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This work describes a way of designing interest point detectors using an evolutionary-computer-assisted
design approach. Nowadays, feature extraction is performed through the paradigm of interest point detection
due to its simplicity and robustness for practical applications such as: image matching and view-based object
recognition. Genetic programming is used as the core functionality of the proposed human-computer
framework that significantly augments the scope of interest point design through a computer assisted
learning process. Indeed, genetic programming has produced numerous interest point operators, many with
unique or unorthodox designs. The analysis of those best detectors gives us an advantage to achieve a new
level of creative design that improves the perspective for human-machine innovation. In particular, we
present two novel interest point detectors produced through the analysis of multiple solutions that were
obtained through single and multi-objective searches. Experimental results using a well-known testbed are
provided to illustrate the performance of the operators and hence the effectiveness of the proposal.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Computer vision (CV) is concerned with the development of
artificial systems that can automatically analyze and interpret visual
information, and current systems have obtained impressive perfor-
mance on many high-level tasks that include object recognition [15],
object detection [2], image classification [7], image retrieval [36],
object categorization [12], and 3D reconstruction [17,57]. Neverthe-
less, the answer to the conundrum of artificial vision from the point of
view of machine intelligence presents fundamental problems with
underlying difficulties that attract continuously the interest of
researchers from diverse fields of research, such as pattern recogni-
tion, artificial intelligence, and cognitive science, to name but a few. In
particular, researchers from evolutionary computation are working
actively in numerous theoretical and practical CV problems, see
[3,4,39].

In this way, for many domains of technological and scientific
endeavor, solutions to particular problems are traditionally the
outcome of a detailed design process undertaken by a group of
human experts, and in this respect CV is not an exception. Problem
solving requires that a scientist or engineer makes a series of design
choices in order to produce a final solution [42]. Therefore, the

attributes of a particular solution will depend upon the initial
assumptions that are made, and on the overall understanding that
the human expert possesses regarding the nature of the problem
domain. One shortcoming for this approach to problem solving is that
sometimes, when a different type of solution is desired, or required,
then the design process must be changed and executed once more,
using a different set of assumptions and analytical perspectives. As a
result, a large number of competing proposals can exist for what
appear to be very basic and simple problems; for example, the
problem of interest point detection [64]. The design of candidate
solutions can also be understood as an informed search process. For
instance, in the scenario described above the search is guided by
human expertise and operates within a domain-specific space of
possible solutions. When the domain of a problem is well-known,
then some useful properties of the search space could conceivably be
inferred in order to improve the search process. However, even if this
is the case, and for difficult problems it cannot be assumed, the space
is normally very large, complex and non-linear [42].

In this work, we follow the genetic programming framework to
extend the traditional approach for problem solving just described.
Indeed, from all evolutionary-based methodologies inspired by
biological evolution genetic programming provides a framework to
find computer programs that perform a user-defined task. This
technique is a powerful machine learning approach that is still largely
unknown in the computer vision literature. This paper takes a further
step in the traditional way of designing CV programs using what we
call an evolutionary computer assisted design (E-CAD) concept. The
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idea is to explore the design space of a very specific and useful task
found in many machine vision systems, such as the interest point
detection, using the genetic programming technique. Later, when
numerous design solutions are available the decision maker could
create novel human designs from the set of human-competitive
machine intelligence solutions. Thus, the human designer is given the
possibility to create new designs that are far away of the abilities of a
designer using more traditional approaches. Indeed, the advantage is
clear because as we will show in the experiments the designer starts a
new design stage from a whole set of competitive designs; thus,
closing the human-machine invention cycle within a repeating
process that can be easily reconfigured to produce new suitable
designs according to the requirements of the task. This is possible
because a priori knowledge is easily incorporated within the genetic
programming framework that uses an adaptive learning paradigm to
approach the curse of dimensionality.

The goal of finding the optimal solution for real-world problems is
usually a quite arduous task; in particular, our work follows the
approach of artificial evolution. Thus, one of the main keys to set up
such a proposal is to begin with a clearly specified problemwhere it is
oftenmuch easier to propose a performance or evaluation criteria that
could help to define a measure of optimality. In this case, the search
could then be carried out automatically by a computer algorithm that
exploits the information that such measures of performance can
return. In this way, the search could be carried out using evolutionary
computation (EC), a population based meta-heuristic based on the
principles of artificial Darwinism that have shown great success at
exploring large search spaces; thus, producing solutions that are well
adapted to the prescribed objectives [9,19,24]. Indeed, EC is based on
the core principles of biological evolution, a natural process that
exhibits an adaptive power that by far outstrips that of any human-
engineered system [54]. Currently, a large amount of experimental
evidence exists that confirms the ability of EC to outperform man-
made solutions in many domains, such as antenna design, mathe-
matical proofs, and even CV [4,25,26,44,56,62]. In many cases, the
stochastic nature of EC allows it to sample large portions of the search
space, and sometimes produce solutions that might not be evident
to a human expert. For example, the case of network design in
photogrammetry in which the design of a specific network, con-
sidered as not atypical, was rediscovered by means of evolutionary
computing [38,41]. Moreover, in our previous work on the design of
interest point detectors genetic programming was able to rediscover
Beaudet's detector [60]. However, we do not suggest that the use of
machine learning in general, or EC in particular, should completely
substitute the design work that a human expert could perform. On the
contrary, we agree with the argument that a more complete strategy
would cooperatively include both methodologies, thereby blending
the complimentary skills of each [55], in what others have called a
computer assisted design (CAD) process [34,42].

In this paper, we employ an E-CAD based approach in the search for
optimal image operators that detect low-level features known as
interest points [64]. We use genetic programming, one of the more
advanced forms of EC, to automatically synthesize candidate solutions
that can be represented using tree structures. The evolutionary search is
guided by two performance criteria, the geometric and photometric
stability of detected points given by the repeatability rate [50], and a
measure of how disperse the set of detected points are over the image
plane [64]. In order to achieve a design these objectives are concur-
rently considered using two different techniques: first, both criteria are
included into a single objective function and the search returns the best
single solution found; and second, we pose a multi-objective problem
that searches for a diverse set of Pareto optimal solutions. In each case,
we use E-CAD to propose novel interest point detectors using the
operators that the evolutionary algorithm generates. The first one is
characterized by its simplicity and the high performance it achieves on
standard tests; we call it the Gaussian Intensity Neighborhood (GIN)

interest point detector. On the other hand, the other is a parameterized
operator for interest point detection that allows for fine grained control
of the amount of point dispersion without sacrificing the geometric
stability; we call it the Multi-Objective Parameterized (MOP) interest
point detector, and to our knowledge it is unique in CV literature.

The remainder of this paper is organized as follows. Section 2
presents the basic problem of interest point detection, reviews
previous work and defines the performance criteria. Genetic pro-
gramming is introduced in Section 3, and a review of applications to
CV is outlined. Section 4 describes the single objective approach to
evolutionary-computer-assisted design of interest point operators
and introduces the Gaussian Intensity Neighborhood detector. Then,
the multi-objective approach is presented in Section 5 and the Multi-
Objective Parameterized interest point detector is explained. Finally,
Section 7 contains a brief summary and outlines possible lines of
future research.

2. Interest point detection

Currently, many CV systems employ a local approach to feature
extraction and description, by focusing on small and highly invariant
features called interest points [31,33,49,50,64]. It is also important to
understand that the performance of these systems directly depends
on the quality of the underlying detection and description algorithms
that are used. Keeping to the former, there are dozens of proposed
interest point detectors available in CV literature, most of which are
the direct product of a human-based approach to problem solving
and/or design.

Using the taxonomy of local features given in [50,64], we can say
that interest points are detected by algorithms that focus on image
intensity values and only make weak assumptions regarding the
underlying structure of the observed scene [64]. Interest points are
salient image pixels that are unique and distinctive; i.e., they are
quantitatively and qualitatively different from other points, and they
normally represent only a small fraction of the total image area
[32,50].

2.1. Problem definition

A measure of how salient or interesting each pixel is can be
obtained using a mapping of the form K xð Þ : ℝþ→ℝ which we call an
interest point operator. Each interest point detector will employ a
different operator K; in this way, a detector refers to the complete
algorithmic process that extracts interest points, while an operator
only computes the corresponding interest measure. Applying K to an
image I produces what can be called an interest image I*, see Fig. 1.
Afterwards, most detectors follow the same basic process: non-
maxima suppression that eliminates pixels that are not local maxima,
and a thresholding step that obtains the final set of points. Therefore, a
pixel x is tagged as an interest point if the following conditions hold,

K xð Þ N max K xWð Þ j∀xW ∈W;xW ≠ xf g∧ K xð Þ N h; ð1Þ

where W is a square neighborhood of size n×n around x, and h is an
empirically defined threshold. The first condition in Eq. (1) accounts
for non-maximum suppression and the second is the thresholding
step, the process is shown in Fig. 1. Experiments in the current work
use n=5, while h depends on the operator.

2.2. Previous proposals

In this section only a brief overview of previous work is given, a
thorough discussion is beyond the scope of this paper. For example,
there exists a group of interest point detectors that employ operators
that are based on the auto-correlation or second-moment matrix. This
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mathematical concept captures local properties of the image gradient
around each point. For instance, previous detectors have used the de-
terminant and trace of this matrix [13,14,16], as well as an eigenvalue
analysis [51].

Other operators employmeasures pertaining to the local curvature
around each point. For instance, [1] used the determinant of the
Hessian matrix as the interest operator, and in [23] an operator is
proposed that uses the gradient magnitude and the intensity with
which the gradient changes direction. These operators, and others,
have been shown to be mathematically equivalent in [37].

Other examples include operators that exploit color information,
temporal information, and simple intensity variations around each
point. For a complete discussion and comparison of these and other
such methods, we refer the interested reader to [40,50,62,64].

2.3. Performance criteria

In the CV community a consensus about the evaluation of interest
point detectors is that probably the best approach to measure the
performance of each detector is to use experimental criteria and a set
of easily reproducible tests [35,50,58]. Other methods have been
proposed such as using an analysis based on mathematical axioms
[22] without success. The idea of using genetic programming is
congruent with the more useful approach of experimental evaluation
of interest points since such an evolutionary algorithm attempts to
automate the trial and error process; thus, providing an avenue
towards creative designs.

2.3.1. The repeatability rate
Currently, the most common measure for evaluating interest

points is the repeatability rate, which quantifies how invariant is the
detection process with respect to basic image transformations. In
this way, the repeatability rate is computed between two images
taken from different viewpoints; thus, one is the base image and the
other is its corresponding transformed counterpart. Therefore, after
detecting interest points on the base image it is possible to calculate
if the same scene features are retroprojected as interest points on
the transformed image. Moreover, the repeatability rate is repre-
sented as a well-behaved function that varies from 0 to 100, where
lower values indicate that detection is unstable with respect to the
mapping and higher values indicate a more stable detection process.
Therefore, if two viewpoints are related by a planar homography;
thus, computing a repeatability score is a straightforward task [50].
Hence, the repeatability rate is given by

rIi �ð Þ =
RIi

�ð Þ
��� ���

min γ1;γið Þ ; ð2Þ

where RIi is the set of point pairs that lie in the common part of both
images and correspondwithin an error �, and γ1=|{x1c}| and γi=|{xic}|

are the total number of points extracted from the base image I1 and
the transformed image Ii.

2.3.2. Point dispersion
Another performance criterion is to consider the amount of

dispersion that the interest points have over the image plane.
Although these criteria will greatly depend upon the underlying
structure of the imaged scene, some authors have stated that it is an
important determining factor when choosing a method for point
detection in specific problem domains [8,32,65].

A measure for point dispersion can be obtained by using the
entropy computed from the partition I j

� �
of the spatial dimensions

of the image plane I. Hence, D is the entropy value of the spatial
distribution of detected interest points X within the image and it is
calculated as follows:

D I;Xð Þ = −∑Pj⋅log2 Pj
� �

; ð3Þ

where Pj is approximated by the 2D histogram of the position of IPs
within I. In this work, the image is divided into a 2D grid where each
bin has a size of 8×8 pixels.

3. Genetic programming

The evolutionary computation (EC) paradigm consists of the
development of computer algorithms that base their core function-
ality on the basic principles of Darwinian evolution. These techniques
are population-based meta-heuristics, where candidate solutions are
stochastically selected and modified in order to produce new
solutions and thus to explore the search space of a particular problem.
The selection process favors those individuals that exhibit the best
performance, and the entire process is carried out iteratively until a
predefined termination criterion is reached, such as a maximum
number of iterations. The general strategy in artificial evolution
involves the following steps:

1. An encoding scheme that allows an evolutionary algorithm to
represent a set, or population, of problem solutions, where a single
solution is normally referred to as an individual. In GP a tree-based
structure is commonly applied.

2. An evaluation function f that quantifies the performance of each
individual given the objectives of a specific problem, and assigns a
fitness value accordingly.

3. A set of operations are applied to individuals in the population that
are chosen with a probability based on fitness, which are thereafter
used to create a new population of individuals that are tested in the
following iteration.

4. A mechanism that produces new solutions through variation of the
subset of selected individuals. This is accomplished with two
methods: Recombination that allows two individuals to exchange

Fig. 1. A look at interest point detection: left, an input image I; middle, interest image I*; right, detected points after non-maximum suppression and thresholding superimposed on I.
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information and thus to create a new candidate solution; and
mutationwhich slightly modifies the information contained within
a single solution.

5. A stochastic survival strategy that decides which individuals
will appear in the following iteration, or generation, of the
algorithm.

Genetic programming (GP) is arguably the most advanced and
complex technique used in EC, a generalization of the better-knownand
more widely used genetic algorithms (GAs) [9,24,29,45]. In canonical
GP, each individual solution is represented through a parse tree because
such structures can express simple computer programs, functions, or
mathematical operators. For instance, trees are equivalent to the
S-expressions used in the LISP language. Thus, individual trees are
made up of internal and leaf nodes, which are defined by a set of
primitive elements also called function set F, and terminal set T. These
sets define the search space of possible solutions that the GP can
produce; and even when a maximum depth or size limit for individual
trees is enforced, normally the search space is very large but finite. Thus,
the selection function is charged of choosing the best individuals for
reproduction through mutation and recombination. An individual
selected for mutation operation, randomly selects a node (mutation
site), which is deleted to substitute this part of the tree with a new
expression in order to obtain a new individual. On the other hand, the
recombination (crossover) method needs two selected individuals
called parents to perform its genetic operation; thus, one node of each
parent is randomly selected as the crossover point; then, the subtrees
are combined in order to create a new individual called child. In this
work, selection is carried out using a tournament with lexicographic
parsimony pressure, while keeping the best individual using as survival
strategy the stochastic universal sampling method. The termination
criteria were defined by a maximum number of generations; thus, the
evolutionary algorithm reaches a local optimum operator for the case of
the mono-objective test and a set of local Pareto fronts in the multi-
objective case. Most parameters involved have canonical values and
some others were set empirically after a number of tests. In accordance
with the five main features of the evolutionary algorithms described
above, Fig. 2 presents a basic GP algorithm with: a tree-based repre-
sentation for individuals (1); a module that evaluates all the individuals
in each population (2); a module that performs Population management
(3 and 5); and a module that performs Variation of individual solutions
(4) [68].

3.1. Computer vision applications

In recent years, GP has received a growing interest as amethodology
for solving CV problems because of its ability to synthesize specialized
image operators that can detect image features, or construct new
features which can then be used in higher-level tasks [3,4,39]. It is
possible to identify three types of GP-based approaches: (1) those that
employ GP to detect low-level features which have been predefined by
human experts, such as corners or edges [21,44,60–62,67] and recently
one regarding vegetation indices used on remote sensing [46,47];
(2) those that construct novel low-level features which are specific to a
particular problem domain, and do not need to be interpretable to a
human expert [18,27,28,30]; and (3) those approaches that use GP to
directly solve a high-level recognition problem [20,53,66]. For example,
keeping to the latter two groups, works have addressed the problem of
object detection [66], image classification [18,27], texture segmentation
[53], and the analysis of synthetic aperture (SAR) images [20,28,30].

However, such approaches often produce solutions that can be
unintuitive and in many cases lack a proper semantic interpretation.
For these reasons, researchers in other fields might become tentative,
or even skeptical, of solutions that are generated by GP. On the other
hand, the works from the first group, those that attempt to detect
features defined by human experts, by definition will not be
hampered by the problem of semantic interpretation and here we
can find examples also for object detection [43,44], and the analysis of
multi-spectral images [47]. Furthermore, we believe that when
appropriate fitness criteria are given, and when a comprehensive
analysis of the obtained results is carried out, then it is possible to
derive a better understanding of the logic behind the solutions that a
GP produces, and also to obtain deeper insights regarding the nature
of the problem itself.

4. E-CAD of interest operators using a single objective function

In this section we describe how we implemented a GP algorithm
with a single objective method that automatically generates image
operators for interest point detection. However, only a brief review is
given, a complete description of themethod can be read in our previous
works on this subject [60–62].

In general, the goal is to design the GP candidate operators that
maximize the overall stability of the detection process, as well as the
amount of dispersion of the set of detected points. Hence, two

Fig. 2. A high-level view of the basic GP algorithm. It is possible to observe three main modules for: Population evaluation, Population management, and Variation.
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important aspects must be described in detail: first, the search space
(i.e., sets F and T); and second, the evaluation function that combines
both objectives into a single measure.

4.1. Search space

In order to define an appropriate search space, the function and
terminal sets contain operations that are widely used by previously
proposed detectors. Hence, these sets are given by,

F = +; j+ j ;−; j− j ; j Iout j ; ⁎;�; I2out ;
ffiffiffiffiffiffiffi
Iout

p
; log2 Ioutð Þ; EQ Ioutð Þ; k⋅Iout

n o

∪ δ
δx

GσD
;
δ
δy

GσD
;Gσ=1;Gσ=2

� 	
;

T = I; Lx; Lxx; Lxy; Lyy; Ly
n o

;

ð4Þ

where I is the input image, and Iout can be any of the terminals in T, as
well as the output of any of the functions in F; EQ(I) is a histogram
equalization operation; Lu are Gaussian image derivatives along

direction u; Gσ are Gaussian smoothing filters;
δ
δu

GσD represents the

derivative of a Gaussian function1; and finally a scale factor k=0.05.
Note that the sets of functions and terminals cannot be considered as
final. However, most interest point detectors can be evolved with these
arguments. In previouswork, we showed that evolved operators match
previous detectors and hence that genetic programming was able to
rediscover Beaudet's detector, DoG filter, and Laplacian without
explicitly incorporating knowledge about the way of obtaining specific
operators. However, the functions and terminals contain elements that
artificial evolution could use to solve the problem. Harris is an example
of an operator that was never found by the evolutionary process.

4.2. Evaluation function

As explained above, it is expected that the fitness function should
promote the emergence of suitable operators that perform invariant
detection of highly repeatable points, and that the set of detected points
could be highly dispersed over the image plane. In this first part of the
work, both objectives are combined in amultiplicativemanner, as follows

f Kð Þ = rK;J �ð Þ⋅ϕα
x ⋅ϕ

β
y ⋅N

γ
% ; ð5Þ

where rK, J(�) represents the average repeatability rate of an individual
operator K computed from a set J of progressively transformed images
with a localization error �, and the terms ϕu promote a high point
dispersion. The final term

N% =
extracted points
requested points

; ð6Þ

is a penalizing factor that reduces the fitness value for detectors that
return less than the number of requested points. The terms ϕu behave
like sigmoidal functions within a specified interval,

ϕu =
1

1 + e−a Hu−cð Þ ; when Hu bHmax
u ;

0 otherwise:

8<
: ð7Þ

Where Hu is the entropy value of the spatial distribution of
detected interest points along direction u, on the reference image I1 of
the training set J, given by

Hu = −∑Pj uð Þlog2 Pj uð Þ
h i

; ð8Þ

with Pj(⋅) approximated by the histogram of interest point localiza-
tions. Values forHu={x, y}

max are set empirically using the reference image
of the training sequence, further details are provided in [62].

What is important to remark about the fitness function is that it
primarily promotes a high repeatability score, and penalizes operators
that obtain entropy values for point dispersion that lie outside the
specified bound. The training sequence used is the Van Gogh set of
progressively rotated images used as a reference test in [50,60,62]; all
images are of size 348×512 pixels and samples are shown in Fig. 3. The
training sequence has one base image and 16 progressively rotated
images by 11.25° clockwise; however, only eight transformed images are
used for fitness evaluation with a rotation angle of 22.5° between them.

4.3. Experimental results

This section gives an overview of 32 different executions of the GP
algorithm, from which a total of 17 useful interest operators were
obtained; see [62]. The reason for the discrepancy between the
number of runs and the number of operators, is the fact that some
runs produced the same operator (3 times), and in others the operator
that was found did not achieve stable performance on the rest of the
images that were not included during training (12 times).

4.3.1. Run-time parameters
Theparameters of theGP algorithmare provided in Table 1 andwere

used in all of the experiments. The first five parameters were set
empiricallywith canonical values. The next three help to limit the size of
the evolved programs. Tree depth is dynamically set up using two
maximum tree depths that limit the size of any given individual within
the population. The dynamic max depth is a maximum tree depth that
may not be surpassed by any individual unless its fitness matches or
surpasses the fitness of the best individual found so far. When this
happens, the dynamic max depth is augmented to the tree depth of the
newfittest individual. Conversely, it is reduced if thenewbest individual
has a lower tree depth. The real max depth parameter is a hard limit that
no individual may surpass under any circumstance. Finally, selection is
carried out using a tournament with lexicographic parsimony pressure.
The implementation of the previously described algorithm was
programmed onMatlab using the GP toolbox GPLAB2; a versionwritten
in C languagewas also implementedwith similar results using the LilGP
system3 and the Vision-something-Libraries VXL.4

4.3.2. Convergence of the GP algorithm
Here, we present the convergence plots of the GP algorithm, by

averaging over all 32 runs and computing the standard deviation at
each generation, the results are plotted in Fig. 4. Fig. 4(a) shows how
the fitness of the best individual in the population improves during
the run. It can be seen that fitness mostly improves during the initial
generations, and only slightly at the end of most runs, a characteristic
which is typical to evolutionary algorithms. Nevertheless, there is a
clear pattern of progressive improvements and overall optimization.
This is also shown in Fig. 4(b) with the average population fitness,
showing a pattern similar to that of the best fitness, but with a higher
variance. Fig. 4(c)–(d) presents the evolution dynamics of the size of
the best solution found; these figures plot, respectively, the number of
nodes and the depth of the corresponding program tree. For the
former, Fig. 4(c) shows that even if the size of the tree tends to
increase with each generation, the variance is quite large. Hence, it
can be argued that code bloat was effectively limited in some runs.
This is also evident in Fig. 4(d), where the depth of the best tree does
not tend to the maximum allowed depth of 7 levels; thus, the mean
value asymptotically reaches a maximum depth of 6.

1 All Gaussian filters are applied by convolution.

2 http://gplab.sourceforge.net/, GPLAB a Genetic Programming Toolbox for Matlab.
3 http://garage.cse.msu.edu/software/lil-gp/.
4 http://vxl.sourceforge.net/.

488 G. Olague, L. Trujillo / Image and Vision Computing 29 (2011) 484–498



Author's personal copy

4.4. Gaussian Intensity Neighborhood interest point detector

In our previouswork, we presented a general analysis of the types of
image operators that the GP produced [60,62]. It was seen that the GP
generates a variety of operators that employ several types of operations;
for instance, some operators employ a Difference-of-Gaussian opera-
tion, a Laplacian, or sometimesmore complex operators such as the sum
of second order derivatives or the determinant of the Hessianmatrix. In
the present paper, however, we describe a single solution found, and
utilize it in order to develop a novel interest point detector. For this
purpose,we have selected one of the simplest operators generatedwith
the GP, given by

K xð Þ = G2 � G2 � G1 �
I xð Þ

G2 � I xð Þ

 �2

:

The above operator represents the exact solution generated by the
GP. However, it can be simplified to

K� xð Þ = Gσ1
� I xð Þ

Gσ2
� I xð Þ

 !2

; ð9Þ

with σ1Nσ2. This operator returns higher values for pixels that are
brighter than the weighted average intensity of surrounding pixels
computed through a Gaussian mask.

On the other hand, the inverse can be written as

K−
� xð Þ = Gσ1

� Gσ2
� I xð Þ

I xð Þ

 �2

; ð10Þ

where K⁎
− returns higher values for pixels that are darker than

neighboring pixels. However, a similar ordering of pixels can be
obtained by using the approximation

K−
⁎

xð Þ∝1−K⁎ xð Þ; ð11Þ

which would require less calculations once K⁎ is computed. In both
cases, only two parameters need to be set, σ1 and σ2. The latter
controls the size of the local neighborhood that is considered, while
the former is simply a blur factor that eliminates high frequency
oscillations from the response to K⁎.

Based on the above, we propose the Gaussian Intensity Neighbor-
hood (GIN) interest point detector, that tags a pixel x as an interest
point if the following conditions hold

K⁎ xð Þ N max K⁎ xWð Þ j∀xW ∈W;xW ≠ x
n o

∧ K⁎ xð Þ N h1∨

K−
⁎

xð Þ N max K−
⁎

xWð Þ j∀xW ∈W;xW ≠ x
n o

∧ K−
⁎

xð Þ N h2:
ð12Þ

The threshold values hu set up the ratio between the intensity of an
interest point x and the intensity of neighboring pixels weighted by
the Gaussian function. For instance, if we omit the effects of Gσ1

and
set h=2, then an interest point x must have an intensity value that is
twice as large as the weighted average intensity of pixels located
within the Gaussian neighborhood with a standard deviation of σ2

centered around x. The second smoothing operation performed by Gσ1

helps to provide a more stable response to each operator by
eliminating high frequency oscillations. In summary, the GIN detector
identifies points that are darker or brighter than the Gaussian average
of pixels that surround it. Therefore, the GIN detector is similar, in
principle, to the detectors proposed in [48,52,59], where the relative
intensity of a pixel with respect to neighboring pixels is the
determinant factor during the detection process.

In Fig. 5 we present an example of the types of points that the GIN
detector extracts from an image, showing the interest image that K⁎

and K⁎
− generate, the points extracted with each operator indepen-

dently, and all of the points detected with GIN.
In Table 2 we present experimental results that confirm the stability

and invariance of the GIN detector by computing the average
repeatability rate it achieves on the Van Gogh training sequence, and
on four test sets which were also used in [62]. The test sequences are
shown inFig. 6 andhave the following characteristics: (1)Mars sequence
of 18 imageswith rotation transformations; (2)NewYork sequenceof 35
images with rotation transformations; (3) Graph sequence of 12 images
with illumination change; and (4) Mosaic sequence of 10 images with
illumination change. Table 2 also shows the average number of detected
points, and the size of all the images from each sequence. In all of the
experiments presented here, the parameter values for the GIN detector
were set to: σ1=2, σ2=1, h1=1 and h2=1.

In order to help contrast with our previous work we show results
of selected interest points detectors that illustrate their performance
as well as the complexity of their corresponding evolved operators.
Table 3 provides some numbers about the performance of such
detectors using the testbed, while Table 4 shows the operators written
in prefix notation as obtained with genetic programming. Finally,
Fig. 7 shows the interest points that were detected with GIN on some
of the images used for testing.

Fig. 3. Samples from the Van Gogh sequence used during training.

Table 1
General parameter settings for our GP framework.

Parameters Description and values

Population size 50 individuals.
Generations 50.
Initialization Ramped half-and-half.
Crossover Standard crossover.
Crossover and
Mutation prob.

Crossover prob. pc=0.85; mutation prob. pμ=0.15.

Tree depth Dynamic depth selection.
Dynamic max depth 5 levels.
Real max depth 7 levels.
Selection Tournament selection with lexicographic

parsimony pressure.
Survival Always keep the best solutions in the population (elitism).
Fitness function
parameters

ax=7, cx=5.05, ay=6, cy=4.3, α=20, β=20, γ=2.
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4.5. Discussion

It is evident that the GIN detector performs well on these tests,
something that was anticipated given the good performance that
other evolved operators also achieve [62]. Moreover, the basic logic
that GIN follows is similar to other intensity based methods
[48,52,59]. However, there is a sense in which GIN is clearly unique
and is because it was developed using an E-CAD approach that
successfully integrates artificial evolution and human expertise into a
single process. We believe, that such an approach can be extended to
other CV problems, especially when the following conditions are
fulfilled:

• The problem is of unquestionable difficulty.
• Many different types of solutions are indeed possible, and no
theoretical arguments can significantly constrain the size of the
search space for possible solutions.

• Reliable evaluation criteria do exist, which are clear, unambiguous
and easily computed.

The point detection problem clearly fulfills the above conditions,
and the development of the GIN detector confirms the validity of the
proposed approach.

In what follows, we describe how the proposed GP algorithm can
be extended by using a posteriori combination of optimization
objectives with a Pareto-based multi-objective evolutionary algo-
rithm. In this optimization scenario, the evolutionary-CAD process
once again provides an appropriate framework for the development of
another interest point operator that exhibits special qualities that
make it unique within current literature.

5. E-CAD using a multi-objective approach

In the preceding section, it was shown that the single objective
GP indeed produced operators that obtain very good performance
scores. However, the fitness function in Eq. (5) is dominated by the
repeatability term, and the amount of point dispersion is mostly used
as a constraint on the search process. At first, this appears to be a
reasonable choice because several researches emphasize the impor-
tance of stable detection in many real-world systems. However, we
suggest that in order to fully exploit the powerful search capabilities
that GP offers, then, a less constrained andmore thorough exploration
of the search space is desirable. One way to achieve this is to use a
posteriori articulation of objective preferences, where the optimiza-
tion process considers multiple criteria independently and the
decision maker must select the final trade-off between the objectives
after the search process has concluded [5]. Furthermore, one can
assume that for many images the proposed performance criteria,
stability and point dispersion, will indeed represent conflicting
objectives; i.e., they cannot be optimized simultaneously. Therefore,
we should not constrain the search process by prescribing the manner
in which the objectives should be considered during optimization.

The principles described above form the basis of Pareto-based
multi-objective optimization, where a set of optimal solutions is
desired instead of the single solution that is normally sought when a
single objective is optimized. In these circumstances, population-
based approaches, such as evolutionary algorithms, have proven to be
a successful choice to carry out the search process because they can
provide a diverse sampling of the set of Pareto optimal solutions for
difficult problems [5]. Therefore, in this section we describe a multi-
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Fig. 4. Convergence plots of the GP algorithm, showing mean value from the 32 runs, and standard deviation across 50 generations: (a) Best fitness; (b) Average population fitness;
(c) Size of best solution; and (d) Depth of best solution.
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objective GP (MO-GP) algorithm for the automatic synthesis of
interest operators, preliminary results for this approach were given in
[63] where information content is also included during the analysis. In
the current paper the experiments focus on stability and dispersion
because these results lead us to the interest point detector that we
called MOP using our E-CAD approach.

5.1. Multi-objective optimization

Multi-objective (MO) optimization, as a separate field of research,
is considerably more complex than single criterion optimization. The
cardinal difference between single and MO optimization problems is
the manner in which the concept of optimality is defined. On the one
hand, optimality is trivial in single objective problems because the
evaluation function resides in a mono-dimensional space. On the
other hand, in MO problems optimality is based on dominance
relations among different solutions in a multidimensional space.

In MO optimization two different and complimentary spaces exist:
one for decision variables and another for their evaluation on the
objective functions. In the case of real valued functions, these two
spaces are related by the mapping

→
f : Rn→Rk. The set of constraints

on
→
f xð Þ = f1 xð Þ;…; fk xð Þ½ � define a feasible region Ω⊂Rn in the

decision space along with its corresponding image Λ⊂Rn on the
objective function space, this is depicted in Fig. 8. The optimum is
found at the frontier of the objective space called the Pareto front,
while their corresponding decision variable values in Ω are called the
Pareto optimal set.

The concept of Pareto Dominance, specified in objective space, is
defined as follows. An objective vector

→
f i is said to dominate another

objective vector
→
f j,
→
f i≻

→
f j, if no component of

→
f i is larger (considering a

minimization problem) than the corresponding component of
→
f j, and

at least one component is smaller. For some problems, the objectives
are in conflict between them, and thus a single optimal solution
cannot exist. On the contrary, there is a set of multiple feasible
solutions and all of them are optimal in the Pareto sense.

5.1.1. Multi-Objective Evolutionary Algorithms (MOEAs)
When a MO problem lacks a closed form solution, it is necessary to

rely on computational search methods in order to obtain an
approximation for the true Pareto optimal set. In such cases, a MO
optimization algorithm should fulfill the following characteristics:

1. It must converge towards the true Pareto front. This is analogous to
the global optimum in a mono-objective problem, and it is difficult
to achieve when the objective functions are discontinuous or
irregular.

2. It must representatively sample the true Pareto front. This means that
the set of solutions should be diverse and widely dispersed along
the entire Pareto front. Nonetheless, depending on the structure of
the objective space some regions of the front may not be reachable.

Over the past two decades the EC paradigm has proven to be a
good choice for solving MO optimization problems, with techniques
that are called Multi-Objective Evolutionary Algorithms (MOEAs) [5].

Table 2
Average repeatability rate computed for the GIN detector on five different image
sequences, and the average number of interest points extracted from each image in the
sequence. In all of the experiments the parameters of the GIN detector were set to:
σ1=2, σ2=1, h1=1 and h2=1.

Name rJ No. of points Size in pixels Training

Van Gogh 92.99 774.9 348×512 Yes
Mars 94.65 1309.3 842×842 No
New York 88.51 972.35 512×512 No
Graph 88.61 642.00 512×512 No
Mosaic 98.00 569.61 512×512 No

Fig. 5. Interest points detected with the GIN detector: (a) test image; (b,c) interest image computed with K⁎ and K⁎
−; (d) total interest points extracted from the image; (e,f) points

detected with K⁎ and K⁎
− respectively.
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Currently, many flavors of MOEAs exist, including third generation
algorithms, such as NSGA-II [10], PESA [6], and SPEA2 [69], however
all of them address three main design issues. First, fitness assignment
considers the MO nature of the problem in order to bias the search
towards the Pareto front by considering dominance relations between
individual solutions. Second, because a uniform sampling of the
Pareto front is desired, diversity preservation is incorporated into the
search process. In MOEAs, diversity is procured in objective space,
using kernel methods [10], clustering methods [69], histogram
methods [6], or by applying the concept of -dominance [11]. Finally,
all state-of-the-art MOEAs implement elitism using population
archiving. For a comprehensive review on this topic the reader is
referred to [5,68]. In the present work, the improved Strength Pareto
Evolutionary Algorithm [69] is chosen as the basis for our GP-MO
algorithm.

5.1.2. Improved Strength Pareto Evolutionary Algorithm
The improved Strength Pareto Evolutionary Algorithm (SPEA2) is a

third generationMOEA, an improved version of the second generation
SPEA. Empirical results suggest that SPEA2 outperforms other MOEAs
on a comprehensive set of difficult benchmark tests [11,68,69]. Those
results showed that SPEA2 obtains a good approximation of the
true Pareto front and maintains a set of solutions that are highly
distributed in objective space. The fitness assignment used in SPEA2
[69] accounts for dominance and non-dominance relations between

individuals in the current population and individuals from past
generations. Diversity preservation is carried out using a k-th nearest
neighbor clustering algorithm that penalizes individuals that reside in
densely populated regions of objective space. It uses a fixed-size
archiving approach, and a truncation scheme promotes diversity by
removing individuals that have the minimum distance to their
neighbors. Finally, it preserves boundary solutions by using a carefully
designed selection operator.

5.2. Objective functions

Recalling Fig. 2, the implementation of a MO-GP search does not
require much modification, only the appropriate alterations to the
basic processes. Specifically, Population management is managed by
the SPEA-2 algorithm. However, the Variation and Population
evaluation modules work as in the mono-objective case. The only
additional modification is in fitness assignment, where

→
f Kð Þ is a

vector containing each of the possible objectives. Hence, in order to
set up the design as a minimization problem, we define the following
objective (cost) functions:

• Stability: f1 Kð Þ = 1
rK;J ϕð Þ + ϕ

.

• Point dispersion: f2 Kð Þ = 1
exp D I;Xð Þ−C1ð Þ.

Fig. 6. The reference image (right) and a transformed image (left) for each testing sequence. (a) Mars, (b) New York, (c) Graph, and (d) Mosaic.

Table 3
Average repeatability rate achieved by other evolved detectors. These results were
computed on seven sequences, including the training and testing sets, that were
obtained from the testbed. The acronym IPGP refers to the Matlab implementation
while C-IPGP to the C language system.

Detector Van Gogh Monet Mars New York Graph Mosaic Leuven

IPGP1 96.41 85.17 91.42 88.41 92.04 93.11 69.06
IPGP2 93.74 94.80 86.26 83.47 95.97 93.79 63.18
Harris 90.71 92.96 89.90 89.75 98.00 94.43 70.42
C-IPGP1 98.33 86.73 96.00 94.24 94.63 96.51 70.74
C-IPGP2 97.75 89.40 95.53 94.64 93.67 96.45 71.22
C-IPGP5 96.49 86.69 96.00 95.37 93.76 95.98 76.21
C-IPGP6 95.90 82.72 95.85 96.57 95.03 95.82 76.08

Table 4
The following detectors are provided to illustrate the complexity of the evolved
detectors in contrast with the Harris operator using prefix notation. In the case of
results obtained with LilGP the constant k=0.25.

Operator Symbolic expression

IPGP1 Gσ=2(−(Gσ=1(I), I))
IPGP2 −(Gσ=1(⁎(Lxx,Lyx)),Gσ=1(⁎(Lxx,Lyx)))
Harris −(−(⁎(Gσ=2(Iout2 (Lx)),Gσ=2(Iout2 (Ly))), Iout2 (Gσ=2(⁎(Lx,Ly)))),

k ⋅ Iout(+(Gσ=2(Iout2 (Lx)),Gσ=2(Iout2 (Ly))))),
C-IPGP1 Gσ=1(Gσ=2(Gσ=2(Gσ=2(+(Lxx,Lyy)))))
C-IPGP2 Gσ=1(Gσ=1(Gσ=2(Gσ=2(−(Gσ=2(Gσ=1(I)),Gσ=1(Gσ=1(I)))))))
C-IPGP5 Gσ=2(Gσ=2(−(I,Gσ=2(Gσ=2(abs(−(k⋅ Iout(Lxy), I)))))))
C-IPGP6 Gσ=2(Gσ=2(Gσ=2(−(I,Gσ=1(I)))))
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The constants were set experimentally to ϕ=0.001 and C1=10,
the former avoids a division by zero and the latter shifts the function
response closer to the origin to simplify the equation. The following
experimental runs take into account both criteria concurrently to look
for Pareto optimal solutions.

5.3. Experimentation

This section provides results of the experimental set-up and
describes the proposed MO-GP algorithm.

5.3.1. Implementation details
The implementation is similar to that used with the single

objective approach, with the following important modifications. The
selection and survival mechanisms depend on the SPEA2 algorithm,

and we use the code made available by the Platform and Programming
Language Independent Interface for Search Algorithms5 project. This
implementation allows a simple file based communication between
SPEA2 and the GPLAB toolbox; the parameters are given in Table 5.

5.3.2. Results
With the MO-GP we have generated the Pareto fronts shown in

Fig. 9, different sets of solutions were obtained by changing the
maximum allowed depth for individual program trees. For compar-
ative purposes, the figure also shows the performance of four well
known interest point detectors: Harris and Stephens [16], Beaudet [1],
Kitchen and Rosenfeld [23] and Förstner [14]. Additionally, the plot
also shows the performance of two operators that were evolved using
the single objective approach described in the previous section: KIPGP1

and KIPGP2 [60,62].
The plot in Fig. 9 shows that the Pareto optimal solutions found by

the MO-GP dominate, in the Pareto sense, all of the other detectors
included in the comparison. However, some of those operators
achieve comparable performance with respect to the stability
criterion, but are far less competitive when point dispersion is
considered. Indeed, Fig. 9 confirms that previous proposals weremore
concerned with achieving a stable and invariant detection process.
Moreover, the two operators that were evolved using the single
objective approach are also biased towards the stability criterion,

Fig. 7. GIN interest points from some of the images used for testing. Square points are detected with K⁎, and circle points with K⁎
−.

Fig. 8. Decision and Objective Space for MO optimization. A solution parameterization x
is mapped by a vector function

→
f into a vector in objective function space. The

highlighted points on the boundary ofΛ are elements of the Pareto front. 5 http://www.tik.ee.ethz.ch/sop/pisa/.
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something that was anticipated given the manner in which Eq. (5)
incorporates the dispersion terms.

Fig. 9 also identifies three operators located at what could be
considered as extreme points on the Pareto front: (a), (b) and (c). The

differences between these operators can be qualitatively seen in
Fig. 10 where the interest image and the corresponding interest points
are shown for the Van Gogh image. The conflict between both
objectives is evident. For instance, operator (a) detects points that are
cluttered together and very repeatable, while operator (c) detects
very sparse points that are unstable. Perhaps, the best trade-off is
given by operator (b), it obtains a good compromise between both
objectives. In Table 6 the mathematical expressions derived by the
MO-GP are shown, with only slight simplifications in order to simplify
their interpretation.

5.4. Multi-Objective Parameterized interest point detector

In this section we derive a novel interest point detector by
analyzing some of the solutions generated by the MO-GP. First, let us
consider operator (c) which is inversely proportional to the local
curvature around each point computed along the y direction. Interest
points are indeed highly dispersed, however stability is poor because
it only considers one principal direction. The same operation
computed over the x direction produced a similar performance on
both objectives.

On the other hand, operators (a) and (b) are in fact very similar
since both of them contain an absolute sum of three terms, see Table 6.
Note, a non-linear logarithmic term that depends on the intensity of
each point. Finally, a third term that describes the same ratio used
within the GIN detector through the K⁎

− operator, see Eq. (10). Indeed,
the first and last terms in operators (a) and (b) are the same, the
difference between them lies in the second term, a simple DoG filter.
The difference can be expressed as a single scale factor that modulates
the second term, and we can therefore write a more general expression
for both (a) and (b) as follows,

KMO = G2 � G1 � log G1 � I2
� �

+ W⋅G2 � jG1 � I−I j + G1 � I
I

����
����2;

where W is the scale factor that controls the amount of point
dispersion, and for convenience we can write this operator as

KMO = G2 � K1
MO + W⋅K2

MO + K3
MO

��� ���2; ð13Þ
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Fig. 9. The Pareto fronts found with each of the maximum allowed depths. The plot also
shows the performance obtained by four other detectors: Harris and Stephens [16],
Beaudet [1], Kitchen and Rosenfeld [23] and Förstner [14]. Additionally, two operators
that were evolved using the single objective approach described in Section 4 are also
shown: KIPGP1 and KIPGP2 [60,62]. Finally, the plot also identifies three operators located
at what could be considered as extreme points on the Pareto front: (a), (b) and (c).

Fig. 10. Interest image (first row) and interest points (second row) on the Van Gogh image obtained with operators (a), (b) and (c) that are located on the Pareto front of Fig. 9.

Table 5
General parameter settings for the MO-GP algorithm.

Parameters Description and values

Population size 200 individuals.
Generations 50 generations.
Initialization Ramped half-and-half.
Crossover andMutation prob. Crossover prob. pc=0.85; mutation prob. pμ=0.15.
Max depth 3, 5, 7 and 9 levels.
Archive size The SPEA2 archive size: 100.
Selection size The amount of individuals selected by SPEA2: 100.
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where KMO
1 =G1⁎ log(G1⁎ I

2), KMO
2 =G2⁎ |G1⁎ I− I| and K3

MO =
G1 � I

I
.

However, in practice the third term KMO
3 is several orders of

magnitudes smaller than the first two, and operator KMO can therefore
be simplified to

KMO = G2 � K1
MO + W⋅K2

MO

��� ���2: ð14Þ

Without any noticeable difference in performance. Operator KMO is
the interest operator used with our proposed Multi-Objective
Parameterized interest point detector (MOP). In order to understand
the usefulness of this detector, and the characteristics that make it
unique, lets further analyze KMO.

As stated above, KMO
2 is a DoG filter and it therefore enhances image

borders and edges. Therefore, if we assume that on many real-world
images borders and edges are not equally distributed over the image
then we can understand how W regulates the dispersion of interest
points by determining the relative importance of KMO

2 when the interest
measure is computed. The usefulness ofW comes from the fact that the
difference in performance between (a) and (b) is based on the amount
of dispersion that they produce. Hence, the stability is basically
equivalent between them. We can then use W to modify the amount
of dispersion without incurring in loss of stability for our detector.

Let us now test the effect ofW during detection, for this we use the
Van Gogh sequence and plot the stability and dispersion relative toW
which we vary within the range of [−1,1] with 0.05 increments; the
results are plotted in Fig. 11.

In Fig. 11(a) we can clearly appreciate a discontinuity atWN0; i.e.,
for W≤0 the detector is not stable, and the opposite is true when
WN0. Fig. 11(b) shows how the dispersion of interest points is
affected by W. In this case, the best dispersion is obtained when
W=0.05 which basically corresponds with operator (b). If we
consider W∈(0,1], then we can conclude the following:

• Stability ismostly unaffectedbyW,with a very good repeatability rate.
• Point dispersion varies proportionally with respect to W.

The MOP detector effectively provides a parameter that allows for
a fine control over the amount of point dispersion while geometric
stability remains unaffected. Similar performance patterns are
obtained when we apply the same test to other image sequences;
Fig. 12 shows the results for the New York and Mars sequences.

In order to illustrate the qualitative effects of W over all points
detected by MOP we present Fig. 13 that shows detected interest
points on three different images using W∈{0,0.05,0.5,1}. In every
image, we can observe that the dispersion of interest points varies
with respect to W, although for some images this difference is more
noticeable than for others.

In CV, the most widely used detector was proposed by Harris and
Stephens [16], and it also contains a tunable parameter k,

KHarris&Stephens xð Þ = det Að Þ−k⋅Tr Að Þ2;

where A is the autocorrelation matrix. Therefore, for comparison
Fig. 14 shows the results of conducting the same test on KHarris&Stephens

that were carried out for KMO in Fig. 11.

In both plots shown in Fig. 14, the performance of KHarris&Stephens is
very sensitive to values of kN0.3; in fact performance is so bad that the
corresponding points are outside the range shown. Moreover, in both
cases the overall performance seems largely unaffected for values of
k≤0.3, which suggests that the parameter does not provide fine control
over any of the objectives. Finally, in the case of point dispersion,
KHarris&Stephens never reaches a comparableperformance to that achieved
by the MOP detector.

5.5. Discussion

The MOP detector proposed in this section was effectively
designed using an E-CAD approach that successfully integrates a MO
problem statement based on Pareto optimality, a GP evolutionary
search process, and a detailed analysis of the Pareto set of solutions.
Such an approach is definitely not standard, particularly in CV
problems. However, the MOP detector gives encouraging evidence
regarding the validity and utility that such a design process could
offer. Through the MO-GP, we were able to construct a parameterized
detector that allows a user to control the dispersion of detected points
without sacrificing geometric stability, a characteristic that effectively
makes it unique in current literature.

6. Conclusions and future perspectives

In this work an evolutionary computed assisted design process
was described as an innovative method for designing interest point
detectors. Indeed, two novel image operators were proposed as a
byproduct of the analysis of multiple results achieved by single and
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Fig. 11. The effects of scale factor W on the performance of KMO. (a) Stability: the best
performance is achieved with W∈(0,1]. (b) Dispersion: the minimum corresponds
with operator (b). Notice that point dispersion is effectively controlled by W without
adversely affecting the geometric stability of the detection process.

Table 6
Symbolic expression for operators (a), (b) and (c) located on the Pareto front of Fig. 9.

Operator Symbolic expression

Operator (a) G2 � G1 � log G1 � I2
� 

+ G2 � G1 � I−Ið Þ + G1 � I
I

����
����
2

Operator (b) G2 � G1 � log G1 � I2
� 

+ k⋅G2 � G1 � I−Ij j + G1 � I
I

����
����
2

Operator (c) G2 � Ly
Lyy


 �
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multi-objective genetic-programming searches. In particular, the GIN
detector was designed from the pool of results obtained with the
single objective formulation. Such a detector identifies points that are

darker or brighter than the Gaussian average of pixels that surround
it; hence, it resembles other detectors that follow similar assumptions
but with a significant difference; it was designed with an E-CAD

Fig. 12. Effects of scale factor W on the performance of KMO when applied to two test sequences: New York (first row) and Mars (second row).

Fig. 13. MOP points detected on three test images with W∈ {0,0.05,0.5,1}.
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approach that successfully integrates evolutionary learning and
human expertise into a single process. This new approach was later
extended into a multi-objective framework to produce a parameter-
ized interest point detector (MOP) that presents unique characteris-
tics that help to fine-tune the point distribution across the image
without sacrificing the repeatability rate. We claim that this approach
could be extended to other CV problems that are of unquestionable
difficulty, with no analytical solution, but with reliable and easily
computed metrics. Finally, we believe that it is trivial to extend the
human-machine learning framework in order to design specialized
operators for different domains by incorporating the requirements of
specific applications.
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