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Abstract: 3D perceptual representations are well suited for robot manipulation
as they easily encode occlusions and simplify spatial reasoning. Many manipu-
lation tasks require high spatial precision in end-effector pose prediction, which
typically demands high-resolution 3D feature grids that are computationally ex-
pensive to process. As a result, most manipulation policies operate directly in 2D,
foregoing 3D inductive biases. In this paper, we introduce Act3D, a manipula-
tion policy transformer that represents the robot’s workspace using a 3D feature
field with adaptive resolutions dependent on the task at hand. The model lifts
2D pre-trained features to 3D using sensed depth, and attends to them to com-
pute features for sampled 3D points. It samples 3D point grids in a coarse to
fine manner, featurizes them using relative-position attention, and selects where
to focus the next round of point sampling. In this way, it efficiently computes 3D
action maps of high spatial resolution. Act3D sets a new state-of-the-art in RL-
Bench, an established manipulation benchmark, where it achieves 10% absolute
improvement over the previous SOTA 2D multi-view policy on 74 RLBench tasks
and 22% absolute improvement with 3x less compute over the previous SOTA
3D policy. We quantify the importance of relative spatial attention, large-scale
vision-language pre-trained 2D backbones, and weight tying across coarse-to-fine
attentions in ablative experiments. Code and videos are available at our project
site: https://act3d.github.io/.
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1 Introduction

Solutions to many robot manipulation tasks can be modeled as a sequence of 6-DoF end-effector
poses (3D position and orientation). Many recent methods train neural manipulation policies to
predict 3D end-effector pose sequences directly from 2D images using supervision from demon-
strations [1, 2, 3, 4, 5, 6]. These methods are typically sample inefficient: they often require many
trajectories to handle minor scene changes at test time and cannot easily generalize across camera
viewpoints and environments, as mentioned in the respective papers and shown in our experiments.

For a robot policy to generalize under translations, rotations, or camera view changes, it needs to
be spatially equivariant [7], that is, to map 3D translations and rotations of the input visual scene
to similar 3D translations and rotations for the robot’s end-effector. Spatial equivariance requires
predicting 3D end-effector locations through 2D or 3D action maps, depending on the action space
considered, instead of regressing action locations from holistic scene or image features. Transporter
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Figure 1: Act3D is a language-conditioned robot action transformer that learns 3D scene feature
fields of arbitrary spatial resolution via recurrent coarse-to-fine 3D point sampling and featurization
using relative-position attentions. Act3D featurizes multi-view RGB images with a pre-trained 2D
CLIP backbone and lifts them in 3D using sensed depth. It predicts 3D location of the end-effector
using classification of the 3D points of the robot’s workspace, which preserves spatial equivariance
of the scene to action mapping.

networks [8] introduced a spatial equivariant architecture for 4-DoF robot manipulation: they re-
project RGB-D input images to a top-down image and predict robot end-effector 2D translations
through a top-down 2D action map. They showed better generalization with fewer training demon-
strations than prior works. However, they are limited to top-down 2D worlds and 4-DoF manipula-
tion tasks. This begs the question: how can we extend spatial equivariance in action prediction to
general 6-DoF manipulation?

Developing spatially equivariant 6-DOF manipulation policies requires predicting 3D action maps
by classifying 3D points in the robot’s workspace as candidates for future 3D locations for the
robot’s end-effector. Predicting high-resolution 3D action maps, necessary for fine-grained manip-
ulation tasks, poses a computational challenge over their 2D counterparts due to the extra spatial
dimension. Voxelizing the robot’s 3D workspace and featurizing the 3D voxels at high resolution is
computationally demanding [9]. The next end-effector pose might be anywhere in free space, which
prevents the use of sparse 3D convolutions [10, 11] to selectively featurize only part of the 3D free
space. To address this, recent work of PerAct [1] featurizes 3D voxels using the latent set bottle-
necked self-attention operation of Perceiver [12], whose complexity is linear to the number of voxels
as opposed to quadratic, as the all-to-all self attention operations. However, it gives up on spatial
disentanglement of features due to the latent set bottleneck. Other methods avoid featurizing points
in 3D free space altogether and instead regress an offset for the robot’s 3D locations from a detected
2D image contact point [2, 13, 14], which again does not fully comply with spatial equivariance.

In this paper, we introduce Act3D, a language-conditioned transformer for multi-task 6 DoF robot
manipulation that predicts continuous resolution 3D action maps through adaptive 3D spatial com-
putation. Act3D represents the scene as a continuous 3D feature field. It computes a scene-level
physical 3D feature cloud by lifting features of 2D foundational models from one or more views
using sensed depth. It learns a 3D feature field of arbitrary spatial resolution via recurrent coarse-
to-fine 3D point sampling and featurization. At each iteration, the model samples 3D points in the
whole workspace and featurizes them using relative spatial cross-attention [15] to the physical 3D
feature cloud. Act3D predicts 3D end-effector locations by scoring 3D point features, and then
regresses the 3D orientation and opening of the end-effector. At inference time, we can trade-off
compute for higher spatial precision and task performance by sampling more 3D points in free space
than the model ever saw at training time.

We test Act3D in RLBench [16], an established benchmark for learning diverse robot manipulation
policies from demonstrations. We set a new state-of-the-art in the benchmark in both single-task
and multi-task settings. Specifically, we achieve a 10% absolute improvement over prior SOTA on
the single-task setting introduced by HiveFormer [2] with 74 tasks and a 22% absolute improvement
over prior SOTA in the multi-task setting introduced by PerAct [1] with 18 tasks and 249 variations.



We also validate our approach on a Franka Panda with a multi-task agent trained from scratch on 8
real-world tasks with a total of just 100 demonstrations (see Figure 2). In thorough ablations, we
show the importance of the design choices of our architecture, specifically, relative spatial attention,
large-scale vision-language pre-trained 2D backbones, high resolution featurization and weight tying
across coarse-to-fine attentions.

In summary, our contributions are: 1. A novel neural policy architecture for language-conditioned
multi-task 6-DoF manipulation that both reasons directly in 3D and preserves locality of computa-
tion in 3D, using iterative coarse-to-fine translation-invariant attention. 2. Strong empirical results
on a range of simulated and real-world tasks, outperforming the previous SOTA 2D and 3D methods
on RLBench by large absolute margins, and generalizing well to novel camera placements at test
time. 3. Thorough ablations that quantify the contribution of high-resolution features, tied attention
weights, pre-trained 2D features, and relative position attention design choices.

2 Related Work

Learning robot manipulation from demonstrations Many recent work train multi-task manip-
ulation policies that leverage Transformer architectures [1, 2, 3, 5, 17, 18] to predict robot actions
from video input and language instructions. End-to-end image-to-action policy models, such as RT-
1 [5], GATO [18], BC-Z [19], and InstructRL [3], directly predict 6-DoF end-effector poses from
2D video and language inputs. They require many thousands of demonstrations to learn spatial rea-
soning and generalize to new scene arrangements and environments. Transporter networks [8] and
their subsequent variants [20, 21, 22] formulate 4-DoF end-effector pose prediction as pixel classi-
fication in 2D overhead images. Thanks to the spatial equivariance of their architecture, their model
dramatically increased sample efficiency over previous methods that regress end-effector poses by
aggregating global scene features. However, they are limited to top-down 2D planar worlds with
simple pick-and-place primitives. 3D policy models of C2F-ARM [4] and PerAct [1] voxelize the
robot’s workspace and are trained to detect the 3D voxel that contains the next end-effector key-
pose. Spatially precise 3D pose prediction requires the 3D voxel grid to be high resolution, which
comes at a high computational cost. C2F-ARM [4] uses a coarse-to-fine voxelization to handle
computational complexity, while PerAct [1] uses Perceiver’s latent bottleneck [12] to avoid voxel-
to-voxel self-attention operations. Act3D avoids 3D voxelization altogether and instead represents
the scene as a continuous resolution 3D feature field. It samples 3D points in the empty workspace
and featurizes them using cross-attentions to the physical 3D point features.

Feature pre-training for robot manipulation Many 2D policy architectures bootstrap learning
from demonstrations from frozen or finetuned 2D image backbones [23, 24, 19, 25] to increase
experience data sample efficiency. Pretrained vision-language backbones can enable generalization
to new instructions, objects, and scenes [26, 21]. In contrast, SOTA 3D policy models are typically
trained from scratch from colored point clouds input [1, 4, 27]. Act3D uses CLIP pre-trained 2D
backbones [28] to featurize 2D image views and lifts the 2D features in 3D using depth [29, 30]. We
show that 2D feature pretraining gives a considerable performance boost over training from scratch.

Relative attention layers Relative attentions have shown improved performance in many 2D vi-
sual understanding tasks and language tasks [31, 32]. Rotary embeddings [33] implement relative
attention efficiently by casting it as an inner-product in an extended position feature space. In 3D,
relative attention is imperative as the coordinate system is arbitrary. 3D relative attentions have been
used before in 3D Transformer architectures for object detection and point labelling [34, 35]. We
show in Section 4 that relative attentions significantly boost performance of our model.

3 3D Feature Field Transformers for Multi-Task Robot Manipulation

The architecture of Act3D is shown in Figure 1. It is a policy transformer that, at a given timestep
t, predicts a 6-DoF end-effector pose from one or more RGB-D images, a language instruction,



and proprioception information regarding the robot’s current end-effector pose. Following prior
work [36, 1, 2, 3], instead of predicting an end-effector pose at each timestep, we extract a set of
keyposes that capture bottleneck end-effector poses in a demonstration. A pose is a keypose if (1)
the end-effector changes state (something is grasped or released) or (2) velocities approach near
zero (a common occurrence when entering pre-grasp poses or entering a new phase of a task). The
prediction problem then boils down to predicting the next (best) keypose action given the current
observation. At inference time, Act3D iteratively predicts the next best keypose and reaches it with
a sampling-based motion planner, following previous works [1, 2].

We assume access to a dataset of n demonstration trajectories. Each demonstration is a sequence of
observations O = {0y, 09, .., 04} paired with continuous actions A = {a1, as, .., a; } and, optionally,
a language instruction [ that describes the task. Each observation o; consists of RGB-D images from
one or more camera views; more details are in Appendix 7.2. An action a; consists of the 3D
position and 3D orientation (represented as a quaternion) of the robot’s end-effector, its binary open
or closed state, and whether the motion planner needs to avoid collisions to reach the pose:

a = {apos S R37ar0t € H, Qopen € {O, 1}, Qcol € {07 1}}
Next, we describe the model’s architecture in detail.

Visual and language encoder Our visual encoder maps multi-view RGB-D images into a multi-
scale 3D scene feature cloud. We use a large-scale pre-trained 2D feature extractor followed by a
feature pyramid network [37] to extract multi-scale visual tokens for each camera view. Our input
is RGB-D, so each pixel is associated with a depth value. We “lift” the extracted 2D feature vectors
to 3D using the pinhole camera equation and the camera intrinsics, based on their average depth.
The language encoder featurizes instructions with a large-scale pre-trained language encoder. We
use the CLIP ResNet50 [28] visual encoder and language encoders to exploit their common vision-
language feature space for interpreting instructions and referential grounding. Our pre-trained visual
and language encoders are frozen, not finetuned, during training of Act3D.

Iterative 3D point sampling and featurization Our key idea is to estimate high resolution 3D
action maps by learning 3D perceptual representations of free space with arbitrary spatial resolution,
via recurrent coarse-to-fine 3D point sampling and featurization. 3D point candidates (which we will
call ghost points) are sampled, featurized and scored iteratively through relative cross-attention [15]
to the physical 3D scene feature cloud, lifted from 2D feature maps of the input image views. We first
sample coarsely across the entire workspace, then finely in the vicinity of the ghost point selected
as the focus of attention in the previous iteration, as shown in Figure 1. The coarsest ghost points
attend to a global coarse scene feature cloud, whereas finer ghost points attend to a local fine scene
feature cloud.

Relative 3D cross-attentions We featurize each of the 3D ghost points and a parametric query
(used to select via inner-product one of the ghost points as the next best end-effector position in the
decoder) independently through cross-attentions to the multi-scale 3D scene feature cloud, language
tokens, and proprioception. Featurizing ghost points independently, without self-attentions to one
another, enables sampling more ghost points at inference time to improve performance, as we show
in Section 4. Our cross-attentions use relative 3D position information and are implemented effi-
ciently with rotary positional embeddings [15]. The absolute locations of our 3D points are never
used in our featurization, and attentions only depend on the relative locations of two features.

Decoding actions We score ghost point tokens via inner product with the parametric query to
select one as the next best end-effector position ay.s. We then regress the end-effector orientation
arot and opening aopen, as well as whether the motion planner needs to avoid collisions to reach the
pose acol, from the last iteration parametric query with a 2-layer multi-layer perceptron (MLP).
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Figure 2: Tasks. We conduct experiments on 92 simulated tasks in RLBench [16] (only 10 shown),
and 8 real-world tasks (only 5 shown).

Training Act3D is trained supervised from input-action tuples from a dataset of manipulation
demonstrations. These tuples are composed of RGB-D observations, language goals, and keypose
actions { (01,1, k1), (02,12, k2),...}. During training, we randomly sample a tuple and supervise
Act3D to predict the keypose action k given the observation and goal (o,!). We supervise position
prediction ap.s at every round of coarse-to-fine with a softmax cross-entropy loss over ghost points,
rotation prediction a,¢ With a MSE loss on the quaternion prediction, and binary end-effector open-
ing aopen and whether the planner needs to avoid collisions ac. With binary cross-entropy losses.

Implementation details We use three ghost point sampling stages: first uniformly across the entire
workspace (roughly 1 meter cube), then uniformly in a 16 centimeter diameter ball, and finally in a
4 centimeter diameter ball. The coarsest ghost points attend to a global coarse scene feature cloud
(32x32xncam coarse visual tokens) whereas finer ghost points attend to a local fine scene feature
cloud (the closest 32x32xncam out of the total 128x128xncam fine visual tokens). During training,
we sample 1000 ghost points in total split equally across the three stages. At inference time, we
can trade-off extra prediction precision and task performance for additional compute by sampling
more ghost points than the model ever saw at training time (10, 000 in our experiments). We’ll show
in ablations in Section 4 that our framework is robust to these hyper-parameters but tying weights
across sampling stages and relative 3D cross-attention are both crucial for generalization. We use a
batch size 16 on a Nvidia 32GB V100 GPU for 200k steps (one day) for single-task experiments, and
a batch size 48 on 8 Nvidia 32GB V100 GPUs for 600K steps (5 days) for language-conditioned
multi-task experiments. At test time, we call upon a low-level motion planner to reach predicted
keyposes. In simulation, we use native motion planner implementation provided in RLBench, which
is a sampling-based BiRRT [38] motion planner powered by Open Motion Planning Library (OMPL)
[39] under the hood. For real-world experiments, we use the same BiRRT planner provided by the
Movelt! ROS package [40]. please, see Appendix 7.4 for more details.

4 Experiments

We test Act3D in learning from demonstrations single-task and multi-task manipulation policies
in simulation and the real world. We conduct our simulated experiments in RLBench [16], an
established simulation benchmark for learning manipulation policies, for the sake of reproducibility
and benchmarking. Our experiments aim to answer the following questions:



Success Rate (%)

Auto-Lambda (100) = HiveFormer (100) !luwustructRL(wo) Act3D (10) = Act3D (100)
99

100 %
90

Al ddddda

Average Planning Tools Long Term  Rotation Invariant Motion Planning Screw Multi Modal Precision Visual Occlusion

@
3

N
b

Figure 3: Single-task performance. On 74 RLBench tasks across 9 categories, Act3D reaches 83%
success rate, an absolute improvement of 10% over InstructRL [3], prior SOTA in this setting.
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Figure 4: Multi-task performance. On 18 RLBench tasks with 249 variations, Act3D reaches 65%
success rate, an absolute improvement of 22% over PerAct [1], prior SOTA in this setting.

1. How does Act3D compare against SOTA 2D multiview and 3D manipulation policies in single-
task and multi-task settings with varying number of training demonstrations?

2. How does Act3D generalize across camera viewpoints compared to prior 2D multiview policies?

3. How do design choices such as relative 3D attention, pre-trained 2D backbones, weight-tied
attention layers, and the number of coarse-to-fine sampling stages impact performance?

4.1 Evaluation in simulation

Datasets We test Act3D in RLbench in two settings: 1. Single-task manipulation policy learn-
ing. We consider 74 tasks grouped into 9 categories proposed by HiveFormer [2]. Each task includes
variations which test generalization to novel arrangements of the same training objects. Each method
is trained with 100 demonstrations and evaluated on 500 unseen episodes. 2. Multi-task manipu-
lation policy learning. We consider 18 tasks with 249 variations proposed by PerAct [1]. Each task
includes 2-60 variations, which test generalization to new goal configurations that involve novel ob-
ject colors, shapes, sizes, and categories. This is a more challenging setting. Each method is trained
with 100 demonstrations per task split across variations, and evaluated on 500 unseen episodes per
task.

Baselines We compare Act3D with the following state-of-the-art manipulation policy learning
methods: 1. InstructRL [3], a 2D policy that directly predicts 6 DoF poses from image and language
conditioning with a pre-trained vision-and-language backbone. 2. PerAct [1], a 3D policy that
voxelizes the workspace and detects the next best voxel action through global self-attention. 3.
HiveFormer [2] and Auto-) [13], hybrid methods that detect a contact point within an image input,
then regress an offset from this contact point. We report numbers from the papers when available.

Evaluation metric We evaluate policies by task completion success rate, the proportion of execu-
tion trajectories that lead to goal conditions specified in language instructions.



Single-task and multi-task manipulation results We show single-task quantitative results of our
model and baselines in Figure 3. Act3D reaches 83% success rate, an absolute improvement of
10% over InstructRL [3], prior SOTA in this setting, and consistently outperforms it across all
9 categories of tasks. With only 10 demonstrations per task, Act3D is competitive with prior SOTA
using 100 demonstrations per task. Act3D outperforms 2D methods of InstructRL and Hiveformer
because it reasons directly in 3D. For the same reason, it generalizes much better than them to novel
camera placements, as we show in Table 3.

We show multi-task quantitative results of our model and PerAct in Figure 4. Act3D reaches 65%
success rate, an absolute improvement of 22% over PerAct, prior SOTA in this setting, consistently
outperforming it across most tasks. With only 10 demonstrations per task, Act3D outperforms
PerAct using 100 demonstrations per task. Note that Act3D also uses less than a third of PerAct’s
training computation budget: PerAct was trained for 16 days on 8 Nvidia V100 GPUs while we
train for 5 days on the same hardware. Act3D outperforms PerAct because its coarse-to-fine relative
attention based 3D featurization of the 3D workspace is more effective than the perceiver’s latent
bottleneck attention in generating spatially disentangled features.

4.2 Evaluation in real-world

In our real-world setup, we conduct experiments with a Franka
Emika Panda robot and a single Azure Kinect RGB-D sen-
sor. We consider 8 tasks (Figure 2) that involve interactions
with multiple types of objects, spanning liquid, articulated ob-  reach target 10 10/10
jects, and deformable objects. For each task, we collected duck in oven 15 6/10

. . . . ~ wipe coffee 15 7/10
10 to 15 kinesthetic demonstrations and trained a languaged fruits in bowl 10 3/10

Task # Train Success

conditioned multi-task model with all of them. We report the stack cups 15 6/10
success rate on 10 episodes per task in Table 1. Act3D cancap-  .nofer beans 15 5/10
ture semantic knowledge in demonstration well and performs  pregs handsan 10 10/10
reasonably well on all tasks, even with a single camera input.  uncrew cap 10 8/10
One major failure case comes from noisy depth sensing: when

the depth image is not accurate, the selected point results in Table 1: Real-world tasks.

imprecise action prediction. Leveraging multi-view input for
error correction could improve this, and we leave this for future work. For videos of the robot
executing the tasks, please see our project website.

4.3 Ablations

We ablate the impact of our design choices in Table 3. We perform most ablations in the single-task
setting on 5 tasks: pick cup, put knife on chopping board, put money in safe, slide block to target,
take umbrella out of stand. We ablate the choice of pre-trained 2D backbone in the multi-task setting
with all 18 tasks.

Generalization across camera viewpoints: We vary camera viewpoints at test time for both
Act3D and HiveFormer [2]. The success rate drops to 20.4% for HiveFormer, a relative 77% drop,
while Act3D achieves 74.2% success rate, a 24% relative drop. This shows detecting actions in 3D
makes Act3D more robust to camera viewpoint changes than multiview 2D methods that regress
offsets.

Weight-tying and coarse-to-fine sampling: All 3 stages of coarse-to-fine sampling are neces-
sary: a model with only 2 stages of sampling and regressing an offset from the position selected
at the second stage suffers a 4.5% performance drop. Tying weights across stages and relative 3D
positional embeddings are both crucial; we observed severe overfitting without, reflected in respec-
tive 17.5% and 42.7% performance drops. Fine ghost point sampling stages should attend to local
fine visual features with precise positions: all stages attending to global coarse features leads to a
8.3% performance drop. Act3D can effectively trade off inference computation for performance:



Table 2: Ablations.

Average success rate in
single-task setting (5 tasks)

Full Act3D 98.1

Only 2 stages of coarse-to-fine sampling 93.6

. . No weight tying across stages 80.6

Core design choices Absolute 3D positional embeddings 55.4

Attention to only global coarse visual features 89.8

Only 1000 ghost points at inference time 93.2

Vi int ch Act3D 74.2

tewpornt changes HiveFormer 20.4
Multi-task setting (18 tasks)

CLIP ResNet50 backbone 65.1

Backbone ImageNet ResNet50 backbone 53.4

sampling 10,000 ghost points, instead of the 1,000 the model was trained with, boosts performance
by 4.9%.

Pre-training 2D features: We investigate the effect of the pre-trained 2D backbone in the multi-
task setting where language instructions are most needed. A ResNet50 [28] backbone pre-trained
with CLIP improves success rate by 8.7% over a ResNet50 backbone pre-trained on ImageNet.

For additional ablations regarding augmentations and sensitivity to hyperparameters, please see the
Appendix section 7.6. We found Random crops of RGB-D images to boost performance but yaw
rotation perturbations did not help. The model is robust to variations in hyperparameters such as the
diameter of ghost point sampling balls or the number of points sampled during training.

4.4 Limitations and future work

Our framework currently has the following limitations: 1. Act3D is limited by the motion planner
used to connect predicted keyposes with straight trajectory segments. It does not handle manip-
ulation of articulated object well, such as opening/closing doors, fridges, and ovens, where robot
trajectories cannot be well approximated by few line segments.2. Act3D does not utilize any de-
composition of tasks into subtasks. A hierarchical framework that would predict language subgoals
for subtasks [41, 42, 43] and feed those to our language-conditioned policy would allow better re-
usability of skills across tasks. Addressing these limitations is a direct avenue for future work.

5 Conclusion

We presented Act3D, a language-conditioned policy transformer that predicts continuous resolution
3D action maps for multi-task robot manipulation. Act3D represents the scene using a continuous
resolution 3D feature map, obtained by coarse-to-fine 3D point sampling and attention-based fea-
turization. Act3D sets a new state-of-the-art in RLBench, an established robot manipulation bench-
mark, and solves diverse manipulation tasks in the real world from a single RGB-D camera view
and a handful of demonstrations. Our ablations quantified the contribution of relative 3D attentions,
2D feature pre-training, and weight tying during coarse-to-fine iterations.
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7 Appendix

7.1 Real-world Setup

Our real-robot setup contains a Franka Panda
robotic arm equipped with a parallel jaw grip-
per, as shown in Figure 5. We get RGB-D in-
put from a single Azure Kinect sensor at a front
view at 30Hz. The image input is of resolu-
tion 1280 x 720, we crop and downsample it
to 256 x 256. We calibrate the extrinsics of
the camera with respect to the robot base us-
ing the easy_handeye' ROS package. We ex-
tract keyposes from demonstrations in the same
was as in simulation. Our real-world multi-task
policy is trained on 4 V100 GPUs for 3 days,
and we run inference on a desktop with a single
RTX4090 GPU. For robot control, we use the
open-source frankapy’ package to send real-
time position-control commands to the robot.

Franka Emika

7.2 RLBench Simulation Setup

To ensure fair comparison with prior work, we
use ncam € {3,4} cameras for simulated ex-
periments depending on the evaluation setting.
In our single-task evaluation setting first pro-
posed by HiveFormer [2], we use the same 3
cameras they do {Ojef(, Orights Owrist}- In our
multi-task evaluation setting first proposed by
PerAct [1], we use the same 4 cameras they do

{Ofrontv Olet Orighta Owrist}'

Figure 6: RLbench simulation setup.

"https://github.com/IFL-CAMP/easy_handeye
https://github.com/iamlab-cmu/frankapy
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7.3 RLBench Tasks

Task Variation Type  # of Variations Avg. Keyposes Language Template

open drawer placement 3 3.0 “open the — drawer”

slide block color 4 4.7 “slide the block to — target”

sweep to dustpan  size 2 4.6 “sweep dirt to the — dustpan”

meat off grill category 2 5.0 “take the — off the grill”

turn tap placement 2 2.0 “turn — tap”

put in drawer placement 3 12.0 “put the item in the — drawer”

close jar color 20 6.0 “close the — jar”

drag stick color 20 6.0 “use the stick to drag the cube onto the — target”
stack blocks color, count 60 14.6 “stack — — blocks”

screw bulb color 20 7.0 “screw in the — light bulb”

put in safe placement 3 5.0 “put the money away in the safe on the — shelf”
place wine placement 3 5.0 “stack the wine bottle to the — of the rack”

put in cupboard category 9 5.0 “put the — in the cupboard”

sort shape shape 5 5.0 “put the _ in the shape sorter”

push buttons color 50 3.8 “push the — button, [then the — button]”
insert peg color 20 5.0 “put the ring on the — spoke”

stack cups color 20 10.0 “stack the other cups on top of the — cup”
place cups count 3 11.5 “place — cups on the cup holder”

Figure 7:

PerAct [1] tasks. We adopt the multi-task multi-variation setting from PerAct [1] with 18

tasks and 249 unique variations across object placement, color, size, category, count, and shape.

We adapt the single-task setting of HiveFormer [2] with 74 tasks grouped into 9 categories according
to their key challenges. The 9 task groups are defined as follows:

The Planning group contains tasks with multiple sub-goals (e.g. picking a basket ball and
then throwing the ball). The included tasks are: basketball in hoop, put rubbish in bin, meat
off grill, meat on grill, change channel, tv on, tower3, push buttons, stack wine.

The Tools group is a special case of planning where a robot must grasp an object to interact
with the target object. The included tasks are: slide block to target, reach and drag, take
frame off hanger, water plants, hang frame on hanger, scoop with spatula, place hanger on
rack, move hanger, sweep to dustpan, take plate off colored dish rack, screw nail.

The Long term group requires more than 10 macro-steps to be completed. The included
tasks are: wipe desk, stack blocks, take shoes out of box, slide cabinet open and place cups.

The Rotation-invariant group can be solved without changes in the gripper rotation. The
included tasks are: reach target, push button, lamp on, lamp off, push buttons, pick and lift,
take lid off saucepan.

The Motion planner group requires precise grasping. As observed in [81] such tasks often
fail due to the motion planner. The included tasks are: toilet seat down, close laptop lid,
open box, open drawer, close drawer, close box, phone on base, toilet seat up, put books on
bookshelf.

The Multimodal group can have multiple possible trajectories to solve a task due to a large
affordance area of the target object (e.g. the edge of a cup). The included tasks are: pick
up cup, turn tap, lift numbered block, beat the buzz, stack cups.

The Precision group involves precise object manipulation. The included tasks are: take usb
out of computer, play jenga, insert onto square peg, take umbrella out of umbrella stand,
insert usb in computer, straighten rope, pick and lift small, put knife on chopping board,
place shape in shape sorter, take toilet roll off stand, put umbrella in umbrella stand, setup
checkers.

The Screw group requires screwing an object. The included tasks are: turn oven on, change
clock, open window, open wine bottle.

The Visual Occlusion group involves tasks with large objects and thus there are occlusions
from certain views. The included tasks are: close microwave, close fridge, close grill, open
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grill, unplug charger, press switch, take money out safe, open microwave, put money in
safe, open door, close door, open fridge, open oven, plug charger in power supply

7.4 Further Architecture Details

Relative 3D cross-attentions We featurize each of the 3D ghost points and a parametric query
(used to select via inner-product one of the ghost points as the next best end-effector position in
the decoder) independently through cross-attentions to the multi-scale 3D scene feature cloud, lan-
guage tokens, and proprioception. Featurizing ghost points independently, without self-attentions to
one another, enables sampling more ghost points at inference time to improve performance, as we
show in Section 4. Our cross-attentions use relative 3D position information and are implemented
efficiently with rotary positional embeddings [15].

Given a point p = (z,y, z) € R? and its feature x € R?, the rotary position encoding function PE
is defined as:

M;
PE(p,x) = M(p)x = x (D
M/s
cosxzl, —sinzl, 0 0 0 0
sinxf,  cosxby 0 0 0 0
_ 0 0 cosyl —sinyly 0 0
M. = 0 0 sinyf;  cosyby 0 0 @
0 0 0 0 cos 20, —sin z0;
0 0 0 0 sinz0,  cos 20

1
100006(k—1)/d>

PE(pi,x;)"PE(p;,x;) = x{ M(p;)"M(p;)x; = x; M(p; — p:)x; 3)

where 6;, = k € {1,..,d/6}. The dot product of two positionally encoded features is

which depends only on the relative positions of points p; and p;.

We extract two feature maps per 256x256 input image view: 32x32 coarse visual tokens and
128x128 fine visual tokens. We use three ghost point sampling stages: first uniformly across the
entire workspace (roughly 1 meter cube), then uniformly in a 16 centimeter diameter ball, and fi-
nally in a 4 centimeter diameter ball. The coarsest ghost points attend to a global coarse scene
feature cloud (32x32xncam coarse visual tokens) whereas finer ghost points attend to a local fine
scene feature cloud (the closest 32x32xncam out of the total 128x128xncam fine visual tokens).
During training, we sample 1000 ghost points in total split equally across the three stages. At infer-
ence time, we can trade-off extra prediction precision and task performance for additional compute
by sampling more ghost points than the model ever saw at training time (10, 000 in our experiments).
We’ll show in ablations in Section 4 that our framework is robust to these hyper-parameters but tying
weights across sampling stages and relative 3D cross-attention are both crucial for generalization.
We use 2 layers of cross-attention and an embedding size 60 for single-task experiments and 120 for
multi-task experiments. Training samples are augmented with random crops of RGB-D images and
+45.0 yaw rotation perturbations (only in the real world as this degrades performance in simulation
as we’ll show in Section 4). The cropping operation is performed on aligned RGB and depth frames
together, thus maintain pixel-level correspondence. We use a batch size 16 on a Nvidia 32GB V100
GPU for 200k steps (one day) for single-task experiments, and a batch size 48 on 8 Nvidia 32GB
V100 GPUs for 600K steps (5 days) for language-conditioned multi-task experiments. At test time,
we call a low-level motion planner to reach predicted keyposes. In simulation, we use native mo-
tion planner implementation provided in RLBench, which is a sampling-based BiRRT [38] motion
planner powered by Open Motion Planning Library (OMPL) [39] under the hood. For real-world
experiments, we use the same BiRRT planner provided by the Movelt! ROS package [40].
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Figure 8: Scene Feature Cloud Generation. We encode each image independently with a pre-
trained and frozen vision backbone to get multi-scale feature maps, pass these feature maps through
a feature pyramid network and retain only two: a coarse feature map (at a granularity that lets ghost
points attend to all tokens within GPU memory) and a fine feature map (as spatially precise as
afforded by input images and the backbone). We lift visual tokens from these two feature maps for
each image to 3D scene feature clouds by averaging the positions of pixels in each 2D visual token.
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points and select a local fine feature cloud with 3x32x32 tokens

Figure 9: Iterative Ghost Point Sampling, Featurization, and Selection.

7.5 High Precision Experiments

In this section, we further investigate the ability of Act3D to improve over existing 3D methods
that voxelize the workspace for high-precision tasks. We compare two variants of Act3D against
PerAct [1] on three high-precision tasks in success rate. The first Act3D variant is the standard
architecture used in the remainder of our experiments operating on 256x256 input image views; the
second operates on higher resolution 512x512 input image views, from which it extracts four times
as many visual tokens with more precise 3D positions. This further tests the ability of Act3D to
provide high precision by processing higher-resolution RGB-D views at the cost of extra compute.
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i=1 i=2 i=3 Action Predction

Figure 10: Iterative Ghost Point Sampling, Featurization, and Selection.

Method insert peg sort shape screw nail

PerAct 16 31 12
Act3D (256x256) 29 34 31
Act3D (512x512) 47 43 55

Act3D improves over PerAct on high precision tasks and can further benefit from higher resolution
RGB-D images, at the cost of extra compute.

7.6 Further ablations

Augmentations: Random crops of RGB-D images boost success rate by 6.5%, but yaw rotation
perturbations drop it by 11.9%. This is in line with PerAct [1] results in RLBench.

Hyperparameter sensitivity: Act3D is robust to variations in hyperparameters. Doubling the di-
ameter of ghost point sampling balls from (16 cm, 4 cm) to (32 cm, 8 cm) drops success rate by
1.5% and halving it to (8 cm, 2 cm) by 6.9%. Halving the total number of ghost points sampled
from 1,000 to 500 drops success rate by 2.3% whereas doubling it to 2,000 increases success rate by
0.3%. We use 1,000 ghost points in our experiments to allow training with a single GPU per task.
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Table 3: Ablations.

Model

Average success rate in
single-task setting (5 tasks)

Best Act3D model (evaluated in Fig. 3) 98.1
Only 2 stages of coarse-to-fine sampling:

93.6

Core design choices full wquspaqe, 16 cm ball, regress an offset
No weight tying across stages 80.6
Absolute 3D positional embeddings 55.4
Attention to only global coarse visual features 89.8
Only 1000 ghost points at inference time 93.2
Viewpoint changes Best Act3D model (evaluated in Fig. 3) 74.2
HiveFormer 20.4
Augmentations No image augmentations 91.6
With rotation augmentations 86.2
Double sampling ball diameters: 32 cm and 8 cm 96.6
Hyperparameter sensitivi Halve sampling ball diameters: 8 cm and 2 cm 91.2
yperp Y 500 ghost points at training time 95.8
2000 ghost points at training time (need 2 GPUs) 98.4

Multi-task setting (18 tasks)

Backbone

CLIP ResNet50 backbone
ImageNet ResNet50 backbone
No backbone (raw RGB)

65.1
534
45.2
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