verification Stage
9: if xi+1 ̸= argmax p(x|⃗0, x1, ..., xi) then

10: xi+1 ← argmax p(x|⃗0, x1, ..., xi)
11: Break
12: i← i+ 1
13: If all draft tokens are accepted, generate next token

xi+1 ← argmax p(x|⃗0, x1, ..., xi) and i← i+ 1

14: return x1, ..., xT

3.2 Self-Speculative Decoding232

To mitigate the inherent inefficiency of autoregres-233

sive decoding, speculative decoding can be em-234

ployed to enhance the inference speed of LLMs.235

This strategy involves two models: an LLM that we236

want to optimize, and a draft model that runs faster,237

albeit potentially at a lower quality. Speculative238

decoding can be explained as a two-stage process:239

(1) drafting: the draft model first generates K draft240

tokens from a given prompt sequence x1, ..., xi,241

denoted as xi+1, ..., xi+K . (2) verification: follow-242

ing the drafting stage, the original LLM is then243

employed to validate these draft tokens. This val-244

idation is accomplished in a single forward pass,245

where the LLM predicts the probability distribu-246

tions for each draft token and assesses whether they247

align with the draft tokens. Once a draft token xj is248

not validated, we use the original LLM’s prediction249

to override xj , and start the next round of drafting250

beginning from token xj+1.251

The above process is based on the observation252

that computing the forward pass of a short con-253

tinuation of tokens in parallel is not much slower254

than that of a single token. Consequently, the veri-255

fication stage could be significantly more efficient256

than decoding tokens using the original LLM in257

standard autoregressive decoding.258

In contrast to existing methods that use a stan-259

dalone draft model to obtain draft tokens, our paper260

proposes a novel ‘self-speculative’ approach. We261

employ the original LLM itself for both the draft-262

ing and verification stages. During the drafting263

stage, the LLM selectively skips some of its in-264

termediate layers so as to generate draft tokens 265

quicker. Subsequently, these draft tokens are veri- 266

fied by the original LLM. Algorithm 2 presents a 267

detailed description of the greedy decoding process. 268

A sampling-based decoding process is elaborated 269

in Appendix I. 270

Despite the simplicity of the main idea of self- 271

speculative decoding, it poses several challenges: 272

Challenge 1: First, it is non-trivial to determine 273

which layers and the number of layers to skip dur- 274

ing drafting. If an excessive number of layers are 275

skipped, the quality of the draft could be signifi- 276

cantly compromised. This could result in a low ac- 277

ceptance rate in the verification stage, consequently 278

increasing the overall inference time. On the other 279

hand, if fewer layers are skipped, it ensures a higher 280

acceptance, but also caps the maximum speedup 281

that could be achieved. 282

Challenge 2: It is hard to decide when to stop 283

the generation of draft tokens. As shown in Fig- 284

ure 2, shows that the choice of the number of draft 285

tokens to generate significantly influences the end- 286

to-end speedup. In speculative decoding, if a draft 287

token is rejected, all subsequent draft tokens will 288

be discarded. Therefore, generating an excessive 289

number of draft tokens could lead to unnecessary 290

computational effort, thereby increasing the end-to- 291

end inference time. 292

In sections 3.3 and 3.4, we will detail our ap- 293

proach to address these two challenges respectively. 294

3.3 Selection of Skipped Layers 295

While skipping more layers can expedite the draft- 296

ing process, it also carries the risk of lowering 297

the token acceptance rate in the verification stage, 298

consequently increasing the overall end-to-end in- 299

ference time. In this subsection, we frame the layer 300

selection process as an optimization problem, with 301

an objective of minimizing the average inference 302

time per token. 303

Objective Function: The black box function, 304

which we aim to minimize, is the average inference 305

time per token. This function takes as input a com- 306

bination of layers to skip and returns the average 307

inference time per token on a development set. We 308

represent this function as f(z), where z is a vector 309

representing the layers to skip. 310

Input Space: The input space is the set of all 311

possible combinations of layers that can be skipped. 312

If there are L layers in the model, including both 313

attention and MLP layers, the input space is the 314
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power set of the set {1, 2, ..., L}.315

The goal of the optimization is to find the in-316

put z∗ that minimizes the objective function f(z),317

which means we want to find the combination of318

layers to skip that results in the lowest inference319

time. This problem can be formally expressed as:320

z∗ = argmin
z

f(z), s.t. z ∈ {0, 1}L. (1)321

For smaller models with a manageable solving322

space, a brute force search could easily reach the323

globally optimal solution. However, for LLMs with324

numerous layers (L = 160 for LLaMA-2-70B),325

this method becomes prohibitively expensive.326

In such cases, Bayesian optimization can be em-327

ployed to tackle this problem (Jones et al., 1998).328

As shown in Figure 3, it iteratively selects new in-329

puts z∗ for evaluation, based on a surrogate model330

of the objective function, i.e. Gaussian process331

(Rasmussen et al., 2006), and an acquisition func-332

tion. The latter balances exploration (testing inputs333

where the model’s prediction is uncertain) and ex-334

ploitation (testing inputs where the model antici-335

pates a favorable result). This procedure contin-336

ues until a predetermined number of iterations is337

reached. We use the obtained z∗ to accelerate text338

generation, and z∗ is fixed for each model without339

further updating.340

Discussion We here adopt skipping intermediate341

layers as a simple yet effective strategy to expedite342

the drafting stage. While other acceleration tech-343

niques such as quantization and structured pruning344

exist, they fail to offer speed-up proportional to345

their compression ratio. Meanwhile, they require346

a separate copy of the altered model parameters,347

thereby increasing memory overhead. This con-348

tradicts the key requirement of no extra memory.349

Consequently, we adopt layer skipping in our ap-350

proach. However, our scheme can be integrated351

with quantization (Dettmers et al., 2022) and sparsi- 352

fication (Sun et al., 2023) to further reduce resource 353

consumption, as detailed in Appendix H. Future 354

work could investigate other drafting techniques 355

that maintain these benefits while boosting speed. 356

3.4 Adaptive Draft-Exiting Mechanism 357

Our self-speculative decoding approach incorpo- 358

rates an adaptive draft-exiting mechanism to en- 359

hance computational efficiency during the drafting 360

stage. In speculative decoding, if a draft token is 361

rejected, all subsequent draft tokens will be dis- 362

carded accordingly. The draft-exiting mechanism 363

prevents the wasteful allocation of computational 364

resources toward draft tokens that are less likely to 365

be accepted in the verification stage. 366

Specifically, this mechanism evaluates the pre- 367

dicted probability of each draft token against a 368

threshold γ. If the predicted probability falls be- 369

low this threshold such that p(xt+1|x1, ..., xt) < γ, 370

indicating a low confidence score, it immediately 371

stops drafting. This approach ensures a better use 372

of computing by focusing on the generation and 373

verification of high-quality tokens, thereby improv- 374

ing the overall efficiency. 375

Moreover, it is worth noting that a static thresh- 376

old may not accurately reflect the actual acceptance 377

rate between the drafting and verification stages. 378

For example, more challenging examples with a 379

lower acceptance rate would be better served by a 380

higher γ. To avoid the need for case-by-case thresh- 381

old determination, we use an adaptive threshold 382

that adjusts dynamically according to an updating 383

rule, thereby allowing for an accurate reflection of 384

the acceptance rate and better handling of examples 385

in different difficulties. We denote the acceptance 386

rate at e-th drafting stage as ARe. Consequently, 387

the update rule is defined as follows: 388

AR← β1AR+ (1− β1)ARe, (2) 389

γ̃ =

{
γ + ϵ, if AR ≤ α

γ − ϵ, otherwise
, (3) 390

γ ← β2γ + (1− β2)γ̃, (4) 391

where α represents a target acceptance rate, ϵ is the 392

update step-size, and β1 and β2 are factors designed 393

to mitigate fluctuations of γ and AR respectively. 394

Notably, when e is 1, β1 = 0. We update γ after 395

each verification stage. This updating rule ensures 396

that the acceptance rate remains in close proximity 397

to a target acceptance rate α. 398
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4 Evaluation399

4.1 Setup400

We evaluate a diverse range of models in-401

cluding LLaMA-2-13B, LLaMA-2-13B-Chat,402

CodeLLaMA-13B, and LLaMA-2-70B. Detailed403

setup can be found in Appendix B.404

We perform Bayesian optimization3 (BO) for405

1000 iterations to select the skipped layers in the406

drafting stage4. Results of tuning the number of407

BO iterations are reported in Appendix E.408

The datasets includes CNN/Daily Mail409

(CNN/DM), Extreme Summarization (XSum), and410

HumanEval. These tasks cover the evaluation of411

text and code generation capabilities. We perform412

1-shot evaluation for CNN/DM and XSum, and413

compare the ROUGE-2 (Lin, 2004). We compare414

pass@1 and pass@10 (Kulal et al., 2019) for415

HumanEval. We randomly sample 1000 instances416

from the testset for CNN/DM and XSum.417

4.2 Main Results418

We evaluate the performance of our decoding419

scheme, denoted as ‘Self-Speculative’, with both420

greedy decoding (temperature = 0.0) and random421

sampling (temperature = 0.2/0.6) versions, across422

text generation and code generation. The base-423

line is ‘Autoregressive’, which uses the original424

model to perform standard autoregressive decod-425

ing. The experiments involve models spanning var-426

ious scales of LLaMA-2 and its fine-tuned models.427

The summarized results can be found in Tables 1428

and 2. We visualize the layer skipping distribution429

for different models in Appendix C.430

For text generation tasks, the results presented in431

Table 1 show that our method, when applied with432

temperature settings of 0.0 and 0.2 achieves consid-433

erable speedups ranging from 1.210× to 1.992×.434

Another important observation from these results435

is the minimal to nonexistent loss in ROUGE-2436

rouge5, which verifies one of the core advantages437

of our decoding scheme, namely consistent output438

quality. In particular, our approach can be effec-439

tively applied on LLaMA-2-13B-Chat, a fine-tuned440

LLaMA-2-13B for conversation scenarios, indicat-441

ing the compatibility of our method with fine-tuned442

models. This effectively addresses the dependency443

3https://github.com/bayesian-optimization/
BayesianOptimization (MIT License) is used.

4Appendix B reports the offline BO time at model-level.
5We attribute any slight differences observed in the case of

greedy decoding to numerical rounding errors.

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Number of sub-layers to skip

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Figure 4: Speedup vs the number of skipped layers.
These results are derived from the BO process.

of the original speculative decoding method on 444

high-quality draft models, which can be challeng- 445

ing to train and obtain, especially for fine-tuned 446

models. Furthermore, the higher speedup achieved 447

on LLaMA-2-70B suggests that larger models in- 448

troduce more redundancy. This allows the drafting 449

stage to skip a larger percentage of intermediate 450

layers, thereby enhancing the overall speedup. 451

To evaluate the performance of our method in 452

code generation tasks, we utilized CodeLLaMA- 453

13B, another fine-tuned variant of LLaMA-2-13B 454

optimized for code generation. The assessment 455

is carried out using the HumanEval benchmark. 456

Table 2 shows that our variants achieve speedups 457

of 1.345× and 1.456×, respectively, while main- 458

taining similar task scores in terms of pass@1 and 459

pass@10. This further validates the model compat- 460

ibility of our scheme in the field of coding. 461

4.3 Impact of Skipped Layer Selection 462

To investigate the impact of skipped layer selec- 463

tion, we conduct experiments on the LLaMA-2- 464

13B model, which comprises 80 layers. Through- 465

out the Bayesian optimization process, we track the 466

number of layers skipped, denoted as ||z∗||, and the 467

resultant end-to-end speedup relative to the autore- 468

gressive baseline. Figure 4 shows the results, where 469

the dashed line indicates the maximum speedup for 470

runs that skip the same number of layers. 471

These results reveal that: (1) The peak end-to- 472

end speedup is observed when about half of the 473

layers are skipped during the drafting stage; (2) The 474

specific combination of layers skipped also plays 475

a significant role. In particular, an inappropriate 476

combination of skipped layers can actually result 477

in a decrease in the end-to-end inference speed. (3) 478

There is a noticeable drop in speedup when more 479

than 42 layers are skipped. This suggests that the 480

quality of drafting significantly deteriorates when 481

an excessive number of layers are omitted. 482
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Model Method Temp. CNN/DM XSum

ROUGE-2 Speedup ROUGE-2 Speedup

LLaMA-2-13B Autoregressive 0.0 0.106 1.000× 0.124 1.000×
LLaMA-2-13B Self-Speculative 0.0 0.108 1.572× 0.125 1.429×
LLaMA-2-13B Autoregressive 0.2 0.111 1.000× 0.117 1.000×
LLaMA-2-13B Self-Speculative 0.2 0.111 1.529× 0.117 1.377×

LLaMA-2-13B-Chat Autoregressive 0.0 0.144 1.000× 0.109 1.000×
LLaMA-2-13B-Chat Self-Speculative 0.0 0.143 1.409× 0.109 1.224×
LLaMA-2-13B-Chat Autoregressive 0.2 0.143 1.000× 0.106 1.000×
LLaMA-2-13B-Chat Self-Speculative 0.2 0.145 1.383× 0.108 1.210×

LLaMA-2-70B Autoregressive 0.0 0.130 1.000× 0.118 1.000×
LLaMA-2-70B Self-Speculative 0.0 0.130 1.992× 0.118 1.598×
LLaMA-2-70B Autoregressive 0.2 0.131 1.000× 0.108 1.000×
LLaMA-2-70B Self-Speculative 0.2 0.131 1.964× 0.110 1.560×

Table 1: Evaluation on text generation tasks. ‘Speedup’ represents the acceleration of average inference time per
token compared to the ‘Autoregressive’ baseline on the same setting.

Model Method HumanEval Speedup

CodeLLaMA-13B Autoreg. pass@1 0.311 1.000×
CodeLLaMA-13B Self-Spec. pass@1 0.317 1.456×
CodeLLaMA-13B Autoreg. pass@10 0.659 1.000×
CodeLLaMA-13B Self-Spec. pass@10 0.659 1.345×

Table 2: Evaluation on code generation tasks. We use
greedy decoding for pass@1 and random sampling with
a temperature of 0.6 for pass@10.

These findings indicate the importance of layer483

selection in the implementation of self-speculative484

decoding. However, alternative layer skipping485

strategies do not achieve satisfactory speedup com-486

pared to BO, as detailed in Appendix D.487

Performance degradation in drafting may be488

compensated by adopting aggressive skipping strat-489

egy and further training the draft model on a small490

amount of data, as described in Appendix F. This491

finding aligns with the Sheared-LLaMA (Xia et al.,492

2023), which shows the effectiveness of pruning493

followed by fine-tuning on a small corpus.494

4.4 Effectiveness of Draft-Exiting495

Here we explore the effectiveness of the adap-496

tive draft exit mechanism, specifically examining497

whether a threshold needs to be set and whether498

a static threshold is sufficient. Our settings are499

LLaMA-2-13B, CNN/DM, and greedy decoding.500

Fixed Number of Draft Tokens. We first eval-501

uate a self-speculative decoding variant where the502

number of tokens generated at each drafting stage is503

always equal to K. Table 3 illustrates the speedup504

for different max draft token values K, showing an505

initial increase and then a decrease. This trend can506

be attributed to the fact that an excessively large K507

(K = 8) generates a substantial number of tokens 508

that are likely to fail in the verification stage. This 509

is demonstrated by its lower acceptance rate (AR) 510

of only 0.748, which results in squandered compu- 511

tational resources during the drafting stage and a 512

consequent reduction in speedup. 513

While an appropriate K, like K = 4, can par- 514

tially alleviate this issue, a static setting limits 515

the draft model’s potential and achieves a mod- 516

est speedup (1.44×). For example, we should use a 517

larger K for simple instances and a smaller K for 518

difficult instances. In addition, Table 3 shows that 519

the acceptance rate and speedup are not directly 520

proportional. When K = 2, the acceptance rate 521

reaches the highest 0.924, but the acceleration is 522

only 1.37×. The results stem from an overly small 523

K, which underestimates the draft model capabili- 524

ties, missing opportunities to generate more valid 525

draft tokens, thereby limiting the overall speedup. 526

Draft-Exiting with Static Threshold. Another 527

variant is to stop generating draft tokens if the 528

confidence score falls below a predefined static 529

threshold. Table 4 shows that different static 530

thresholds have large differences in acceleration 531

(1.38×~1.58×). This highlights the importance of 532

adaptively determining the appropriate threshold to 533

optimize the speedup. Specifically, we observe that 534

high thresholds (γ=0.8) tend to underestimate the 535

capabilities of the drafting model. Despite a high 536

acceptance rate (AR=0.935), this does not necessar- 537

ily result in the best speedup due to a reduced num- 538

ber of drafting tokens (1.55×). Conversely, a lower 539

threshold (γ=0.2) tends to overestimate the draft- 540

ing model’s capabilities, leading to a significantly 541

lower acceptance rate (AR=0.749), wasting com- 542
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K 2 4 6 8 Adaptive

ROUGE-2 0.107 0.107 0.107 0.107 0.108
AR 0.924 0.865 0.807 0.748 0.919
Speedup 1.37× 1.44× 1.42× 1.36× 1.57×

Table 3: Drafting with different K values.

γ 0.2 0.4 0.6 0.8 Adaptive

ROUGE-2 0.107 0.107 0.107 0.107 0.108
AR 0.749 0.852 0.909 0.935 0.919
Speedup 1.38× 1.52× 1.58× 1.55× 1.57×

Table 4: Static draft-exiting threshold γ with K = 12.

putational resources during the drafting stage, and543

thereby leading to slower inference speed (1.38×).544

Draft-Exiting with Adaptive Threshold. To545

address the issue of optimal threshold determina-546

tion, we propose an adaptive draft-exiting mech-547

anism. Specifically, we evaluate the acceptance548

rate and compare it to a target acceptance rate.549

The threshold is updated with an updating rule550

depicted in section 3.3. Table 4 shows that the551

speedup achieved by our adaptive threshold update552

method (1.57×) is comparable to, if not superior to,553

the speedup achieved with careful tuning of static554

thresholds. This indicates that dynamic threshold555

updating yields efficient and stable inference ac-556

celeration. This is mainly because the acceptance557

rate gets closer to the target AR by adjusting the γ558

value in a timely manner for instances of varying559

difficulties. Also, Appendix G reveals the adaptive560

draft-exiting is insensitive to changes in K.561

4.5 Trend of Threshold Change562

In Figure 5, we record the changing trend of the563

threshold in our decoding method under different564

models and data during about 5,000 drafting and565

verification processes. We can observe that our566

strategy can adaptively adjust the threshold to an ap-567

propriate range to achieve effective acceleration; In568

addition, differences in models and data sets bring569

drastically different ranges of variation, which fur-570

ther highlights the limitations of static threshold571

settings and the need for adaptive updates.572

4.6 Breakdown of Computation573

Table 5 presents a computation breakdown compar-574

ing the baseline with our ‘Self-Speculative’ decod-575

ing method. Our approach exhibits a significant576

speedup in average inference time per token com-577

pared to ‘Autoregressive’. This speedup is primar-578

0K 1K 2K 3K 4K 5K
Number of Drafting-Verification
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Figure 5: Threshold γ varies with models and data. We
calculate a moving average for every 64 cycles and plot
the standard deviation. The initial γ is set to 0.4.

Operation Autoregressive Self-Speculative

Drafting - 25.5±1.14 ms
- Attention - 14.6±0.65 ms
- MLP - 9.46±0.42 ms
Verification - 10.7±2.81 ms
- Attention - 7.55±1.91 ms
- MLP - 2.73±0.80 ms
γ update - 0.61±0.14 µs

Latency * 56.3±1.23 ms 36.8±3.23 ms
- Attention 39.7±0.91 ms 22.2±2.33 ms
- MLP 14.3±0.29 ms 12.2±1.22 ms

Table 5: Breakdown of computation. * denotes the
average inference latency per token for 10 instances
randomly sampled from the CNN/DM test set after in-
ference testing on LLaMA-2-13B.

ily attributed to two key techniques: the selection 579

of skipped layers and the adaptive draft-exiting. 580

Notably, the drafting stage consumes the majority 581

of inference latency, highlighting the need for draft 582

model optimizations to improve overall inference 583

speedup. Importantly, our adaptive exit mechanism 584

(γ update) incurs negligible computational cost as 585

it does not involve neural network calculations. 586

5 Conclusion 587

In this paper, we introduced self-speculative de- 588

coding, a novel and efficient inference scheme that 589

accelerates Transformer-based LLMs. Our method 590

does not depend on additional neural network train- 591

ing and incurs no extra device memory, making a 592

highly practical and cost-effective solution for in- 593

ference acceleration. Moreover, we used Bayesian 594

optimization to search for layers to skip in drafting 595

and proposed an adaptive draft-exiting mechanism 596

to improve the end-to-end inference speed. Bench- 597

mark tests with LLaMA-2 and its fine-tuned mod- 598

els demonstrated a speedup of up to 1.99×. For 599

future work, we aim to explore more sophisticated 600

model compression strategies to further accelerate 601

the drafting stage for low-resource scenarios. 602
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6 Ethical Considerations603

In compliance with ethical considerations, we em-604

phasize that the entirety of our research revolves605

around open-source datasets, models, and tools.606

Notably, we exclusively focus on improving model607

inference efficiency and do not engage in any com-608

mercial usage or ethical implications.609

7 Limitations610

While our self-speculative decoding scheme611

presents benefits for accelerating LLMs, there are612

a few limitations to consider. Firstly, the utilization613

of Bayesian optimization to determine the layers614

to be skipped during the drafting stage may require615

several hours. Nonetheless, this limitation is not616

critical, as this process is a one-time, offline exe-617

cution at the model level. Secondly, our method618

does not involve in any neural network training,619

which imposes a constraint on the number of lay-620

ers that can be skipped. An excessive reduction621

in layers could result in a significant drop in the622

acceptance rate, thereby diminishing the achieved623

speedup. Although fine-tuning the draft model–a624

sub-graph of the original model–could potentially625

mitigate this issue and yield a better speedup, as626

shown in Appendix F, it incurs additional memory627

overhead since the draft model no longer shares the628

same parameters with the original model.629
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A Data932

The datasets that we have selected for evaluation933

are CNN/Daily Mail (CNN/DM), Extreme Sum-934

marization (XSum), and HumanEval. These tasks935

cover a broad spectrum of language processing936

capabilities, including text and code generation937

capabilities. We perform 1-shot evaluation for938

CNN/DM and XSum, and compare the ROUGE-939

2. We compare pass@10 for HumanEval. For the940

results of efficiency, we randomly sample 1000941

instances from the testset for CNN/DM and XSum.942

CNN/Daily Mail (CNN/DM): This task involves943

summarizing news articles from the CNN and Daily944

Mail websites. The models are required to gener-945

ate a concise summary of each article, testing their946

ability to understand and condense complex infor-947

mation.948

Extreme Summarization (XSum): In the XSum949

task, models are asked to produce a single-sentence950

summary of a news article. This task tests the mod-951

els’ capability to extract the most salient informa-952

tion from a text and express it in a single, coherent953

sentence.954

HumanEval: The HumanEval task is a bench-955

mark for Python programming. This task chal-956

lenges the models with a variety of coding prob-957

lems that require a wide range of skills, from basic958

programming to complex problem-solving abilities.959

It serves to evaluate the models’ understanding960

of Python syntax, their ability to implement algo-961

rithms, and their proficiency in problem-solving962

using code. This benchmark provides a unique per-963

spective on the models’ capabilities in the realm964

of programming, complementing the language-965

focused tasks.966

B Setup967

We present the hyperparameter settings of the ex-968

periments in Table 6, including the parameters in-969

volved in the decoding process, the adaptive draft-970

exiting mechanism, and the random sampling. For971

the adaptive draft-exiting mechanism, we set the972

initial threshold γ = 0.6, ϵ = 0.01, β1 = 0.5,973

β2 = 0.9, and α is slightly tuned for the data and974

model, as detailed in Table 6. For sampling-based975

inference, we by default use top_p = 0.85 for text 976

summarization tasks, and 0.95 for code generation 977

tasks. 978

In addition, the key experimental environments 979

on the A100-40GB are CUDA 11.6, PyTorch 980

1.13.1, and Transformer 4.33.1; For the A100- 981

80GB, the environment is CUDA 11.8, PyTorch 982

2.0.1, and Transformer 4.33.1. We use an A100- 983

40GB to conduct experiments for LLaMA-2-13B, 984

LLaMA-2-13B-Chat, and CodeLLaMA-13B. We 985

use two A100-80GB with HuggingFace’s acceler- 986

ate6 to conduct experiments for LLaMA-2-70B. 987

We randomly select 8 instances from the train 988

set and use them to evaluate the inference time 989

per token for Bayesian optimization. The offline 990

Bayesian optimization time for 1000 iterations 991

is about 2.5 hours for LLaMA-2-13B, LLaMA- 992

2-13B-Chat, and CodeLLaMA-13B, and about 6 993

hours for LLaMA-2-70B. 994

C Which layers are skipped? 995

Figure 6 visualizes the distinct base models corre- 996

sponding to layer skip distributions within the draft 997

model. Two key observations are made as follows: 998

First, we observe that there are more skips in the 999

attention layer compared to the MLP layer, suggest- 1000

ing the attention layer is more effective for reducing 1001

inference time. This is reinforced by the results in 1002

Table 5, where the time spent in the attention layer 1003

significantly contributes to the average inference 1004

latency per token. 1005

Second, regardless of whether it is the MLP layer 1006

or the attention layer, the skipped layers tend to 1007

cluster in the latter half of the model. This pat- 1008

tern suggests that most tokens can be accurately 1009

predicted in the first half of the model, leaving the 1010

second half of the model relatively redundant. 1011

D Effect of Skip Strategy 1012

Here, we explore the effect of various skip strate- 1013

gies on the performance of generated draft models. 1014

We evaluate the CNN/DM on the LLaMA-2-13B. 1015

Initially, we determine the number of skipped lay- 1016

ers using Bayesian optimization, as illustrated in 1017

Figure 6(a). We find that the attention layer skips 1018

24 layers, while the MLP layer skips 12 layers. We 1019

proceed to apply four strategies, each involving an 1020

equal number of layer skips: skipping the initial 1021

layers ("First"), middle layers ("Mid."), final layers 1022

6https://github.com/huggingface/accelerate
(Apache-2.0 License)
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Data Model Decoding Adaptive Draft-Exiting Random Sampling

T K α ϵ β1 β2 γ0 top_p temperature

CNN/DM LLaMA-2-13B 512 12 0.90 0.01 0.50 0.90 0.60 0.85 0.20
CNN/DM LLaMA-2-13B-Chat 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
CNN/DM LLaMA-2-70B 512 12 0.80 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-13B 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-13B-Chat 512 12 0.70 0.01 0.50 0.90 0.60 0.85 0.20
XSum LLaMA-2-70B 512 12 0.85 0.01 0.50 0.90 0.60 0.85 0.20
HumanEval CodeLLaMA-13B 512 12 0.90 0.01 0.50 0.90 0.60 0.95 0.60

Table 6: Hyperparameter settings. γ0 represents the default initial value of γ.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(a) LLaMA-2-13B

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(b) LLaMA-2-13B-Chat

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(c) CodeLLaMA-13B

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(d) The first half of LLaMA-2-70B

MLP 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160

ATT 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159

(e) The second half of LLaMA-2-70B

Figure 6: Visualization of layer skip distributions in draft models for various base models. Gray squares indicate
retained layers, red squares denote skipped attention layers, and blue squares signify skipped MLP layers.

Strategy First Mid. Last Rand. BO

ROUGE-2 0.108 0.108 0.107 0.107 0.108
AR 0.091 0.393 0.508 0.592 0.919
Speedup 0.696× 0.887× 0.951× 1.01× 1.57×

Table 7: The effects of different skip strategies on the
performance of CNN/DM on LLaMA-2-13B.

#Iteration 200 400 600 800 1000

ROUGE-2 0.108 0.107 0.108 0.108 0.108
AR 0.903 0.938 0.920 0.919 0.919
Speedup 1.35× 1.52× 1.58× 1.57× 1.57×

Table 8: The effect of the number of iterations of
Bayesian optimization.

("Last"), and randomly sampling layers ("Rand.").1023

The layer skip distribution is visualized in Figure 7.1024

Table 7 reveals that the fixed strategies of layer1025

skip (first, middle, last) or random skip yield mini-1026

#Token 0 20M 40M 60M 75M

ROUGE-2 0.106 0.106 0.106 0.106 0.106
AR 0.696 0.902 0.901 0.900 0.893
Speedup 1.16× 1.91× 1.94× 1.96× 1.85×

Table 9: The effect of the number of tokens on aggres-
sive skip performance.

K 10 12 14 16 18

ROUGE-2 0.107 0.108 0.108 0.108 0.107
AR 0.924 0.919 0.916 0.913 0.911
Speedup 1.57× 1.57× 1.58× 1.58× 1.58×

Table 10: The effect of the max draft token under the
adaptive draft-exiting mechanism.

mal acceleration compared to Bayesian optimiza- 1027

tion (BO) results. These suboptimal strategies, not 1028

optimized for average inference time, result in a 1029

draft model with subpar performance (manifested 1030
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Quantization bf16 fp8 fp4 nf4

ROUGE-2 ↑ 0.107 0.105 0.101 0.114
AR ↑ 0.910 0.911 0.913 0.910
VRAM (GB) ↓ 37.2 27.5 19.6 19.7
Latency (ms) ↓ 32.4 113 152 126
Speedup ↑ 1.53× 1.61× 1.36× 1.35×

Table 11: Performance of self-speculative decod-
ing combined with different quantization schemes of
LLM.int8().

as very low AR), inefficient resource utilization1031

in the drafting phase, and ultimately, a lack of1032

speedup. Furthermore, a slightly enhanced speedup1033

is observed when skipping the last layers, likely due1034

to the more severe redundancy in the model’s final1035

portion.1036

E Number of Iterations of BO1037

Subsequently, we explore the influence of the it-1038

eration number of Bayesian optimization on the1039

performance of our decoding scheme and report1040

the results in Table 8. The layer skip distribution1041

corresponding to different iteration numbers is de-1042

picted in Figure 8.1043

When applied to the LLaMA-2-13B for the1044

CNN/DM task, we observe that while a higher1045

number of iterations can yield increased acceler-1046

ation, even a relatively modest number of itera-1047

tions (e.g., 200) effectively reduces inference time,1048

achieving a speedup of 1.35×. Notably, the per-1049

formance metrics for the 800 and 1000 iterations1050

exhibit consistency due to the same layers being1051

skipped, as shown in Figure 8.1052

F Aggressive Skip1053

In pursuit of higher inference acceleration for users1054

with ample resources, we explore a more aggres-1055

sive skip strategy to obtain the draft model. To1056

mitigate the performance degradation associated1057

with the aggressive skip, we further train the draft1058

model using 50,000 instances from the Pile dataset1059

(Gao et al., 2020), truncating the length of each1060

to 512 tokens, which total up to 25 million tokens.1061

We repeat this training for 3 epochs, resulting in a1062

cumulative utilization of 75 million tokens.1063

The implementation of the aggressive skip in-1064

volves skipping the top-K layers based on Bayesian1065

optimization probabilities. For instance, in the case1066

of LLaMA-2-13B, as illustrated in Figure 9, we opt1067

to skip 75% of the attention layers (30 layers) and1068

32.5% of the MLP layers (13 layers).1069

Sparsification dense unstructured 4:8 2:4

ROUGE-2 ↑ 0.107 0.114 0.115 0.110
AR ↑ 0.910 0.918 0.912 0.911
VRAM (GB) ↓ 37.2 35.9 35.9 35.9
Latency (ms) ↓ 32.4 30.4 29.2 30.9
Speedup ↑ 1.57× 1.50× 1.47× 1.48×

Table 12: Performance of self-speculative decoding
combined with different sparsification schemes of
wanda.

Table 9 reveals that when we employ a more 1070

aggressive skip without further training (#token 1071

is 0), there is a noticeable decrease in the draft 1072

model’s quality, with an average acceptance rate of 1073

only 0.698. This leads to a significantly reduced 1074

speedup of merely 1.16×. Nevertheless, by dedi- 1075

cating a portion of the corpus to training, we no- 1076

tably enhance the draft model’s quality, increasing 1077

the AR to 0.900, in line with the target acceptance 1078

rate of 0.90. This enhancement enables a further 1079

improvement in speedup from 1.57× (shown in Ta- 1080

ble 1) to 1.96× (trained for 60M tokens), as more 1081

layers are skipped7. After training on 75 million to- 1082

kens, the reason for the reduced acceleration is that 1083

we believe the model has a certain degree of overfit- 1084

ting. It is essential to highlight that the aggressive 1085

skip strategy necessitates both an extended train- 1086

ing process and the additional storage of trained 1087

draft models. However, this trade-off is deemed 1088

acceptable for users with rich resources. 1089

G Effect of Max # of Draft Tokens 1090

Ideally, increasing the maximum number of draft 1091

tokens K while maintaining a high acceptance rate 1092

should lead to further improvements in inference 1093

acceleration. To explore this, we test the CNN/DM 1094

task using LLaMA-2-13B, varying the max draft 1095

token K, and present the results in Table 10. It 1096

is noteworthy that as K increases, the speedup re- 1097

mains relatively stable. This observation is pri- 1098

marily attributed to the fact that most tokens do 1099

not benefit from excessively large K and tend to 1100

exit early. In summary, our inference approach 1101

shows insensitivity to K thanks to the adaptive 1102

draft-exiting mechanism. Moreover, setting a rela- 1103

tively large value for K (our default is 12) allows 1104

this mechanism to perform optimally. 1105

7This finding aligns with the recent Sheared-LLaMA (Xia
et al., 2023), which shows the effectiveness of pruning fol-
lowed by further training on a small amount of data.
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Algorithm 3 Self-Speculative Decoding
1: LLM p(x|z∗, x1, ..., xt) where x1, ..., xt is the prompt, z∗ is a vector that represents the specific layers to bypass; target

sequence length T ; max draft tokens to generate K. We denote the original LLM as p(x|⃗0, x1, ..., xt), where 0⃗ is a zero
vector, indicating all layers are used in inference.

2: i← t
3: while i < T do
4: for j ← i, ..., i+K do ▷ Drafting Stage
5: xj+1 ← sample p(x|z∗, x1, ..., xj)
6: if need to exit drafting (§3.4) then
7: Break
8: for i← i, ..., j do ▷ Verification Stage
9: r ← sample from a uniform distribution U [0, 1]

10: if r ≥ min(1, p(x|⃗0,x1,...,xi)
p(x|z∗,x1,...,xi)

) then

11: xi+1 ← sample from max(0,p(x|⃗0,x1,...,xi)−p(x|z∗,x1,...,xi))∑
x max(0,p(x|⃗0,x1,...,xi)−p(x|z∗,x1,...,xi))

12: Break
13: i← i+ 1
14: If all draft tokens are accepted, generate next token xi+1 ← sample p(x|⃗0, x1, ..., xi) and i← i+ 1

15: return x1, ..., xT

H Adaptation1106

In this section, we explore the combination of self-1107

speculative decoding with quantization and sparsi-1108

fication techniques to adapt to users with limited1109

computing resources. We conduct experiments on1110

the CNN/DM task using LLaMA-2-13B, and the1111

layer skip distribution corresponding to the draft1112

model is shown in Figure 10.1113

H.1 Quantization1114

First, we integrate our inference approach with1115

the quantization technique, LLM.int8()8 (Dettmers1116

et al., 2022). We evaluate the performance of three1117

quantization schemes: fp8 (8-bit floating-point),1118

fp4 (4-bit floating-point), and nf4 (4-bit normal-1119

ized float), in comparison to the default bf16 (16-1120

bit brain float point). The results are presented in1121

Table 11. In all quantization settings, we skip the1122

‘lm head’ layer of the model and do not employ1123

double quantization to save an additional 0.4 bits.1124

Table 11 illustrates that all three quantization1125

schemes effectively reduce the video memory de-1126

mand during inference. Notably, the fp4 quanti-1127

zation results in up to a nearly two-fold reduction1128

in memory demand to just 19.6 GB. While there1129

may be an increase in the average inference latency1130

per token due to the dequantization process, this1131

approach makes LLM suitable for scenarios with1132

limited device memory.1133

8https://github.com/TimDettmers/bitsandbytes
(MIT License)

H.2 Sparsification 1134

Subsequently, we assess the performance of self- 1135

speculative decoding combined with sparsification 1136

techniques, specifically wanda9 (Sun et al., 2023), 1137

which includes unstructured sparsity and structured 1138

N:M sparsity (4:8 and 2:4) with the sparsity ratio 1139

of 0.5. The N:M sparsity constraint specifies that 1140

no more than N out of every M contiguous weights 1141

can be non-zero. 1142

Table 12 shows that while sparsification may 1143

not dramatically reduce VRAM requirements, it 1144

does result in a reduction in the average inference 1145

latency per token to varying degrees. However, the 1146

speedup is slightly down because the base model 1147

is also accelerated. 1148

I Algorithm with Sampling 1149

In addition to the greedy version of self-speculative 1150

decoding that we have presented in the main paper, 1151

we also explore a variant that incorporates random 1152

sampling, as shown in Algorithm 3. This approach 1153

introduces an element of randomness into the selec- 1154

tion of tokens for speculative decoding, as opposed 1155

to the deterministic nature of the greedy version. 1156

In our setup, random sampling is affected by two 1157

parameters: temperature and topp. Higher values 1158

of temperature or topp lead to greater token diver- 1159

sity, while lower values make token selection more 1160

deterministic. This variant could potentially lead 1161

to diverse decoding paths and outcomes, which 1162

may be beneficial in certain scenarios, such as code 1163

generation. 1164

9https://github.com/locuslab/wanda (MIT License)
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MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(a) First: Skip the first 24 layers of attention and 10 layers of MLP.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(b) Middle: Skip the middle 24 layers of attention and 10 layers of MLP.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(c) Last: Skip the last 24 layers of attention and 10 layers of MLP.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(d) Random: Skip the 24 layers of attention and 10 layers of MLP randomly.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(e) BO: Skip the 24 layers of attention and 10 layers of MLP by Bayesian Optimization.

Figure 7: Visualization of layer skip distributions in LLaMA-2-13B using different strategies.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(a) 200 Iterations

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(b) 400 Iterations

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(c) 600 Iterations

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(d) 800 Iterations

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(e) 1000 Iterations

Figure 8: Visualization of LLaMA-2-13B layer skip distribution for different BO iteration numbers.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Figure 9: Visualize aggressive skip of 75% attention layers and 32.5% MLP layers of LLaMA-2-13B.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Figure 10: Visualization of layer skip distribution in LLaMA-2-13B for quantization and sparsification.
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