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Abstract

When an image classifier outputs a wrong class label, it can be helpful to see what
changes in the image would lead to a correct classification. This is the aim of algo-
rithms generating counterfactual explanations. However, there is no easily scalable
method to generate such counterfactuals. We develop a new algorithm providing
counterfactual explanations for large image classifiers trained with spectral normal-
isation at low computational cost. We empirically compare this algorithm against
baselines from the literature; our novel algorithm consistently finds counterfactuals
that are much closer to the original inputs. At the same time, the realism of these
counterfactuals is comparable to the baselines. The code for all experiments is
available at https://github.com/benedikthoeltgen/DeDUCE.

1 Introduction

Figure 1: In many use cases, counterfactuals
should lie just across the decision boundary
as seen from the original x and lie on the data
manifold, which is here satisfied by CF2 but
not by CF1 (taken from [30]).

Much of the recent staggering success of machine
learning is due to large and complex models whose
inner workings are in many cases elusive. The prime
examples of such ’black box’ models are deep neural
networks. Despite the drawbacks that come with
a poor understanding of their inner workings, such
models are already widely deployed in practice due
to their state-of-the-art performance in many areas.
But this poor understanding can make it difficult to
interpret the decision making process of such models,
and thus to identify the problem when a model makes
an error.

To explain erroneous classifications, it can therefore
be helpful to investigate the relevant decision bound-
ary. An intuitive way to do so is to look for alternative
inputs that are similar but classified differently; this
is the realm of counterfactual explanations. For de-
bugging, we usually want to generate realistic counterfactuals that are just across the model’s
classification decision boundary (fig. 1). We want a counterfactual that stays as close to the original
input as possible but results in a correct classification, in order to understand the system’s decision
making. At the same time, the counterfactual should stay on the manifold of realistic images (CF2 in
fig. 1) since we are interested in inputs that can be interpreted. Being a nascent area of research, there
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is so far no algorithm providing such counterfactual explanations for large models at low cost. In this
work, we introduce a fast novel algorithm using specific properties of residual networks (ResNets), a
widely used model, to find counterfactuals which are very close to the original input.

The contributions presented in this work are the following:

• We introduce and implement a new, scalable algorithm for generating counterfactual expla-
nations in residual networks trained with spectral normalisation. In comparison to previous
approaches, this algorithm has a low engineering overhead as well as low computational
requirements; it does not rely on auxiliary generative models and can run on single forward
pass residual networks rather than on ensembles of models.

• We propose and implement a way to assess realism in counterfactual explanations, drawing
on the literature on anomaly detection.

• We evaluate the novel algorithm on the MNIST dataset and compare its performance against
three baselines from the literature.

2 Background

2.1 Counterfactual explanations

Counterfactual explanations for machine learning models have been introduced in [31].2 They are
used as post-hoc explanations for individual decisions. In general, a counterfactual explanation is
understood as the presentation of an alternative input x′, the counterfactual, which is in some way
similar to the original x yet leads to a different prediction. Due to their similarity (both conceptually
and w.r.t. the algorithms that generate them), counterfactuals are often introduced in juxtaposition
with adversarial examples (AEs).3 Freiesleben [5] provide an illuminating discussion of various
definitions in the literature and come to the conclusion that while AEs are necessarily misclassified,
counterfactuals need not be (and often should not be). Furthermore, in agreement with [21], they
define counterfactuals as the closest alternative input (on some suitable metric) that changes the
prediction (to a pre-defined target, if applicable). This seems to be too restrictive in general as there
are applications that do not require such a strong focus on proximity. Furthermore, the definition then
depends too much on the choice of the similarity metric. Consequently, we will generally call an
alternative input x′ a counterfactual to an input x under model f if it is similar to x on a suitable
similarity relation but changes the prediction of the model.4

Counterfactual explanations can be useful for debugging: They can be used to answer questions like
‘Why did the self-driving car misidentify the fire hydrant as a stop sign?’ [8]. More precisely, they
can answer the questions ’What would the image need to look like in order to be classified as a fire
hydrant?’ and ’What changes would need to happen in other fire hydrant (stop sign) images in order
to be classified as a stop sign (fire hydrant)?’. Depending on the model and the application, we might
only be interested in counterfactuals that look realistic. In particular, we learn more about the decision
boundary when we understand the changes made to the image. If, on the other hand, the classification
is changed by adding unrealistic noise, then we only learn that the classifier is not robust to this.
In terms of Lipton [18], such counterfactuals are less informative. Counterfactual explanations are
often required to be realistic [26], likely [21], or plausible [11]. Perhaps the most useful way to
formulate it is to require counterfactuals to be ‘likely states in the (empirical) distribution of features’
which are ‘close to the data manifold’ [11]. Another often-mentioned desideratum for counterfactual
explanations is sparsity: in general, the less features are changed in input space, the better. Sparse
perturbations are usually more interpretable as the change in classification can be attributed to a
smaller part of the input which is easier to grasp both in terms of the model behaviour and in terms

2A similar notion of counterfactuals in ML has also been explored by [15] in the context of algorithmic
fairness rather than explainability.

3This is only partly helpful since there is also no consensus on the definition of AEs. While scholars generally
agree that AEs are necessarily misclassified, there is no consensus on whether they need to be generated by
imperceptible perturbations. Another, less operational definition could be that they are not detected to be outside
the distribution of realistic datapoints – although the notion of ‘misclassification’ could already be interpreted as
requiring the datapoint to be in-distribution as it implies that there is a correct classification.

4One might drop the requirement of changing the prediction for applications beyond explanations, e.g. for
assessing fairness [15].
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of the input itself. If all parts of the input change a little, it might be harder to understand what the
perturbation means and how it affects the model.

2.2 Epistemic uncertainty

Previous work has shown that epistemic uncertainty can be used as a proxy for realism [27, 26].
There are two kinds of uncertainty relevant to machine learning models. Aleatoric uncertainty, on the
one hand, is inherent in the data distribution and cannot be reduced. It is high when there is no clear
ground-truth label and maximised in the extreme case of random labels. Epistemic uncertainty, on
the other hand, is due to a lack of knowledge on the part of the model. It is a quantity that can be
reduced for a given input by including it in the training set. Given this characterisation, epistemic
uncertainty estimates are used for active learning (selecting samples that are particularly useful to
train on) as well as for detecting out-of-distribution inputs.

It has also been observed that neuron activations in late layers of a neural network, which we call
features, can be used to estimate epistemic uncertainty when two properties called sensitivity and
smoothness are satisfied by the mapping into the feature space [28]. Sensitivity can be seen as a
lower Lipschitz bound, ensuring that the features remain sensitive to differences between inputs,
thereby preventing ‘feature collapse’: Otherwise, out-of-distribution (OoD) inputs might not be
distinguishable from in-distribution (iD) inputs as they could be mapped to the same area in feature
space. Conversely, smoothness can be seen as an upper Lipschitz bound: Similar inputs are guaranteed
not to be too far from each other in feature space, such that distances in this space remain meaningful.
Building on [2], Liu et al. [19] show that applying spectral normalisation (SN, [20]) with a coefficient
c ≤ 1 to ResNets [9] is enough to enforce both sensitivity and smoothness. Using such models,
Mukhoti et al. [22] fit a probability distribution to the feature space after the last ResNet block, using
the feature representations of the training data. To estimate the epistemic uncertainty of an input, they
then calculate the negative log-likelihood of its feature representation under the learned distribution.
For the probability distribution, they use a Gaussian mixture model (GMM). We will make use of this
approach, called Deep Deterministic Uncertainty (DDU), in the algorithm we propose below.

2.3 Related work

In this section, we provide a (non-exhaustive) survey of algorithms that provide counterfactual
explanations. In the initial paper, Wachter et al. [31] propose to simply optimise the objective

argmin
x′

max
λ

(f(x′)− y′)2 · λ+ d(x,x′) (1)

where f denotes the model, y′ the desired model prediction, d a pre-defined distance metric, and λ is
a hyper-parameter. They suggest to iterate through increasing values of λ, always solving for x′ for
fixed λ, until a counterfactual sufficiently close to the original input is found. This is quite a minimal
approach, which comes at the cost of x′ not being constrained to lie on the data manifold (which
might be required, depending on the task).

Van Looveren and Klaise [29] build on this (and on [3]), but focus on generating more interpretable
counterfactuals by optimising a more complex objective function. Their prototype-guided approach
minimises the loss

cLpred + βL1 + L2 + LAE + Lproto. (2)

Here, Lpred = f(x′)l −maxi 6=l f(x
′)i where f(x′)l is the softmax output of the classifier f on the

counterfactual x′ for the original class l, i.e. its confidence that x′ belongs to class l. L1 and L2

refer to the corresponding distances between x and x′ in input space. LAE = γ‖x′ − AE(x′)‖22
where AE is an autoencoder trained on the training data. Lastly, Lproto = θ‖ENC(x′)− protot‖22
where protot = 1

K

∑K
k=1 ENC(x

t
k) is the latent prototype defined by the K nearest neighbours

xtk of x′ in target class t and ENC is an encoder. For untargeted counterfactuals, t is chosen as
argmint6=l ‖ENC(x′)− protot‖2. While Lpred enforces a change of classification, LAE and Lproto
are included to encourage realism, measured by a low reconstruction loss under the autoencoder
and similarity to similar training samples in the encoded latent space. The additional use of an
autoencoder and the additional loss terms generate a computational overhead that slows down the
approach. Furthermore, the approach comes with many hyperparameters which might require a lot of
tuning when applying it to a new task. The interplay of the different loss terms is not straightforward
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to analyse either formally or conceptually, so it is hard to predict and improve the performance on
new applications.

A very different route to provide interpretable counterfactuals is taken by Schut et al. [26], based on
the notion of uncertainty [6]. They suggest that counterfactuals are realistic if the model classifies
them with low epistemic uncertainty and unambiguous when the model has low aleatoric uncer-
tainty. Consequently, they propose to minimise overall uncertainty in models that provide accurate
uncertainty estimates through their softmax output, such as deep ensembles [16]. They show that max-
imising the ensemble’s target class prediction f(x′)t is sufficient to minimise its predictive entropy
and hence both epistemic and aleatoric uncertainty. Rather than using an off-the-shelf optimisation
algorithm as the two previously mentioned approaches, Schut and colleagues compute the gradient of
the classification loss in input space and identify the most salient pixel for reducing this loss. Similar
to JSMA [23], they iteratively change the most salient pixel until the target prediction is above 99%,
when the uncertainty is sufficiently low. This works well in practice but using an ensemble of models
(for their MNIST experiments they use 50 models) is computationally expensive, which might hinder
its deployment in practice.

Another approach that has been suggested both for providing counterfactual explanations and for
algorithmic recourse is REVISE [10]. This algorithm requires the availability of a generative model,
such as the decoder of a VAE trained on the training data. Similar to [31], the overall idea is to
minimise the function

`(f(G(z′)), t) + λ · ‖G(z′)− x‖1 (3)
where f is the classifier, t is the target, ` is some loss function, and G is the generative model. To
find a z′ that minimises the loss, z is initialised to the encoding of the original input x; then the
gradient of the loss in the latent space is computed and the algorithm iteratively takes small steps in
latent space until the prediction changes to the target. Since the resulting counterfactual x′ = G(z′)
is produced by the generative model, it can be dissimilar to x: Although the L1 norm is known to
encourage sparsity, the algorithm cannot be expected to provide sparse solutions, as the changes are
not taken in the input space. Another disadvantage of using a generative model is, of course, the need
to train it beforehand which can pose difficulties of varying degree depending on the data domain.
Several recent works utilise GANs for generating counterfactuals, such as [13].

3 Novel algorithm: DeDUCE

Figure 2: The training data is used to fit
a Gaussian distribution for each class in a
(here depicted) feature space. DeDUCE then
changes a given input in a way that increases
the density under the target class Gaussian in
the feature space, until the decision bound-
ary (dashed line) is crossed. This allows to
generate realistic counterfactuals.

For large image datasets, ResNets are often the model
of choice. When ResNets are trained with spectral
normalisation, we can use DDU (section 2.2) to esti-
mate their epistemic uncertainty. DDU achieves state-
of-the-art results in OoD detection such as MNIST vs.
FashionMNIST. The authors also demonstrate that it
can be used for active learning; this implies that it is
particularly useful to train on inputs whose represen-
tations have low likelihood under the GMM, i.e. such
inputs are substantially different from the previous
training data. This suggests that DDU’s measure of
epistemic uncertainty can be a useful target when
aiming to generate counterfactuals that are similar to
the original training data. The idea of the novel algo-
rithm presented here is to cross the model’s decision
boundary while keeping the epistemic uncertainty as
low as possible, using DDU. Instead of maximising
the whole GMM density for minimising epistemic
uncertainty (i.e. maximising feature-space density),
we propose to only maximise the target class den-
sity (fig. 2). Otherwise, one would also maximise
the original label’s class density, which could lead to
unstable behaviour. As we also want to cross the decision boundary quickly, we suggest to change
the pixels that are most salient for the gradient of the loss

g = ∇x (`c(x, t) · λ− log pt(fZ(x))) (4)
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where f is the model, t the target class, `c the cross-entropy, pt the target class density, and fZ the
feature extractor, i.e. the part of the model that maps to the feature space after the last ResNet block.
This means we are trying to change the input in a way that quickly changes the classification (first
term) and makes it more similar to the target class in feature space (second term). The first term
typically has values in [0, 100], while the second term can have values as low as 10−6. Instead of
changing the pixels that minimise the weighted loss for some λ, we select the pixels which make the
largest relative difference to either of the two loss terms. Therefore, we use the alternative gradient

g =
1

`c(f(x′), t)
∇x′`c(f(x

′), t) · µ− 1

| log pt(fZ(x′))|
∇x′ log pt(fZ(x

′)) (5)

instead of the gradient of the weighted loss given in equation (4). Note that the cross-entropy loss
`c(f(x

′), t) is non-negative whereas log pt(fZ(x′)) can be negative or positive, depending on whether
the density is above or below one. Despite their similarity, including both terms in the objective
indeed improves the quality of generated counterfactuals; we also find that using the alternative
gradient without further weighting (µ = 1) works better than the gradient of the loss for any value of
λ (see appendix A).

The novel approach that we call DeDUCE (Deep Deterministic Uncertainty-based Counterfactual
Explanations) is described in algorithm 1: In order to only make small and sparse changes to
the original input, DeDUCE iteratively perturbs only few pixels at a time. At each iteration, it
determines the most salient pixels for maximising the objective, by computing the gradient in input
space, and then perturbs them by a fixed step size δ. This is similar to how the Jacobian-based
Saliency Map Attack (JSMA) [23] generates adversarial examples and the approach of [26] generates
counterfactuals. Thereby, DeDUCE iteratively perturbs the input in small steps in a way that makes it
more and more similar to the target class until it crosses the decision boundary. The algorithm stops
when the softmax output for the target class is above 50% as this corresponds to the model choosing
‘in target class’ over ‘not in target class’. Following [26], DeDUCE limits the number of times each
pixel can be updated5 and clips x′ to the input domain bounds. Similar to some work on adversarial
examples [4], we also add momentum to the gradient, replacing the expression for g by

gk =
∇xk

`c(f(xk), t)

`c(f(xk), t)
− ∇xk

log pt(fZ(xk))

| log pt(fZ(xk))|
+m · gk−1, (6)

with xk referring to the state of the input after k > 0 iterations. For the experiments reported
below, we change one pixel at a time and use a momentum of 0.6. Adding momentum of this size
often does not make a difference; in our experiments, it only affected around 1.3% of the generated
counterfactuals.

Algorithm 1 DeDUCE
Inputs: original input x ∈ X , target class t, trained model f with feature extractor fZ , training data
Xtr ∈ XN , coefficient λ, step size δ, max iterations max_iter, max pixel changes p, number of pixels
m, target confidence γ.
Output: counterfactual x′ ∈ X

1: (before deployment) apply f to Xtr and fit the GMM p(z) = 1
|C|

∑
c∈C pc(z)

2: x′ ← x
3: k ← 0
4: P← 0dim(X )

5: while f(x′)t ≤ γ and k < max_iter do
6: compute gradient g in input space
7: select m most salient pixels: I = select_q_largest_masked(|g|, P < p)
8: update these pixels: ∀i ∈ I : x′[i]← x′[i] + sign(g[i]) · δ
9: clip to input domain: x′ ← clip(x′)

10: ∀i ∈ I : P[i]← P[i] + 1
11: k ← k + 1
12: return x′

5This is achieved by counting the number of updates per pixel in P and applying a mask to the gradient g
that sets g[i] to 0 if P[i] ≥ r. The expression select_q_largest_masked(|g|, P < r) in line 7 denotes the
procedure of first applying this mask and then selecting the positions of the q largest values of |g|.
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4 Experiments

4.1 Dataset and metrics

We perform experiments on the MNIST dataset [17], so far the only widely used image dataset
in the literature on counterfactual explanations. We use the L1 and L0 distances in input space to
assess similarity and sparsity, respectively. We also want to measure how realistic the generated
counterfactuals are, as this is usually helpful (cf. section 2.1). There is no consensus in the field
on how to measure realism (or ’plausibility’ [12]), and for images, this proves to be quite difficult.
Therefore, we turn to the literature on anomaly detection and use the approach that performed best on
an anomaly detection task for MNIST in a recent study [24]. This approach, called AnoGAN [25],
uses a pre-trained generative adversarial network (GAN, [7]) to compare the similarity of a given
input x with the closest image G(z) that the GAN can generate. AnoGAN uses gradient descent in
latent space to minimise the loss

‖G(z)− x‖1 + λ · ‖fD(G(z))− fD(x)‖1, (7)

where G is the generator and fD is a mapping to a later layer of the discriminator. The first term
gives the L1 distance between the generated sample and the input whereas the second term measures
how similar their feature representations are in the discriminator model. We use a Wasserstein GAN
[1] trained on MNIST. To reduce the dependence on the initial z, we perform gradient descent three
times from different, randomly sampled starting points. We use λ = 0.1, an initial learning rate of
0.03, and bound the number of iterations to 4000. We tested how well the resulting metric allows to
distinguish actual MNIST images from EMNIST character as well as Fashion-MNIST images. Our
AnoGAN method achieves an AUROC of 0.913 and 0.998, respectively. Note that these comparisons
are quite different to the generated counterfactuals and thus only provide general sanity checks rather
than actual performance tests.

4.2 Baselines

To assess the performance of the novel algorithm, we compare it with three baselines applied to
ResNets without spectral normalisation. The prototype-guided approach that we shall call ‘VLK’
[29] as well as REVISE [10] were discussed in section 2.3. Their selection is largely based on a
general scarcity of algorithms that provide counterfactual explanations, were demonstrated on image
data, and are applicable to ResNets. Although also demonstrated on MNIST, the mentioned approach
of [26] is not included since it cannot be applied to single ResNets. In order to get the required
calibrated uncertainty outputs, one would need an ensemble of around ten models [16], which would
make the results much less comparable. In addition to VLK and REVISE, we include JSMA [23] as
a third baseline.

It should be noted that JSMA was introduced to generate (perceptible) adversarial examples rather
than counterfactual explanations, so the comparison with regard to realism is not a fair one. However,
since DeDUCE is loosely based on JSMA, the comparison is interesting as it shows how the
modifications affect the results. While the original paper recommends changing two pixels at a
time, we change one as this makes it perform better in our setting and more comparable to the used
DeDUCE algorithm.

To generate counterfactuals with VLK, we use the authors’ implementation in the alibi package
[14] in order to be as faithful as possible. As the algorithm is already tuned to MNIST, we only make
one change to the default setting, namely setting k for k-nearest (encoded) neighbours in the Lproto
term to 5. This is recommended in the paper and generally improves the quality of the generated
counterfactuals. Note that VLK uses an optimisation algorithm that includes the model’s target
confidence in the Lpred loss term. This means that, contrary to the other three algorithms, we cannot
prescribe the generated counterfactuals to have a target confidence just above 50%. In fact, they have
a mean confidence of 0.42 and standard deviation of 0.44, with many values being close to 0 or 1.

The third baseline REVISE requires more tuning, as it has not been demonstrated on MNIST before.
REVISE is designed to be applicable to image data, with the authors providing a demonstration on the
CelebA dataset. Sample reconstructions of the used VAE are shown in appendix B. Note that a more
powerful generative model than the one employed here could improve the quality of the generated
counterfactuals; this might, however, come with even higher engineering efforts and computational
costs. Appendix B provides more details on the implementation of REVISE.
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4.3 Results

With the four algorithms tuned to the dataset and base model, we can look at their performance.
We use five sets of 100 original MNIST images from the test set and try to find counterfactuals for
all 9 potential target classes, resulting in 5× 900 runs overall for each algorithm. The quantitative
metrics are the L0 and L1 distance to the original, and the rate at which the algorithms fails to output
a candidate counterfactual. For the evaluation of how realistic/anomalous the images are, we use
the anomaly detection metric ‘AGAN’ using AnoGAN. The results are reported in table 1. In order
to ensure a fair comparison, only image-target pairs are included for which all algorithms found a
counterfactual.

Table 1: Overall means from 5× 900 image-target pairs, with standard deviations over the five means
in brackets. AGAN denotes the AnoGAN score. Original images achieve an average AGAN score of
15.44. Lower is better everywhere.

algorithm AGAN L0 L1 failure in %

DeDUCE 22.51 (0.72) 21.16 (0.46) 10.72 (0.10) 0.00 (0.00)
JSMA 23.90 (0.41) 25.65 (0.65) 12.63 (0.27) 3.09 (0.28)
VLK 22.95 (0.93) 155.43 (4.15) 38.95 (1.19) 0.09 (0.20)
REVISE 20.09 (0.88) 752.46 (4.98) 53.86 (0.58) 26.80 (1.03)

REVISE achieves the best results on the AnoGAN metric, but their scores are not as good as for
the original images, which get a score of 15.44± 2.04. VLK and DeDUCE do not show significant
differences on this metric. We note that the directly reconstructed images under the REVISE VAE
(without applying REVISE) are judged to be more realistic than the original images, achieving a
score of 14.64± 0.23. This shows that the metric has a bias towards VAE-generated images, which
benefits REVISE and perhaps also VLK, as the latter minimises an autoencoder loss. DeDUCE
achieves better results than JSMA on all four metrics, with these differences are all being highly
significant (p < 10−7 on paired t-tests). Both VLK and REVISE perform much worse than the other
two on the sparsity as well as the similarity metric. This is also expected since both DeDUCE and
JSMA take pixel-wise steps in the input space. The standard deviations on all metrics are generally
fairly low, especially for DeDUCE and JSMA.

There are great differences with respect to the required computation times, not only because the
provided implementation of VLK does not support the generation of counterfactuals in batches. Even
when all approaches are used to generate counterfactuals individually, VLK is the slowest approach
(table 2). JSMA is slightly faster than DeDUCE, which is still significantly faster than REVISE.
REVISE has a large standard deviation because some runs take particularly long. Note that REVISE
could work with a slightly larger step size and with a lower number of iterations, at the expense of
quality. All computations were performed on NVIDIA Tesla T4 GPUs.

Table 2: Average running times (STDs in brackets) for generating counterfactuals individually.

algorithm time in sec

DeDUCE 2.99 (1.69)
JSMA 1.01 (0.52)
VLK 109.86 (1.54)
REVISE 46.66 (84.33)

As pointed out above, the GAN-based realism metric is only partly reliable. This can already be
seen from the observation that VAE reconstructions are generally judged to be more realistic than
the original image. Therefore, a qualitative examination of the generated counterfactuals is also
warranted, although a conclusive verdict would require a comprehensive human evaluation study.
Individual examples generated by the different algorithms for randomly drawn images and targets
are presented in figure 3.6 Note that REVISE failed to output a counterfactual in the fourth column.

6For both the image ids and the target classes, eight integers from 0 to 9 were drawn at random. One pair
was drawn twice while for another pair, the target was equal to the label, resulting in six id-target pairs.
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original

DeDUCE

JSMA

VLK

REVISE

Figure 3: Random examples of generated counterfactuals. The first row shows the original image,
then the results of applying DeDUCE, JSMA, VLK, and REVISE. The target classes are 9, 9, 3, 6, 9,
and 6, respectively. The individual metric scores are reported in table 3.

Table 3: Metric scores for each of the generated counterfactuals presented in fig. 3.

(original, target)

algorithm (4,9) (0,9) (9,3) (2,6) (4,9) (5,6) metric

DeDUCE
14.01

5
3.20

21.52
18

7.96

25.55
12

6.75

22.82
20

9.19

12.23
3

2.59

17.71
10

2.96

AGAN
L0

L1

JSMA
23.31

29
11.19

22.32
15

10.39

19.86
19

8.85

25.77
35

15.69

16.66
10

4.73

23.01
6

2.68

AGAN
L0

L1

VLK
11.77

60
10.35

56.81
276

81.19

18.64
141

27.28

23.06
177

48.84

18.41
93

17.37

22.70
160

36.72

AGAN
L0

L1

REVISE
15.13

784
31.90

21.47
784

66.08

27.41
692

57.63

N/A
N/A
N/A

5.49
784

17.60

25.80
784

62.13

AGAN
L0

L1

8



Column 2 and 4 seem generally difficult, while all approaches arguably find good counterfactuals
for column 1 and 5, with the exception of JSMA on the former. Column 3 and 6 are met with
varying success. Overall, DeDUCE and VLK might be seen to provide the best counterfactuals. The
individual metric scores are presented in table 3. Despite the lack of a user study, it seems clear that
the NLL and AGAN scores do not always reflect human judgement. Because of this and the much
higher L0 and L1 scores, the low realism scores of counterfactuals generated by VLK and REVISE
clearly do not imply that they are more interpretable than the ones generated by DeDUCE.

5 Discussion

As demonstrated in the experiments, DeDUCE is an efficient algorithm performing small and sparse
perturbations that often result in realistic counterfactuals. In particular, it provides counterfactuals
that are much more similar to the original image than the other considered approaches. This allows
to give more precise explanations for the model’s decision making. As discussed, DeDUCE is only
applicable to classifiers that satisfy sensitivity and smoothness assumptions. It is sufficient to have a
ResNets with some loose spectral normalisation, which might be desired anyway. Still, this clearly
restricts the applicability of DeDUCE. Overall, DeDUCE could prove to be a viable technique for a
considerable number of use cases, namely image classification tasks that require the deployment of
large neural networks.

One limitation of this work is the lack of human evaluation studies. In order to conclusively assess how
interpretable the generated counterfactuals are and how helpful the explanations are for debugging,
such studies will eventually be necessary. We also plan to include more complex datasets in the
future. While MNIST allows a first proof of concept, the algorithm is designed to be scalable to
larger datasets and should also be assessed there. We plan to address this is future work.

Lastly, future work could also try to improve the algorithm itself. In particular, it might be possible to
use a different latent density model instead of the one used here. For example, the GMM could be
fitted to ambiguous data (using multiple labels and a probabilistic fit) to improve density estimation
on such inputs. This could make it necessary to also train the classification model on ambiguous
data. Another option could be to use confidence-weighting of the datapoints for fitting the class-wise
Gaussians. We also hope to investigate these ideas systematically in future work.
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A Effect of different gradient expressions

Table 4: Effect of different objective functions with different hyperparameter settings. Settings with
λ use a loss function as in equation (4), whereas settings with µ use the alternative gradient as in
equation (5). The alternative gradient with no further weighting (µ = 1) works best on all metrics. In
particular, not including the classification loss at all (λ = 0) performs much worse.

setting L0 L1 failure

λ = 0 27.36 13.47 0.1%
λ = 1 27.29 13.45 0.1%
λ = 10 27.16 13.40 0.1%
λ = 102 25.88 12.92 0%
λ = 103 24.58 12.38 0%
λ = 104 25.10 12.53 0%
λ = 105 25.38 12.65 0%
µ = 1

5 25.45 12.75 0%
µ = 1 24.47 12.32 0%
µ = 5 24.92 12.46 0.1%

B REVISE implementation

Figure 4: Some random reconstructions from the VAE used for REVISE. The first row shows
randomly selected original MNIST images, followed by three rows of sample reconstructions and the
average of 50 reconstructions in the last row.

Recall that REVISE takes small steps in the latent space of the VAE, guided by the gradient of the
loss function `(f(G(z′)), t) + λ · ‖G(z′) − x‖1 where f is the classifier, t is the target, G is the
generative model, and x is the original image. As in the original paper, we use the cross-entropy loss
function for `. In addition to the VAE, it is therefore necessary to tune λ as well as the gradient step
size that we denote by δ. I perform a grid search on λ ∈ {0.1, 1, 10} and δ ∈ {10−3, 10−4, 10−5},
considering both qualitative and quantitative performance. For the three setting of λ, we limit the
number of iterations to 50,000, 10,000, and 5,000, respectively.7 For λ = 10, the algorithm hardly
ever terminates: in all settings for δ, it has a failure rate of over 75%. Comparing all settings on the

7In all three cases, less than 5% of the runs terminated in the last 60% of the iterations, i.e. after step 20,000,
4,000, and 2,000, respectively. This shows that to significantly decrease the failure rate, the iteration limits
would need to be raised by more than an order of magnitude, if that helps at all. This is taken as a justification
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same image-target pairs would then mean to leave out the vast majority of counterfactuals, so I report
quantitative evaluations only for the other six settings in table 5. Most notably, for λ = 0.1, the L1

values are very high; a look at the generated images confirms that these are too far from the original
inputs to be useful. Given λ = 1, the setting with δ = 10−5 performs clearly the best overall, so we
adopt this for the evaluation on the testset.

Table 5: Performance of REVISE in different settings of λ and δ. For λ = 0.1, the counterfactuals are
very dissimilar to the original input (see L1) and among settings with λ = 1, the one with δ = 10−5

performs best overall. Settings with λ = 10 are not included as the failure rate is above 75%.

λ δ L0 L1 failure

0.1 10−3 754.34 88.79 16.1%
0.1 10−4 758.12 91.43 12%
0.1 10−5 764.93 84.92 11.8%
1 10−3 767.75 58.66 23%
1 10−4 771.78 54.72 26.3%
1 10−5 771.89 54.11 22.2%

C Additional DeDUCE outputs

Figure 5: Additional randomly selected examples produced by DeDUCE. The targets are:
in row two 9, 1, 4, 4, 1, 9; in row four 9, 9, 0, 1, 2, 3; in row six 0, 5, 5, 2, 9, 1. In general, the al-
gorithm seems to have the largest difficulties with generating 0s and 1s.

for keeping them at their present values. As a comparison, recall that we limit DeDUCE (and JSMA) to 700
iterations.
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