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Abstract

Mixup is a powerful data augmentation method that interpolates between two or
more examples in the input or feature space and between the corresponding tar-
get labels. However, how to best interpolate images is not well defined. Re-
cent mixup methods overlay or cut-and-paste two or more objects into one image,
which needs care in selecting regions. Mixup has also been connected to autoen-
coders, because often autoencoders generate an image that continuously deforms
into another. However, such images are typically of low quality.

In this work, we revisit mixup from the deformation perspective and introduce
AlignMixup, where we geometrically align two images in the feature space.
The correspondences allow us to interpolate between two sets of features, while
keeping the locations of one set. Interestingly, this retains mostly the geome-
try or pose of one image and the appearance or texture of the other. We also
show that an autoencoder can still improve representation learning under mixup,
without the classifier ever seeing decoded images. AlignMixup outperforms
state-of-the-art mixup methods on five different benchmarks. Code available at
https://github.com/shashankvkt/AlignMixup_CVPR22.git

1 Introduction

Data augmentation [27, 33, 7] is a powerful regularization method that increases the amount and
diversity of data, be it labeled or unlabeled [12]. It improves the generalization performance and
helps learning invariance [38] at almost no cost, because the same example can be transformed in
different ways over epochs. However, by operating on one image at a time and limiting to label-
preserving transformations, it has limited chances of exploring beyond the image manifold.

Mixup operates on two or more examples at a time, inferpolating between them in the input
space [51] or feature space [45], while also interpolating between target labels for image classi-
fication. This flattens class representations [45], reduces overly confident incorrect predictions, and
smoothens decision boundaries far away from training data. However, input mixup images are
overlays and tend to be unnatural [49]. Interestingly, recent mixup methods focus of combining
two [49, 25] or more [24] objects from different images into one in the input space, making efficient
use of training pixels. However, randomness in the patch selection and thereby label mixing may
mislead the classifier to learn uninformative features [44], which raises the question: what is a good
interpolation of images?

Bengio et al. [3] show that traversing along the manifold of representations obtained from deeper
layers of the network more likely results in finding realistic examples. This is because the interpo-
lated points smoothly traverse the underlying manifold of the data, capturing salient characteristics
of the two images. Furthermore, [4] show the ability of autoencoders to capture semantic correspon-
dences obtained by decoding mixed latent codes. This is because the autoencoder may disentangle
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the underlying factors of variation. Efforts have followed on mixing latent representations of au-
toencoders to generate realistic images for data augmentation. However, these approaches are more
expensive, requiring three networks (encoder, decoder, classifier) [4] and more complex, often also
requiring an adversarial discriminator [2, 30]. More importantly, they perform poorly compared to
standard input mixup on large datasets [30], due to the low quality of generated images.

In this work, we are motivated by the idea of deformation as a natural way of interpolating images,
where one image may deform into another, in a continuous way. Contrary to previous efforts, we
do not interpolate directly in the input space, we do not limit to vectors as latent codes and we
do not decode. We rather investigate geometric alignment for mixup, based on explicit semantic
correspondences in the feature space. In particular, we explicitly align the feature tensors of two im-
ages, resulting in soft correspondences. The tensors can be seen as sets of features with coordinates.
Hence, each feature in one set can be interpolated with few features in the other.

By choosing to keep the coordinates of one set or the other, we define an asymmetric operation. What
we obtain is one object continuously morphing, rather than two objects in one image. Interestingly,
observing this asymmetric morphing reveals that we retain the geometry or pose of the image where
we keep the coordinates and the appearance or texture of the other. ?? illustrates that our method,
AlignMixup, retains the pose of image 2 and the fexture of image 1, which is different from existing
mixup methods. Note that, as in manifold mixup, we do not decode, hence we are not concerned
about the quality of generated images.

2 AlignMixup

2.1 Preliminaries

Problem formulation Let (z,y) be an image © € X’ with its one-hot encoded class label y € Y,
where X is the input image space, Y = [0, 1]* and k is the number of classes. An encoder network
F: X — RwXh maps x to feature tensor A = F(z), where c is the number of channels and
w x h is the spatial resolution. A classifier g : R®*“>" — RF then maps A to the vector p = g(A)
of probabilities over classes.

Mixup We follow [45] in mixing the representations from different layers of the network, focusing
on the deepest layers near the classifier. We are given two labeled images (z,y), (z/,y') € X X Y.
We draw an interpolation factor A € [0, 1] from Beta(a, ) [51] and then we interpolate labels y, 3’
linearly by the standard mixup operator

mixy(y,y’) == Ay + (1 = \)y’ (1)
and inputs z, =’ by the generic formula
Mix{""* (2, 2') := fo(Mixa(f1(2), f1(2"), 2)

where Mix ) is a mixup operator to be defined. This generic formula allows interpolation of the input
or feature as f5 o f; according to

input () :  f1:=1id, fo:= F 3)
feature (A) :  f1:=F, fo :=1id, 4)

where id is the identity mapping. For (3), we define Mix) in (2) as standard mixup mix) (1),
like [51]; while for (4), we define Mix, as discussed in subsection 2.2.

By default, we train the encoder network and the classifier by using a classification loss L. on the
output of the classifier g for mixed examples along with the corresponding mixed labels:

Le(g(Mix[HP (2, 2/)), mixy (y, 9')), (5)

where L.(p,y) := — Zle y; log p; is the standard cross-entropy loss. More options using an
autoencoder architecture are investigated in section 3.

2.2 Interpolation of aligned feature tensors

Alignment Alignment refers to finding a geometric correspondence between image elements be-
fore interpolation. The feature tensor is ideal for this purpose, because its spatial resolution is low,
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Figure 1: Feature tensor alignment and interpolation. Cost matrix M contains pairwise distances
of feature vectors in tensors A, A’. Assignment matrix R is obtained by Sinkhorn-Knopp [26] on

similarity matrix e~/¢. A is aligned to A’ according to R, giving rise to A. We then interpolate

between A, A. Symmetrically, we can align A’ to A and interpolate between A/, A’. A, A’ on the
left (toy example of 16 points in 2D) shown semi-transparent on the right for reference.

reducing the optimization cost, and allows for semantic correspondence, because features close to
the classifier are small. Importantly, we are not attempting to combine two or more objects into
one image [25], but put two objects in correspondence and then interpolate into one. We make
no assumptions on the structure of input images in terms of objects and we use no ground truth
correspondences.

Our feature tensor alignment is based on optimal transport theory [46] and Sinkhorn distance
(SD) [8] in particular. Let A := F(z), A’ := F(2') be the ¢ x w x h feature tensors of im-
ages x,r’ € X. We reshape them to ¢ X r matrices A, A’ by flattening the spatial dimensions, where
r := hw. Then, every column a;, a; e Reof A, A’ for j = 1,...,r is a feature vector representing
corresponding to a spatial position in the original image x, z’. Let M be the r X r cost matrix with
its elements being the pairwise distances of these vectors:

2
mij = ||a; — aj] ©)

fori,j € {1,...,r}. We are looking for a transport plan, that is, a r X r matrix P € U,., where
U, :={PeR":P1=P'1=1/r} (7)

and 1 is an all-ones vector in R". That is, P is non-negative with row-wise and column-wise sum
1/r, representing a joint probability over spatial positions of A, A’ with uniform marginals. It is
chosen to minimize the expected pairwise distance of their features, as expressed by the linear cost
function (P, M), under an entropic regularizer:

P* = arg in (P,M) —€eH(P), (8)
where H(P) := —3_,.pijlogp;; is the entropy of P, (-,-) is Frobenius inner product and € is a

regularization coefficient. The optimal solution P* is unique and can be found by forming the r x r
similarity matrix e~™/¢ and then applying the Sinkhorn-Knopp algorithm [26], i.e., iteratively nor-
malizing rows and columns. A small € leads to sparser P, which improves one-to-one matching but
makes the optimization harder [ 1], while a large € leads to denser P, causing more correspondences
and poor matching.

Interpolation The assignment matrix R := r P* is a doubly stochastic 7 X  matrix whose element
7;; expresses the probability that column a; of A corresponds to column a; of A’. Thus, we align A

and A’ as follows:
A:=ART 9)
A':= AR. (10
Here, column q; of ¢ X r matrix A is~ a convex combination of c01~umns of A’ that corresponds to the
same column a; of A. We reshape A back to ¢ x w x h tensor A by expanding spatial dimensions

and we say that A represents A aligned to A’. We then interpolate between A and the original
feature tensor A: _
mix) (A, A). a1
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Figure 2: Visualizing alignment. For different A € [0, 1], we interpolate feature tensors A, A’
without alignment (top) or aligned feature tensors (bottom) of two images x, ' and then we generate
a new image by decoding the resulting embedding through the decoder D. (a), (c) We align A to
A’ and mix with (11). (b), (d) We align A’ to A and mix with (12). Only meant for illustration: No
decoded images are seen by the classifier at training.

As shown in Figure 1 (toy example, top right), A is geometrically close to A. The correspondence
with A’ and the geometric proximity to A makes A appropriate for interpolation with A. Symmet-
rically, we can also align A’ to A and interpolate between A’ and A’:

mixy (A, A’). (12)

When mixing feature tensors with alignment (4), we define Mix, in (2) as the mapping of (A, A’)
to either (11) or (12), chosen at random.

2.3 Visualization and discussion

Decoder We use a decoder to study images generated with or without feature alignment. Let
f: Rexwxh 5 Rd be a FC layer mapping tensor A to embedding e = f(A). We use f o F as
an encoder and a decoder D : R® — X mapping e back to the image space, reconstructing image
Z = D(e). The autoencoder is trained using only clean images (without mixup) using reconstruction
loss L, between x and &, where L, (z,2’) := ||z — #’||* is the squared Euclidean distance. We use
generated images only for visualization purposes below, but we also use the decoder optionally
during AlignMixup training in section 3.

Discussion For different A € [0, 1], we interpolate the feature tensors A, A’ of x,z’ without
or with alignment, using (11) or (12), and we generate a new image by decoding the resulting
embedding through the decoder D.

In Figure 2, we visualize such generated images. Interestingly, by aligning A to A’ and mixing
using (11) with A = 0, the generated image retains the pose of « and the texture of z’. In Figure 2(a)
in particular, when x is ‘penguin’ and z’ is ‘dog’, the generated image retains the pose of the penguin,
while the texture of the dog aligns to the body of the penguin. Similarly, in Figure 2(c), the texture
from the goldfish is aligned to that of the stork, while the pose of the stork is retained. Vice versa, as
shown in Figure 2(b,d), by aligning A’ to A and mixing using (12) with A = 0, the generated image
retains the pose of 2’ and the texture of . By contrast, the image generated from unaligned features
appears to be an overlay.

Randomly sampling several values of A € [0, 1] during training generates an abundance of samples,
capturing texture from one image and the pose from another. This allows the model to explore
beyond the image manifold, thereby improving its generalization and enhancing its performance
across multiple benchmarks, as discussed in section 3.



DATASET CIFAR-10 CIFAR-100 TI METHOD PARAM. MSEC/BATCH TOP-1 ERROR
NETWORK R-18 WI16-8 R-18 WI16-8 R-18

Baseline 25M 418 23.68
Baseline 5.19 5.11 2324 20.63  43.40* InputT [51] 25M 436 22.58
Input [51] 403 398 2021 19.88  43.48" CutMix” [19] 25M 427 21.40
CutMix [49] 3.27 3.54 19.37 19.71  43.11* Manifold" [45] 25M 441 22.50
Manifold [45] 2.95 3.56 19.80 19.23  40.76* -t
PuzzleMix [25] 293 299 2001 1925 3652 ZL("ZIZ\/][%Z‘* [[ ]] ;gﬁ 183262 2124
Co-Mixup [24] 2.89 3.04 19.81 19.57 35.85* SaliencyMix* [44]  25M 462 21.26
SaliencyMix [44] 2.99 3.53 19.69  19.59 34.81 StyleMix* [21] 25M 88 ;
StyleMix [21] 3.76 3.89 20.04 2045 36.13 StyleCutMix* [21]  25M 912
StyleCutMix [21] 3.06 3.12 19.34  19.28 34.49

AlignMixup (ours) 25M 450 20.68

AlignMixup (ours)  2.95 3.09 1829 18.77 33.13

(b) Image classification and training speed on Im-
ageNet. Top-1 error (%): lower is better. Speed:
images/sec (X 103%): higher is better.

(a) Image classification top-1 error (%). TI (Tinylma-
genet). R: PreActResnet, W: WRN.

Table 1: Image classification and training speed.

ATTACK FGSM PGD

DATASET CIFAR-10 CIFAR-100 TI CIFAR-10 CIFAR-100
NETWORK R-18 W16-8 R-18 W16-8 R-18 R-18 W16-8 R-18 W16-8
Baseline 89.41 88.02 87.12 72.81 91.85 99.99 99.94 99.97 99.99
Input [51] 78.42 79.21 81.30 67.33 88.68 99.77 99.43 99.96 99.37
CutMix [49] 71.72 78.33 86.96 60.16 88.68 99.82 98.10 98.67 97.98
Manifold [45] 77.63 76.11 80.29 56.45 89.25 97.22 98.49 99.66 98.43
PuzzleMix [25] 57.11 60.73 78.70 57.77 83.91 97.73 97.00 96.42 95.28
Co-Mixup [24] 60.19 58.93 77.61 56.59 - 97.59 96.19 95.35 94.23
SaliencyMix [44] 57.43 68.10 77.79 58.10 81.16 97.51 97.04 95.68 93.76
StyleMix [21] 79.54 71.05 80.54 67.94 84.93 98.23 97.46 98.39 98.24
StyleCutMix [21] 58.79 56.12 77.49 56.83 80.59 97.87 96.70 91.88 93.78

AlignMixup (ours) ~ 54.83 5620 7418 5505  78.83 | 9542 9671 9040  92.16
Table 2: Robustness to FGSM & PGD attacks. Top-1 error (%): lower is better. TT: TinyImagenet.

3 Experiments

Image classification As shown in Table 1(a), AlignMixup is on par or outperforms the SOTA
methods by achieving the lowest top-1 error, especially on large datasets. On CIFAR-10, Align-
Mixup is on par with Co-Mixup and Puzzlemix with R-18 and WRN16-8. On CIFAR-100, Align-
Mixup outperforms Manifold mixup by 1.51% and 0.46% with R-18 and WRN16-8, respectively.
On TI, AlignMixup outperforms Co-Mixup by 2.72% using R-18. From Table 1(b), AlignMixup
outperforms PuzzleMix by 0.56% on ImageNet.

Robustness to FGSM and PGD attacks Following the evaluation protocol of [25] to evaluate
AlignMixup robustness to FGSM and PGD attacks As shown in Table 2, AlignMixup is more robust
comparing to SOTA methods. While AlignMixup is on par with PuzzleMix and Co-Mixup on
CIFAR-10 image classification, it outperforms Co-Mixup and PuzzleMix by 5.36% and 2.28% in
terms of robustness to FGSM attacks. There is also significant gain of robustness to FGSM on
Tiny-ImageNet and to the stronger PGD on CIFAR-100.

4 Conclusion

We have shown that mixup of a combination of input and latent representations is a simple and very
effective pairwise data augmentation method. The gain is most prominent on large datasets and in
combating overconfidence in predictions, as indicated by out-of-distribution detection. Interpolation
of feature tensors boosts performance significantly, but only if they are aligned. Our work is a
compromise between a “good” hand-crafted interpolation in the image space and a fully learned one
in the latent space. A challenge is to make progress in the latter direction without compromising
speed and simplicity, which would affect wide applicability.
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A Related Work

Mixup [51], concurrently with similar methods [23, 43], introduce mixup, augmenting data by
linear interpolation between two examples. While [5 1] apply mixup on intermediate representations,
it is [45] who make this work, introducing manifold mixup. Without alignment, the result is an
overlay of either images [51] or features [45]. [17] eliminate “manifold intrusion”—mixed data
conflicting with true data. Unlike manifold mixup, AlignMixup interpolates feature tensors from
deeper layers after aligning them.

Nonlinear mixing over random image regions is an alternative, e.g. from masking square regions [ 10]
to cutting a rectangular region from one image and pasting it onto another [49], as well as several
variants using arbitrary regions [41, 40, 19]. Instead of choosing regions at random, saliency can
be used to locate objects from different images and fit them in one [44, 34, 25, 24]. Exploiting the
knowledge of a teacher network to mix images based on saliency has been proposed in [9]. Instead
of combining more than one objects in an image, AlignMixup attempts to deform one object into
another.

Another alternative is Automix [53], which employs a U-Net rather than an autoencoder, mixing
at several layers. It is limited to small datasets and provides little improvement over manifold
mixup [45]. StyleMix and StyleCutMix [21] interpolate content and style between two images,
using AdalN [22], a style transfer autoencoder network. By contrast, AlignMixup aligns feature
tensors and interpolates matching features directly, without using any additional network.

Alignment Local correspondences from intra-class alignment of feature tensors have been used in
image registration [0, 31], optical flow [47], semantic alignment [30, 18] and image retrieval [39].
Here, we mostly use inter-class alignment. In few-shot learning, local correspondences between
query and support images are important in finding attention maps, used e.g. by CrossTransform-
ers [1 1] and DeepEMD [50]. The earth mover’s distance (EMD) [37], or Wasserstein metric, is an
instance of optimal transport [46], addressed by linear programming. To accelerate, [8] computes
optimal matching by Sinkhorn distance with entropic regularization. This distance is widely applied
between distributions in generative models [ 14, 32].

EMD has been used for mixup in the input space, for instance point mixup for 3D point clouds [5]
and OptTransMix for images [53], which is the closest to our work. However, aligning coordinates
only applies to images with clean background. We rather align tensors in the feature space, which is
generic. We do so using the Sinkhorn distance, which is orders of magnitude faster than EMD [&].

B Algorithm

AlignMixup and AlignMixup/AE are summarized in algorithm 1. By default (AlignMixup), for
each mini-batch, we uniformly draw at random one among three choices (line 2) over mixup on
input (x) or feature tensors (A, using either (11) or (12) for mixing). For AlignMixup/AE, there is
a fourth choice where we only use reconstruction loss on clean examples (line 7).

For mixup, we use only classification loss (5) (line 24). Following [45], we form, for each example
(z,y) in the mini-batch, a paired example (2’,y’) from the same mini-batch regardless of class
labels, by randomly permuting the indices (lines 1,10). Inputs x, 2’ are mixed by (2),(3) (line 12).
Feature tensors A and A’ are first aligned and then mixed by (2),(11) (A aligns to A’) or (2),(12)
(A’ aligns to A) (lines 14,23).

In computing loss derivatives, we backpropagate through feature tensors A, A’ but not through the
transport plan P* (line 20). Hence, although the Sinkhorn-Knopp algorithm [26] is differentiable,
its iterations take place only in the forward pass. Importantly, AlignMixup is easy to implement and
does not require sophisticated optimization like [25, 24].

C Hyperparameter settings

CIFAR-10/CIFAR-100 We train AlignMixup using SGD for 2000 epochs with an initial learning
rate of 0.1, decayed by a factor 0.1 every 500 epochs. We set the momentum as 0.9 with a weight
decay of 0.0001 and use a batch size of 128. The interpolation factor is drawn from Beta(a, )
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Algorithm 1: AlignMixup/AE (parts involved in the AE variant indicated in blue)
Input: encoders F'; embedding e, decoder D; classifier g

Input: mini-batch B := { (x4, y:)}o1

Output: loss values L := {£;}%_,

m ~ unif (S) > random permutation of {1,...,b}
mode ~ unif{clean, input, feat, feat'} > mixup?
fori e {1,...,b} do
(z,y) < (i, 9:) > current example
if mode = clean then > no mixup
Z + D(e(F(x))) > encode/decode
| li < Ly(z,2) > reconstruction loss
else > mixup
A ~ Beta(a, a) > interpolation factor
(@', y") < (@r(), Yn()) > paired example
if mode = input then >asin [51]
L out < F(mixy(z,z"))
>(2),(3) else > mode € {feat, feat'}
if mode = feat' then > choose (12) over (11)
L SWAP (x, '), SWAP (y, y')

A« F(z),A" + F(z') > feature tensors
A < RESHAPE cxr(A) > to matrix

A’ < RESHAPE .x.(A")
M «+ DIST(A, A) > pairwise distances (6)
P* < SINKHORN(exp(—M/¢)) > tran. plan (8)
R < DETACH(rP™) > assignments
A+ A'RT > alignment (9)
A <~ RESHAPE cxwxh(A) > to tensor
| out « f(mixx(A,A)) >(2),(11)
L; < Lc(g(out), mixy (y,y")) > classification loss (5)

where o = 2.0. Using these settings, we reproduce the results of SOTA mixup methods for image
classification, robustness to FGSM and PGD attacks, calibration and out-of-distribution detection.
For alignment, we apply the Sinkhorn-Knopp algorithm [26] for 100 iterations with entropic regu-
larization coefficient € = 0.1.

TinyImagenet We follow the training protocol of Kim et al. [25], training R-18 as stage-1 encoder
F using SGD for 1200 epochs. We set the initial learning rate to 0.1 and decay it by 0.1 at 600 and
900 epochs. We set the momentum as 0.9 with a weight decay of 0.0001 and use a batch size of 128
on 2 GPUs. The interpolation factor is drawn from Beta(a, o) where o = 2.0. For alignment, we
apply the Sinkhorn-Knopp algorithm [26] for 100 iterations with entropic regularization coefficient
e=0.1.

ImageNet We follow the training protocol of Kim ez al. [25], where training R-50 as F' using SGD
for 300 epochs. The initial learning rate of the classifier and the remaining layers is set to 0.1 and
0.01, respectively. We decay the learning rate by 0.1 at 100 and 200 epochs. We set the momentum
as 0.9 with a weight decay of 0.0001 and use a batch size of 100 on 4 GPUs. The interpolation
factor is drawn from Beta(c, o) where o« = 2.0. For alignment, we apply the Sinkhorn-Knopp
algorithm [26] for 100 iterations with entropic regularization coefficient ¢ = 0.1.

We also train R-50 on ImageNet for 100 epochs, following the training protocol described in Kim e?
al. [24].

CUB200-2011 For weakly-supervised object localization (WSOL), we use VGG-GAP and R-50
pretrained on ImageNet as F'. The training strategy for WSOL is the same as image classification
and the network is trained without bounding box information. In R-50, following [49], we modify
the last residual block (Layer 4) to have stride 2 instead of 1, resulting in a feature map of spatial



NETWORK RESNET-50

Baseline 24.03
Input [51] 2297
Manifold [45] 23.30
CutMix [49] 22.92
PuzzleMix [25] 22.49
Co-Mixup [24] 22.39
StyleMix [21] 24.06
StyleCutMix [21] 22.71
AlignMixup (ours) 22.0
Gain +0.39

Table 3: Image classification on ImageNet for 100 epochs using ResNet-50. Top-1 error (%): lower
is better. Blue: second best. Gain: reduction of error.

TASK OUT-OF-DISTRIBUTION DETECTION
DATASET LSUN (CROP) ISUN TI (CROP)
METRIC DET AUROC AUPR AUPR | DET AUROC AUPR AUPR | DET AUROC AUPR AUPR
Acc (ID) (OOD) | Acc (D) (OOD) | Acc (ID) (OOD)
Baseline 540 471 545 456 | 665 723 745 692 | 612 648 678  60.6
Input [51] 57.5 59.3 61.4 552 |59.6 63.0 60.2 63.4 | 58.7 62.8 63.0 62.1
Cutmix [49] 638  63.1 619 634 | 670 763 810 777 |704 843 871 806
Manifold [45] 589 603 578 595 |647 731 80.7 760 | 674 699 693 705
PuzzleMix [25] 643  69.1 80.6 737 |73.9 772 793 711 | 718 762 782 819
Co-Mixup [24] 704 756 823 703 |68.6  80.1 825 754 |715 848 861 805
SaliencyMix [44] 685 797 822 644 656 769 783 798 |733 837 870 820
StyleMix [21] 623 642 709 639 |616 684 676 603 |678 739 715 784
StyleCutMix [21] 708 786 837 749 |706 824 8.7 765 | 753 826 829 784

AlignMixup (ours) 742 799 84.1 75.1 | 72.8 83.2 84.1 803 | 772 85.0 87.8 85.0
AlignMixup/AE (ours) 76.9  83.5 86.7 794 | 756 84.1 85.9 81.7 | 79.7 88.0 89.7 85.7

Gain +6.1  +3.8 3.0 445 |[+17 17 422 419 | +44 432 +2.6  +3.8

Table 4: Out-of-distribution detection using PreActResnet18. Det Acc (detection accuracy), Au-
ROC, AuPR (ID) and AuPR (OOD): higher is better; Blue: second best. Gain: increase in perfor-
mance. TI: TinyImagenet. Additional results are in the supplementary material.

resolution 14 x 14. The modified architecture of VGG-GAP is the same as described in [52]. The
classifier is modified to have 200 classes instead of 1000.

For fair comparisons with [49], during training, we resize the input image to 256 x 256 and randomly
crop the resized image to 224 x 224. During testing, we directly resize to 224 x 224. We train the
network for 600 epochs using SGD. For R-50, the initial learning rate of the classifier and the
remaining layers is set to 0.01 and 0.001, respectively. For VGG, the initial learning rate of the
classifier and the remaining layers is set to 0.001 and 0.0001, respectively. We decay the learning
rate by 0.1 every 150 epochs. The momentum is set to 0.9 with weight decay of 0.0001 and batch
size of 16.

-
-

Vanilla Input Manifold CutMix PuzzleMix Co-Mixup AlignMixup
7 % % g5 " =711

Accuracy

0 Confidence 10 10 10 10 10 10 1

Figure 3: Calibration plots on CIFAR-100 using PreActResnet18: near diagonal is better. We plot
accuracy vs. confidence, that is, probability for the predicted class.

D Additional experiments

ImageNet classification Following the training protocol of [24], Table 3 reports classification
performance when training for 100 epochs on ImageNet. Using the top-1 error (%) reported for
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METRIC ECE OE

Baseline 10.25 1.11
Input [51] 18.50 1.42
CutMix [49] 7.60 1.05
Manifold [45] 18.41 0.79
PuzzleMix [25] 8.22 0.61
Co-Mixup [24] 5.83 0.55
SaliencyMix [44] 5.89 0.59
StyleMix [21] 11.43 1.31
StyleCutMix [21] 9.30 0.87

AlignMixup (ours) 5.78 0.41
AlignMixup/AE (ours) 5.06 0.48

Gain +0.77 +0.14

Table 5: Calibration using PreActResnet18 on CIFAR-100. ECE: expected calibration error; OE:
overconfidence error. Lower is better. Blue: second best. Gain: reduction of error.

competitors by [24], AlignMixup outperforms all methods, including Co-Mixup [24]. Importantly,
while the overall improvement by SOTA methods over Baseline is around 1.64%, AlignMixup im-
proves SOTA by another 0.4%.

Experiments using transformers We apply mixup to LeViT-128S [15] on ImageNet for 100
epochs. For AlignMixup, we align the feature tensors in the last layer of the convolution stem. The
top-1 accuracy is: baseline 67.4%, input mixup 68.3%, manifold mixup 67.8%, CutMix 68.7%,
AlignMixup 69.9%. Thus, we outperform input mixup and CutMix by 1.6% and 1.2% respec-
tively, which in turn outperform the baseline by 0.9% and 1.3% respectively. This means that the
improvement brought by mixing is roughly doubled.

Out-of-distribution detection We compare AlignMixup with SOTA methods, training R-18 on
CIFAR-100. At inference, ID examples are test images from CIFAR-100, while OOD examples
are test images from LSUN [48] and Tiny-ImageNet, resizing OOD examples to 32 x 32 to match
the resolution of ID images [49]. We also use test images from CIFAR-100 with Uniform and
Gaussian noise as OOD samples. Uniform is drawn from {(0, 1) and Gaussian from A (p1, o) with
u = o = 0.5. All SOTA mixup methods are reproduced using the same experimental settings.
Following [20], we measure detection accuracy (Det Acc) using a threshold of 0.5, area under ROC
curve (AuROC) and area under precision-recall curve (AuPR).

As shown in Table 4, AlignMixup outperforms SOTA methods under all metrics by a large margin,
indicating that it is better in reducing over-confident predictions.

Calibration We compare AlignMixup with SOTA methods , training R-18 on CIFAR-100. All
SOTA mixup methods are reproduced using the same experimental settings. We compare qualita-
tively by plotting accuracy vs. confidence. As shown in Figure 3, while Baseline is clearly over-
confident and Input and Manifold mixup are clearly under-confident, AlignMixup results in the best
calibration among all competitors. We also compare quantitatively, measuring the expected cali-
bration error (ECE) [16] and overconfidence error (OE) [42]. As shown in Table 5, AlignMixup
outperforms SOTA methods by achieveing lower ECE and OE, indicating that it is better calibrated.

Qualitative results of WSOL Qualitative localization results shown in Figure 4 indicate that
AlignMixup encodes semantically discriminative representations, resulting in better localization
performance.

Object detection Following the settings of CutMix [49], we use Resnet-50 pretrained on Ima-
geNet using AlignMixup as the backbone of SSD [29] and Faster R-CNN [35] detectors and fine-
tune it on Pascal VOCO7 [13] and MS-COCO [28] respectively. AlignMixup outperforms CutMix
mAP by 0.8% (77.6 — 78.4) on Pascal VOCO07 and 0.7% (35.16 — 35.84) on MS-COCO.
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Input
mixup [51]

CutMix [49]

AlignMixup

T U076
Figure 4: Localization examples using ResNet-50 on CUB200-2011. Red boxes: predicted; green:

ground truth.

E Additional ablations

ITERATIONS (i) O 10 20 50 100 200 500 1000

AlignMixup 80.98 80.96 81.31 81.42 81.71 81.50 81.34 81.28
Table 6: Ablation of the number of iterations in Sinkhorn-Knopp algorithm using R-18 on CIFAR-

100. Top-1 classification accuracy(%): higher is better.

Iterations in Sinkhorn-Knopp The default number of iterations for the Sinkhorn-Knopp algo-
rithm in solving (8) is ¢ = 100. Here, we investigate more choices, as shown in Table 6. The case of
1 = 0 is similar to cross-attention. In this case, we only normalize either the rows or columns in (7)
once, such that P1 = 1/r (when A aligned to A’) or PT1 = 1/r (when A’ aligned to A). We
observe that while AlignMixup outperforms the best baseline—StyleCutMix (80.66)—in all cases, it

performs best for ¢ = 100 iterations.

12



	Introduction
	AlignMixup
	Preliminaries
	Interpolation of aligned feature tensors
	Visualization and discussion

	Experiments
	Conclusion
	Related Work
	Algorithm
	Hyperparameter settings
	Additional experiments
	Additional ablations

