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Abstract

As the scope of machine learning broadens, we observe a recurring theme of
algorithmic monoculture: the same systems, or systems that share components
(e.g. datasets, models), are deployed by multiple decision-makers. While sharing
offers advantages like amortizing effort, it also has risks. We introduce and formalize
one such risk, outcome homogenization: the extent to which particular individuals
or groups experience the same outcomes across different deployments. If the
same individuals or groups exclusively experience undesirable outcomes, this
may institutionalize systemic exclusion and reinscribe social hierarchy. We relate
algorithmic monoculture and outcome homogenization by proposing the component
sharing hypothesis: if algorithmic systems are increasingly built on the same data or
models, then they will increasingly homogenize outcomes. We test this hypothesis
on algorithmic fairness benchmarks, demonstrating that increased data-sharing
reliably exacerbates homogenization and individual-level effects generally exceed
group-level effects. Further, given the current regime in AI of foundation models, i.e.,
pretrained models that can be adapted to myriad downstream tasks, we test whether
model-sharing homogenizes outcomes across tasks. We observe mixed results: we
find that for both vision and language settings, the specific methods for adapting
a foundation model significantly influence the degree of outcome homogenization.
We also identify societal challenges that inhibit the measurement, diagnosis, and
rectification of outcome homogenization in deployed machine learning systems.

1 Introduction

Machine learning is built on strong traditions of sharing: we share datasets (e.g. ImageNet), models
(e.g. BERT), libraries (e.g. PyTorch), optimizers (e.g. Adam), evaluations (e.g. SuperGLUE) and much
more. This ethos of sharing serves the field well: we are able to repeatedly capitalize on the effort
required to build high-quality assets (e.g. ImageNet has supported thousands of researchers in computer
vision), and improvements to these assets have sweeping benefits (e.g. BERT raised all boats in NLP).
Yet does sharing also have risks? Could this central tenet of the field lead to undesirable outcomes?

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



We observe that certain forms of sharing can be reinterpreted as monoculture: Kleinberg and Raghavan
[2021] define algorithmic monoculture as the state "in which many decision-makers all rely on the
[exact] same algorithm." In parts of society where algorithmic systems are ubiquitous, we see trends
towards such monoculture [Moore and Tambini, 2018, Engler, 2021]. Monocultures often pose serious
risks: Kleinberg and Raghavan [2021] show monoculture is suboptimal for decision-makers when
their decisions are interconnected, as when they compete to hire job candidates. In ML, our sharing
practices often are more complex than sharing the entire algorithmic system: should we think of our
practices of sharing assets in ML as monoculture and, if so, what harms should we worry about?

We investigate this question by proposing one potential risk we call outcome homogenization, i.e. the
phenomenon of individuals (or groups) exclusively receiving negative outcomes from all ML models
they interact with. For example, a job applicant may be rejected from every job they apply to due
to the use of similar algorithmic resume screening systems at all companies. We view outcome
homogenization as an important class of systemic harms that arise when we study social systems,
i.e. harms that require observing how individuals are treated by many decision-makers.2 In §2, we
conceptually motivate outcome homogenization in the context of algorithmic hiring. In §3, we
introduce the first mathematical formalism for outcome homogenization: we measure homogenization
as the observed probability of systemic failure normalized by the base rate.

To link the practice of sharing in ML with the proposed harm of homogenization, we pose and test the
component sharing hypothesis: algorithmic systems built using the same underlying components, such
as training data and machine learning models, will tend to systematically fail for the same individuals or
groups. We see component sharing as a specific form of algorithmic monoculture, which broadens the
initial definition in Kleinberg and Raghavan [2021] from decision-makers deploying the same system
to deploying similar systems in terms of how they are constructed. We investigate how two types of
shared components — training data and foundation models — contribute to homogeneous outcomes.

In §4, we demonstrate that data-sharing reliably homogenizes outcomes for individuals and for racial
groups, especially for small training datasets involving US census data. In §5, we discuss how the rise
of foundation models [Bommasani et al., 2021], i.e. pretrained models that can be adapted to myriad
downstream tasks, could yield unprecedented homogenization. Based on experiments with foundation
models for vision (CLIP) and language (RoBERTa), to our surprise, we find the use of foundation
models does not always exacerbate outcome homogenization. Instead, we find the specific mechanism
for adapting the foundation model to the downstream task significantly influences homogenization:
for example, linear probing consistently leads to more homogeneous outcomes than finetuning for
both modalities. Through these experiments, it is clear that the relationship between sharing and
homogenization is not fully explained by our hypothesis, but that there is some evidence that sharing
homogenizes outcomes. To advance the study of homogenization in practice, where systemic harms
are most consequential, we conclude by identifying key challenges for diagnosing, measuring, and
rectifying homogenization in society (§6).

2 Outcome Homogenization in Resume Screening

To illustrate outcome homogenization and its potential causes (including algorithmic monoculture), we
will use the example of algorithmic resume screening. Companies use resumes to screen job applicants,
choosing which candidates to interview and which to reject. Maximum homogenization occurs when
every company makes the same decision about each candidate, such that each lucky candidate is
interviewed by all companies and each unlucky candidate by no companies. We say that the unlucky
candidates who receive no interviews experience a systemic failure.3

What factors might homogenize outcomes in human decision-making? Even in the absence of
the algorithms, we observe homogeneous outcomes in many setting. In hiring, historically, hiring

2In fact, outcome homogenization is a systemic harm that may arise even in the absence of algorithmic
monoculture, though this work is restricted to settings where monoculture is present.

3A fundamental consideration is that the right or just outcomes in hiring are contested: the notions of merit and
ground truth are much more subjective than, say, classifying images as dogs or cats. For this illustrative example,
we do not delve into this, though we it makes explicit that some individuals can be justifiably rejected from all
opportunities (e.g. those attempting to become lawyers without passing the bar exam). Hence, the interpretation of
homogeneous outcomes will need to be contextual, and is likely to be value-laden in allocative contexts such as
hiring, education, lending, and health.
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managers at each company decided who to interview and often agreed in their decisions. This
agreement can be attributed to multiple sources: first, if the needs of each company were identical,
then managers at different companies may be incentivized to interview the same candidates, thereby
homogenizing outcomes. Second, if hiring managers’ choices are influenced by the same social
biases, they will mistakenly reject the same people, thereby homogenizing their errors. Bias in resume
screening is well-documented and remains significant [Jowell and Prescott-Clarke, 1970, Bertrand
and Mullainathan, 2004, Kline et al., 2021, inter alia].

However, neither explanation implies that systemic failures are inevitable. Since companies have
different needs and resumes are imperfect predictors of success in role, the “best" candidates will likely
differ across companies. Further, bias is not uniform across companies: Kline et al. [2021] find that
21% of firms were responsible for 46% of the racial bias in interview decisions. Even if decisions
are influenced by the same group-level biases, different companies may choose different individual
members of the advantaged and disadvantaged groups. Variance in company needs, in prevalence of
bias, and in individual hiring manager preferences all make it more likely that different resumes survive
the screening stage at different companies, ensuring some diversity in resume screening outcomes.

How do these dynamics change with the introduction of automated decision-making? Most
large companies now use automated resume screening software to parse resumes and decide which
applicants advance. As a stylized example, if every company deploys the same deterministic system
and has the same hiring criteria, then outcomes will be necessarily homogeneous: individuals will
either receive interviews at every company or be rejected by all of them (i.e. systemic failure). This
example is not far from reality: a few major vendors dominate the marketplace for algorithmic resume
screening with 700 companies, including over 30% of Fortune 100 companies, relying on Hirevue
[Hirevue, 2021]. Thiractice of different companies deploying the same system is defined as algorithmic
monoculture by Kleinberg and Raghavan [2021].

More generally, different companies may instead deploy similar, but non-identical, systems. We
expand the definition of algorithmic monoculture to encapsulate this broader setting, which is also
alluded to in Kleinberg and Raghavan [2021]. Engler [2021] describe this as the reality for college
enrollment management algorithms, writing "there are a relatively small number (between five and 10)
of prominent vendors in the enrollment management algorithm market, . . . their process and analytics
are markedly similar. Since their processes seem relatively consistent, the outcomes might be as well
— potentially leading to consistently good results for students who match the historical expectations
of colleges, and consistently poor results for students who don’t".

Component Sharing Hypothesis. In this work, we study systems that are related in how they are
constructed, akin to what is described by Engler [2021]. We pose the component sharing hypothesis
that relates such algorithmic monoculture with outcome homogenization: If deployed algorithmic
systems share components, outcome homogenization will increase (i.e. there will be more systemic
failures). In this work, we empirically test this hypothesis for two prominent forms of component
sharing: (i) the sharing of training data in training all deployed systems (§4) and (ii) the sharing of
the same foundation model for building all deployed systems (§5).

3 Formalizing Outcome Homogenization

While prior work [Kleinberg and Raghavan, 2021, Creel and Hellman, 2022] alludes to outcome
homogenization, here we provide the first mathematical formalism of outcome homogenization.4
In line with our running example of resume screening, we formalize outcome homogenization for
individuals in terms of systemic failures (i.e. every algorithmic system fails for an individual). We then
generalize to the group setting, where groups are systemically excluded rather than individuals, with a
discussion of how these metrics relate to established fairness, robustness, and accuracy metrics (§3.4).

3.1 Formalizing Outcome Homogenization for Individuals

Notation. Since we define outcome homogenization as a systemic phenomenon, we consider a social
system {hi}ki=1 where every individual j interacts each deployed models hi. As an example, an indi-

4The formal model of Kleinberg and Raghavan [2021] is related, but substantially distinct. Concretely, their
formalism considers harms experienced by decision-makers, whereas we center decision-subjects.
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vidual j∈ [N ] submits features xi
j (e.g. their resume) as input to company i∈ [k] to receive an outcome

hi(xi
j)= ŷij (e.g. an interview). Let Di be the empirical distribution of inputs xi for company i.5

To define a notion of failure, let Ii(xi
j) indicate if ŷij is a negative outcome, i.e. individual j experiences

a negative outcome from model hi. The failure rate for model hi is

FAIL(hi)≜ E
xi∼Di

Ii(xi)= Pr
xi∼Di

[
Ii(xi)=1

]
. (1)

Experimentally, we consider classification errors as failures (i.e. Ii(xi)≜ I
[
hi(xi) ̸=yi

]
), but other

negative outcomes (e.g. rejections from hiring or educational opportunities; Ii(xi) ≜ I
[
hi(xi)=−1

]
)

also can be studied under our framework.

Systemic failures for individuals. If an individual exclusively experiences failure, we say they
experience systemic failure. The observed rate of systemic failure SYSTEMIC FAILURE(h1,...,hk) is

SYSTEMIC FAILURE(h1,...,hk)≜E
j

[∏
i

Ii(xi
j)

]
=Pr

j

[
I1(x1

j )=1∧···∧Ik(xk
j )=1

]
. (2)

Homogenization metric for individuals. SYSTEMIC FAILURE quantifies homogeneous outcomes, but
is difficult to compare across systems with different underlying accuracies: SYSTEMIC FAILURE will
in general be higher for less accurate systems independent of a specific tendency to pick (i.e. fail) on the
same person. While we may sometimes want to combine accuracy and outcome homogenization into
an overall measure of utility or social welfare, which SYSTEMIC FAILURE(h1,...,hk) implicitly does,
we focus on a relative measure of homogenization that disentangles accuracy from homogenization.
In particular, we are interested in outcome homogenization even, and perhaps especially, in systems
that are highly accurate.

As a result, we measure individual-level outcome homogenization for a social system
{
hi
}k

i=1
by

normalizing the observed rate of systemic failure by the expected rate of systemic failure.

H individual(h1,...,hk)≜
SYSTEMIC FAILURE(h1,...,hk)∏

i

FAIL(hi)
=

E
j

[∏
i

Ii(xi
j)

]
∏
i

[
E
j
Ii(xi

j)

] (3)

This measure is the ratio between (i) the probability that an individual experiences systemic failure and
(ii) the probability that randomly sampled outputs for each model are all failures. That is, the measure
captures how the rate of systemic failure changes when we attend to the structure of individuals.

3.2 Formalizing Outcome Homogenization for Groups

In addition to individual-level homogenization, we also measure group-level homogenization. While
our individual-level metric individualizes harm, complementing work on group-level biases, we may
also want to identify the extent to which (possibly marginalized) social groups (e.g. Black women) are
systemically excluded. Further, we often lack individual-level information (e.g. due to privacy concerns;
see §6), or study algorithmic deployments that do not share individuals (e.g. hiring in different states).

Notation. For each input xi, denote the associated group as G(xi)∈G. Group identity can correspond
to the data producer (e.g. the age of a user querying a search engine) or the data subject (e.g. the race
of an individual subject to face recognition). Let Di

g be the empirical distribution of inputs for group
g (i.e. {xi |G(xi)=g}). The group failure rate FAILg(h

i) is

FAILg(h
i)≜ E

xi∼Di
g

Ii(xi). (4)

Homogenization metric for groups. To measure group-level homogenization, we modify our
individual-level metric with a weighted average over groups in place of a simple average over
individuals.

5Note that our framework is general: we permit the deployed models to be for different tasks and for the
individual’s inputs to not be the same, though in our resume screening example all the models perform the same
task and applicants often submit the same resume to different companies.
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Hgroup
G (h1,...,hk)=

∑
g

[
W (g)

∏
i

FAILg(h
i)

]
∏
i

FAIL(hi)
(5)

Weights. We consider three weighting schemes, specified by categorical probability distributions
W distributed over G (full definitions in §A.1):

Average (Havg) W weights each group proportional to its frequency across all deployments.

Uniform (Hunif) W is the uniform distribution, so W (g)= 1
|G| .

Worst (Hworst) W assigns weight 1 to the group gworst with the highest systemic failure rate and 0 to
all other groups. This reduces the numerator to simply be the systemic failure rate for gworst.

We introduce these weight functions to clarify that, much like having both individual-level metrics
and group-level metrics, we may want to weight groups differently in different circumstances. For
example, weighting by frequency may provide a useful overall measurement of homogenization but
obscure systemic exclusion experienced by minority groups or specifically the worst-off group.

3.3 Understanding our metrics

As a ratio of probabilities, our metrics take values in [0,∞) where 0 indicates no systemic failures, 1
indicates the observed rate matches the expected rate, and values greater than 1 indicate some degree of
outcome homogenization. In the individual setting, we assume each individual generates exactly one
input per deployment, which may not hold in practice (e.g. people may submit multiple resumes or not
apply to every company). We appropriately generalize our individual-level metric to address this in Ap-
pendix A. Further, in the group setting, we recover the individual-level metric using the uniform weight-
ing (or the average weighting) if each individual’s inputs are treated as belonging to their own group.

3.4 Relationship with other metrics

Since we introduce (several) metrics, we consider how they relate to metrics for related constructs
(e.g. accuracy, fairness, robustness). This speaks to the convergent and divergent validity of our metrics
[Campbell and Fiske, 1959, Messick, 1987, Jacobs and Wallach, 2021], i.e. whether they are adequately
correlated with metrics of similar constructs and adequately uncorrelated with metrics of dissimilar con-
structs. Here, we discuss theoretical relationships, whereas in §5.2 we look at the empirical correlations.

Accuracy. When failure are errors, we design our metrics to minimize (anti-)correlation with accuracy.
While not theoretically guaranteed, we empirically demonstrate this in Table 1. With that said, we
expect there will be settings where the two are correlated: our goal is not to technically ensure no
correlation, but to ensure that we do not neglect homogeneous outcomes in highly accurate systems
(i.e. neglect the individuals who are systemically failed even when the overall picture may seem rosy).

Fairness and Robustness. Beyond accuracy, outcome homogenization is closely related to fairness and
robustness. However, we emphasize that outcome homogenization is fundamentally about correlated
outcomes for social systems, whereas almost all robustness or fairness metrics are defined for a single
model. Recent work [Zhao and Chen, 2019, D’Amour et al., 2020, Wang et al., 2021] has initiated
the study of fairness in multi-task learning, however these works focus on favorable overall trade-offs
across tasks as opposed to systemic modes of failure. Conversely, our metrics cease to be interesting
(e.g. H individual is always 1) in the single-model setting as systemic failures are single-model failures.

At a more fine-grained level, algorithmic fairness metrics [e.g. Dwork et al., 2012, Hardt et al., 2016]
emphasize discrepancies between individuals/groups. In contrast, our metrics do not (explicitly) center
these differences: we are interested in the observed rate of systemic failures (and whether this exceeds
the expected rate). Performance differences are not sufficient for outcome homogenization: if the
performance disparities for each deployment do not align across deployments, then outcomes may not
be homogeneous. For robustness metrics, our metric Hworstin the worst-case setting closely resembles
the metrics studied in work on worst-group robustness [e.g. Sagawa* et al., 2020]. In particular, when
there is only one deployment, our metric recovers the standard worst-group accuracy normalized by
the overall accuracy.
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3.5 Alternative metrics

In Appendix A, we more extensively discuss desiderata for our metric, alternatives we considered,
and how we arrived at the metrics we present in the main paper. With that said, we also note conditions
where we may instead favor alternatives, as well as connections to familiar quantities like the
covariance, Pearson correlation, and (pointwise) mutual information in the binary setting (k=2).

4 Data-Sharing Experiments

Having stated our mathematical formalism and metrics for outcome homogenization, we test if sharing
training data leads to outcome homogenization. We consider widely used algorithmic fairness datasets
[Fabris et al., 2022]: systemic failures for these specific datasets may not be of direct social consequence,
but the datasets capture relevant social contexts where other forms of inequity have been documented.

Data. We work with two datasets: German Credit [GC; Dua and Graff, 2017], the third most widely
used fairness dataset, and ACS PUMS [Ding et al., 2021], which was built to replace the most widely
used fairness dataset, UCI Adult.6 GC contains information on 1000 German contracts (e.g. credit
history, credit amount, credit risk for the individual); following Wang et al. [2021], we consider
two prediction tasks of (i) predicting if the individual receives a good or bad loan and (ii) predicting
whether their credit amount exceeds 2000. ACS PUMS contains US Census survey data recording 286
features (e.g. self-reported race and sex, occupation, average hours worked per week) for 3.6 million
individuals. Ding et al. [2021] construct several predictions tasks of which we use three: (i) predict
if an individual is employed, (ii) predict an individual’s income normalized by the poverty threshold,
and (iii) predict if an individual has health insurance.

Individuals and Groups. For both datasets, we have individual-level information, hence we measure
individual-level homogenization across models for each task. For ACS PUMS, we have self-identified
race across 9 US Census categories (e.g. American Indian, Asian, Black/African American, White,
two or more races), hence we measure group-level racial homogenization.

Experimental Design. To test if data-sharing influences outcome homogenization, we execute a
controlled comparison by specifying two sampling protocols for the training data: fixed and disjoint. In
general, articulating and determining what it precisely means for models to share data is complicated in
natural settings: here we make the concept very precise. In the fixed setting, we samplen points without
replacement from the entire training dataset, which we use to train all of thek task-specific models (k=2
for GC and k=3 for ACS PUMS). In the disjoint setting, we sample kn points without replacement
that we randomly partition across the k task-specific models. In other words, in the fixed setting, the
task-specific models share the exact same training data inputs, whereas in the disjoint setting, the
task-specific models share the same training distribution, but not the exact data. We emphasize that
this is a subtle difference between the setting, but it implies fixed shares more than disjoint.

Having specified the training data, we train models for each of the k tasks (we consider all of logistic
regression, SVMs, gradient-boosted trees, and small neural networks in Appendix C). To account
for randomness, we report results averaged over 25 trials of the experiment (i.e. 5 samples of training
data and 5 training runs per sample for every value of n we consider).

Results and Analysis. In Figure 1 (left), we see clear evidence for our hypothesis: the fixed setting
reliably shows more homogeneity than the disjoint setting. Overall, across all 3 datasets and 4 learning
algorithms we consider, we find that fixed generally leads to more homogeneous outcomes than
disjoint, which provides evidence towards our hypothesis: the use of the same training data leads
to greater outcome homogenization than the use of different (but identically distributed) training data.
However, this relationship is not perfect: we do see several instances where the degree of homogeneity
is similar or even sometimes greater for the disjoint setting (e.g. regions of the left subplot of Figure 2).
Therefore, data sharing alone does not fully characterize homogeneity (e.g. randomness in training
and instability in the number of observed systemic failures are important to consider).

Further, the trends in the error rates for fixed and disjoint are near-identical (right subplot of Figure 1),
as we would expect given the relationship between the sampling protocols. That is, only observing
the accuracy is not enough in these settings for understanding the observed systemic failures, and
provides evidence that our measures correctly identify discrepancies even when the underlying

6We include results for a third dataset, LSAC [Wightman et al., 1998], in Appendix C.
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Figure 1: Data-sharing leads to more homogeneous outcomes. Data-sharing results for GC using
neural network classifiers, which shows homogenization (left) and expected systemic failure rate
(right) as a function of training dataset size (x-axis).

Figure 2: Picking on the same person. Data-sharing results for ACS PUMS using logistic regression:
individual-level homogenization (left) exceeds group-level (right; avg and unif).

accuracies of each model are (approximately) the same. Finally, as a function of dataset size, we
do not see consistent trends on the relationship between dataset scale and outcome homogenization,
though we unsurprisingly see the disjoint and fixed settings converge for larger dataset sizes (since
the discrepancies in the sampling become negligible due to convergence in measure).

Picking on the same person. For ACS PUMS in Figure 2, we contrast the individual-level and group-
level homogenization. (Recall the average and uniform metrics are the group-level analogues of our
individual-level metric.) Outcomes are consistently more homogeneous at the individual-group than for
racial groups. In fact, group-level analysis show little homogenization (values near 1) and little change
as a function of dataset size, whereas individual-level measurement exposes greater homogeneity and
more variation (which is unsurprising since group-level quantities are more extensively aggregated).
This has significant ramifications for many works on algorithmic fairness, which only consider social
groups (e.g. race): these works may miss systemic failures for particular individuals that are obscured at
the group-level [cf. Kearns et al., 2018, Hashimoto et al., 2018]. Even intersectional approaches may not
suffice to surface these systemic failures, unless each intersectional group comprises a single individual.

5 Model-Sharing Experiments

Having found that data-sharing appears to exacerbate outcome homogenization, we now turn to
model-sharing. Specifically, we test how sharing foundation models affects outcome homogenization.
Bommasani et al. [2021] define foundation models as "models trained on broad data (generally using
self-supervision at scale) that can be adapted to a wide range of downstream tasks". These models
have had a sweeping impact on the AI research community, most notably in NLP, and are increasingly
central to deploying ML at both startups (e.g. Hugging Face, Cohere, AI21) and established technology
companies (e.g. Google, Microsoft, OpenAI). Sharing is endemic to the foundation model paradigm:
to justify their immense resource requirements, models must be used repeatedly for costs to amortize
favorably. In the extreme, if an entire domain like NLP comes to build almost all downstream systems
on one or a few foundation models, then any biases or idiosyncrasies of these models that pervasively
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manifest downstream could potentially yield unprecedented systemic failures and outcome homog-
enization [Bommasani et al., 2021, Fishman and Hancox-Li, 2022]. We see initial evidence for such
algorithmic monoculture: BERT was downloaded 10 million times in the past month7 alone and GPT-3
enables hundreds of deployed apps. Consequently, we believe it is especially timely to understand if,
and to what extent, outcomes get homogenized as these models become entrenched as infrastructure.

5.1 Experiments

Data. To test how foundation models (e.g. CLIP, RoBERTa) influence homogenization, we run
experiments for both vision and language data.8 On the vision side, we work with the CelebA dataset
[Liu et al., 2015] of celebrity faces paired with annotations for facial attributes. For each face image,
given the associated attributes, we define two tasks (Earrings, Necklace) that involve predicting
whether the individual is wearing the specific apparel item. Attribute prediction in CelebA has been
studied previously in work on fairness and robustness [Sagawa* et al., 2020, Khani and Liang, 2021,
Wang et al., 2021]. On the language side, we use four standard English text classification datasets
following Gururangan et al. [2019]: IMDB [Maas et al., 2011], AGNews [Zhang et al., 2015], Yahoo
[Chang et al., 2008], and HateSpeech18 [de Gibert et al., 2018].

Individuals and Groups. Since the vision tasks are all based on CelebA, we have individual-level
information. However, since the language tasks involve entirely different data (e.g. movie reviews
vs. news articles), there is no (shared) individual-level information. At the group-level, for vision
we use annotations for hair color and for whether the individual has a beard, whereas for language
we automatically group inputs by binary gender.

Experimental Design. To test if model-sharing influences outcome homogenization, we contrast
setting with differing degrees of model-sharing. In the vision experiments, we produce task-specific
models for each task by either (i) training from scratch on CelebA data, (ii) linearly probing by
fitting a linear classifier on features from the CLIP foundation model [Radford et al., 2021], or (iii)
finetuning CLIP. To ensure meaningful comparisons, the models trained from scratch shared the same
ViT architecture [Dosovitskiy et al., 2021] used in CLIP but with weights initialized randomly.

In the language experiments, we further hone in on the specific adaptation method used to adapt
the foundation model (specifically RoBERTa-base [Liu et al., 2019]) to each task. We consider (i)
linear probing, (ii) finetuning, and (iii) BitFiT [Ben Zaken et al., 2022], which is a recent lightweight
finetuning method in NLP that involves freezing all the RoBERTa weights except the bias parameters
which are updated as in finetuning. Consequently, BitFit is an intermediary between probing and
finetuning, which has been shown to achieve similar accuracy as finetuning while updating very few
of the pretrained parameters. For both vision and for language, all models are trained for the same
number of epochs and we repeat each experiment for 5 random seeds per adaptation method.

Hypotheses. Much like data-sharing, model-sharing is graded and is not binary: different downstream
systems can share varying degrees of underlying models. By design, our experimental design
suggests a continuum in sharing: first, downstream system either can share a foundation model or
not (scratch). Second, among methods that involve foundation models, all methods initialize the
weights using the pretrained weights but differ in which parameters remain the same after adaptation
is completed: finetuning changes all the parameters, BitFit only changes the bias parameters, and
probing changes none of the parameters. As a result, overall, we can rank methods from most to least
sharing as (i) probing, (ii) BitFit, (iii) finetuning, (iv) scratch, which leads us to predict the degree
of homogenization will also follow this ranking under our component-sharing hypothesis.

Results. In Figure 3 (left), across all vision settings, we surprisingly find that scratch is the most
homogeneous, i.e. more homogeneous than either approach involving shared foundation models. This
is the opposite of what we hypothesized: we posit that this may indicate model sharing is not the key
explanatory variable for outcome homogenization here, but instead it is a more complex form of data
sharing. Specifically, we conjecture that since the scratch models are only trained on CelebA data,
whereas the others also are trained on the much larger WebImageText via the CLIP foundation model,
this may mean that the models based on CLIP are effectively regularized from learning idiosyncrasies
of CelebA that the scratch models acquire. This may more generally suggest that a more correct
hypothesis around data sharing should factor in the relationship (e.g. distribution shift) between the

7https://huggingface.co/bert-base-uncased as of October 2022.
8Full reproducibility details for vision are in §B.2; for language are in §B.3.
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Figure 3: Model-sharing does not reliably lead to more homogeneous outcomes. Model-sharing
results as a function of training/adaptation method for vision (left three) and language (rightmost).
Vision: scratch is the most homogeneous, then probing, then finetuning.
Language: probing is the most homogeneous; finetuning and BitFit are similarly homogeneous.

training data and the evaluation data for each model. Additionally, we find probing is consistently
more homogeneous than finetuning, which aligns with our hypothesis. Finally, akin to the census
results (§4), we once again find that outcome homogenization is significantly higher for individuals
than for groups (comparing to Havg and Hunif).

In Figure 3 (right), across all language settings, we find the ordering of homogenization matches what
our hypothesis predicts. Specifically, we find BitFit and finetuning achieve similar levels of homogene-
ity, even though BitFit updates 0.08% of the parameters full finetuning does (i.e. the number of shared
parameters for BitFit is more like probing than finetuning), suggesting the number of shared parameters
is not the right lens for understanding model sharing. More broadly, these results do suggest parameter-
sharing effects may contribute to outcome homogenization within the foundation model regime, but
comparisons between foundation models and no foundation models may be more complex to explain.

5.2 Correlations between Metrics

Since we introduce several metrics, we measure the correlations between our metrics. Further, we
measure correlations with accuracy (specifically, the expected rate of systemic failure) to test if homog-
enization is disentangled from accuracy. Since outcome homogenization is related to fairness, we also
measure the correlation between our metrics and a standard group fairness metric. Fairness metrics are
generally defined for a single model h, whereas we study entire systems {hi}ki=1. We extend the unfair-
ness definition used by Khani et al. [2019] as the variance in the systemic failure rates across groups.

UNFAIRNESSG(h
1,...,hk)≜Var

g

[∏
i

FAILg(h
i)

]
(6)

Results. In Table 1, we report the pairwise correlation between metric pairs, based on the models we

Vision Language
Havg Hunif Hworst Accuracy Unfairness Havg Hunif Hworst Accuracy Unfairness

Havg - (0.87, 0.93) (0.0, 0.96) (0.0, 0.09*) (0.0, 0.8) - (0.22, -0.47) (0.11, 0.56) (0.06*, -0.22*) (0.02, 0.09)
Hunif (0.87, 0.93) - (0.0, 0.96) (0.0, -0.02) (0.0, 0.74) (0.22, -0.47) - (0.63, -0.53) (0.0, 0.19*) (0.0, -0.01)
Hworst (0.0, 0.96) (0.0, 0.96) - (0.05, 0.1*) (1.0, 0.82) (0.11, 0.56) (0.63, -0.53) - (0.02, 0.13) (0.13, 0.47)

Table 1: Inter-metric correlations. Correlations amidst our metrics as well as with other metrics
reported as (Pearson R2, Spearman ρ) with * significant at p=0.05 and italics significant at p=0.001.

trained in §5.1. These correlations are for 45 systems (3 methods× 3 groupings× 5 random seeds) of 2
models for vision and 15 systems of 4 models for language. For vision, our metrics are highly correlated
with each other, whereas for language, Hunif patterns quite differently (columns 1-3, 6-8). This is
to be expected in that the vision groups (e.g. hair colors) all share similar frequencies, whereas the
female group is significantly rarer in the language datasets. For both language and vision, we find that
our metrics are generally not correlated, or perhaps weakly correlated, with accuracy as we intended
(columns 4, 9). With respect to fairness, our worst-case metric Hworst is strongly correlated for both
modalities, but for the other two metrics we see no linear correlations and only monotone correlations
for the vision experiments (columns 5, 10). This is in line with our broader expectations that fairness and
outcome homogenization are indeed related (especially for the worst-performing group), but that given
they are distinct theoretical constructs, they should not always be correlated [Campbell and Fiske, 1959].
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5.3 Discussion

Across our experiments, we provide considerable evidence that sharing leads to homogeneous outcomes,
but that it is incomplete explanation of homogeneity. This is particularly relevant when the findings in §4
and §5 are contrasted, given model-sharing in the foundation model regime indirectly implies immense
data-sharing via the pretraining data (as mediated by the pretrained initialization). We emphasize that
the regimes for these findings are quite different: low-dimensional tabular data with simple model
families in data-sharing vs. high-dimensional images/text with large neural networks in model-sharing,
so discrepancies in the findings may be attributable to these differences. More broadly, we believe a
more complete explanation requires accounting for the data distributions and the associated distribution
shifts (e.g. between pretraining and adaptation) at play. What we believe is clear, however, is that
our findings provide an empirical basis to build on our conceptual arguments that sharing in machine
learning can increase homogenization. This motivates investigation into real deployments of machine
learning: for example, does sharing/monoculture lead to homogenization in algorithmic hiring.

6 Societal Considerations and Challenges

To situate our work in a broader social context, we identify and discuss core challenges in diagnosing,
measuring, and rectifying outcome homogenization in real deployed systems.

Diagnosis. In our work, we posit monoculture yields homogenization: to follow this approach would
require knowing which deployments rely on the same vendor, dataset, or foundation model (i.e. know-
ing where there is monoculture). Unfortunately, how algorithmic systems are constructed is often
so opaque that identifying shared components is nigh impossible. However, if high homogenization
were demonstrated, the measurement itself could justify provisions for increased transparency to
identify the latent monoculture (i.e. the anti-causal direction). This provides a plausible mechanism for
empowering auditors to be granted conditional access to otherwise inaccessible proprietary systems.

Measurement. Measuring homogenization only requires black box access, which is often achievable
in practice [see Buolamwini and Gebru, 2018, Raji and Buolamwini, 2019, Metaxa et al., 2021].
However, identifying individual-level effects requires linking individual outcomes across deployments.
Due to privacy constraints, linking individuals across different deployments may be challenging or
impossible, which motivates group-level homogenization as more generally accessible (see §3.2).

Rectification. Even once outcome homogenization is identified, organizations may not be incentivized
to reduce it. In fact, homogenization neither is attributable to any single entity nor can it always be
addressed by unilateral action from a single organization. In the face of misaligned incentives and col-
lective action problems, regulation, policy, or other compliance mechanisms may be required. Potential
trade-offs between organization incentives and homogenization are further complicated if the harms of
homogeneous outcomes take time to observe/accrue, but the benefits of, say, maximizing accuracy are
immediate. More optimistically, Kleinberg and Raghavan [2021] show (under specific conditions) no
trade-off exists between accuracy-maximizing policies and diversifying outcomes for societal benefit.

7 Limitations and Conclusion

We have introduced, formalized, and measured outcome homogenization as a systemic harm that
may arise from practices of sharing in ML. Outcome homogenization is a new, understudied, and
conceptually compelling topic: its definition, interpretation, statistical estimation, mitigation, and
connections to monoculture remain poorly understood in spite of this work. We encourage future
work to push in all of these directions. As to our measure, direct optimization may not lead to desirable
outcomes, potentially even contributing to ethics-washing: its interpretation must be contextual since
the implications of homogeneous outcomes heavily depend on broader societal context.

We believe homogenization is essential to holistically characterizing algorithmic harm, especially
given growing monoculture (e.g. via foundation models). Without scrutiny, its harms may insidiously
entrench. Consequently, we believe early intervention is necessary to prevent such harms in society.

Reproducibility. All code, data, and experiments are available on GitHub and CodaLab Worksheets.9

9https://worksheets.codalab.org/worksheets/0x807c29f8eb574d1fba8f429ec78b5d1b
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• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]
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Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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