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ABSTRACT

In clinical environments, image-based diagnosis is desired to achieve robustness on
multi-center samples. Toward this goal, a natural way is to capture only clinically
disease-related features. However, such disease-related features are often entangled
with center-effect, disabling robust transferring to unseen centers/domains. To
disentangle disease-related features, we first leverage structural causal modeling
to explicitly model disease-related and center-effects that are provable to be dis-
entangled from each other. Guided by this, we propose a novel Domain Agnostic
Representation Model (DarMo) based on variational Auto-Encoder. To facilitate
disentanglement, we design domain-agnostic and domain-aware encoders to respec-
tively capture disease-related features and varied center effects by incorporating a
domain-aware batch normalization layer. Besides, we constrain the disease-related
features to well predict the disease label as well as clinical attributes, by leveraging
Graph Convolutional Network (GCN) into our decoder. The effectiveness and
utility of our method are demonstrated by the superior performance over others on
both public datasets and in-house datasets.

1 INTRODUCTION

A major barrier to the deployment of current deep learning systems to medical imaging diagnosis
lies in their non-robustness to distributional shift between internal and external cohorts (Castro et al.,
2020; Ma et al., 2022; Lu et al., 2022), which commonly exists among multiple healthcare centers
(e.g., hospitals) due to differences in image acquisition protocols. For example, the image appearance
can vary a lot among scanner models, parameters setting, and data preprocessing, as shown in Fig. 1
(a,b,c). Such a shift can deteriorate the performance of trained models, as manifested by a nearly 6.7%
AUC drop of empirical risk minimization (ERM) method from internal cohorts (source domain, in
distribution) to external cohorts (unseen domain, out of distribution), as shown in Fig. 1 (bar graph).

To resolve this problem, existing studies have been proposed to learn task-related features (Castro
et al., 2020; Kather et al., 2022; Wang et al., 2021b) from multiple environments of data. Although
the learned representation can capture lesion-related information, it is not guaranteed that such
features can be disentangled from the center effect, i.e., to variations in image distributions due to
domain differences in acquisition protocols (Fang et al., 2020; Du et al., 2019; Garg et al., 2021).
The mixtures of such variations lead to biases in learned features and final predictions. Therefore, a
key question in robustness is: in which way can the disease-related features be disentangled from
center-effect? Recently, (Sun et al., 2021) showed that the task-related features can be disentangled
from others, but requires that the input X and the output Y are generated simultaneously. However,
this requirement often does not satisfy disease prediction scenarios, e.g., Y can refer to ground-truth
disease labels acquired from pathological examination, which can affect lesion patterns in image X .

∗indicates corresponding author
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Figure 1: Domain differences between multi centers (Cases-a,b,c) and AUC evaluation of Ours/
ERM (training by Empirical Risk Minimization) under internal/external cohort. Cases-a,b,c: similar
cases in different centers (red rectangles: lesion areas). The bar graph: in the external cohort (unseen
domain) ERM performs a large drop on AUC, instead, our proposed method performs stable.

To achieve this disentanglement, we build our model in Fig. 2 (b), via structural causal modeling
(SCM) that can effectively encode prior knowledge beyond data with hidden variables and causal
relations. As shown, we introduce vma and vmi to respectively denote macroscopic and microscopic
parts of disease-related features that often employed in clinical diagnosis. Specifically, the macro-
scopic features encode morphology-related attributes (Surendiran & Vadivel, 2012) of lesion areas, as
summarized in American College of Radiology (ACR) (Sickles et al., 2013); while the microscopic
features are hard to observe but reflect subtle patterns of lesions. Taking the mammogram in Fig. 2
(a) as an illustration, the macroscopic features refer to the margins, shapes, and speculations of the
masses; while the microscopic features refer to the textures, and the curvatures of contours (Ding et al.,
2020a). As these disease-related patterns vary between malignancy and benign, they are determined
by the disease status Y and we have y → (vma, vmi) in Fig. 2 (b) correspondingly. Besides, the
vma differs from vmi, as it is related to clinical attributes A that are easy to observe from the image.
In addition to disease-related features, we also introduce vd to account for domain gaps from the
center effect in the image. Note that given the image X (i.e., condition on X), the vd is correlated
to (vma, vmi), making them entangled with each other. This entanglement can cause bias and thus
unstable prediction behaviors when transferred to unseen centers/domains.
Equipped with this causal modeling, we can observe that the distributional shift of data is mainly
accounted for by the variation of vd across domains. Moreover, we can theoretically prove that when
this variation is diverse enough, the disease-related features can be disentangled from the center
effect. To the best of our knowledge, we are the first to prove that this disentanglement is possible,
in the literature on imaging diagnosis. Inspired by this result, we propose a disentangling learning
framework, dubbed as Domain Agnostic Representation Model (DarMo), to disentangle disease-
related features for prediction. Specifically, we adopt a variational auto-encoder framework and
decompose the encoder into domain-agnostic and domain-aware branches, which respectively encode
disease-related information (vma, vmi) and domain effect vd. To account for the variation of vd across
domains, we propose to incorporate a domain-aware batch normalization (BN) layer into the domain-
aware encoder, to well capture the effect in each domain. To capture disease-related information,
we use disease labels to supervise (vma, vmi) and additionally constrain vma to reconstruct clinical
attributes with Graph Convolutional Network (GCN) to model relations among attributes.

To verify the utility and effectiveness of our method, we perform our method on mammogram
benign/malignant classification. Here the clinical attributes are those related to the masses, which
are summarized in ACR (Sickles et al., 2013) and are easy to obtain. We consider four datasets (one
public and three in-house) that are collected from different sources. The results on unseen domains
show that our method can outperform others by 6.2%. Besides, our learned disease-related features
can successfully encode the information on the lesion areas.
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In summary, our contributions are mainly three-fold: a) We leverage SCM to encode medical
prior knowledge, equipped with which we theoretically show that the disease-related features can be
disentangled from the domain effect; b) We propose a novel DarMO framework with domain-agnostic
and domain-aware encoders, which facilitates the disentanglement of disease-related features from
center effect to achieve robust prediction; c) Our model can achieve state-of-the-art performance in
terms of robustness to distributional shifts across domains in breast cancer diagnosis.

2 RELATED WORK

Domain-Agnostic Representation Learning for Disease Diagnosis. The multi-center study is
important for clinical diagnosis Liu et al. (2020); Kather et al. (2022); Castro et al. (2020); Pollard
et al. (2018). It considers multiple domains (centers) and aims to improve the diagnosis performance
in unseen domains. However, under unseen domains, previous methods will lead to a dramatic
performance decrease when testing on data from a different domain with a different bias (Ilse et al.,
2020; Sathitratanacheewin et al., 2020; Zhang et al., 2022a). Thus such previous models are not
robust enough to the actual task (Azulay & Weiss, 2020; Cheng et al., 2022). An intuitive idea to
solve domain gaps among multi-centers is learning domain-agnostic representation. Progress has
been made can be roughly divided into three classes: (i) Learning the domain-specific constraints,
e.g., (Chattopadhyay et al., 2020) aim to learn domain-specific masks but fails in medical images for
not suitable to distinguish different domains based on masks. (ii) Disentangle-based, e.g., (Ilse et al.,
2020) model three independent latent subspaces for the domain, the class, and the residual variations
respectively. They do not make use of the medical attribute knowledge which is important in our
mammogram classification. (iii) Design invariant constraints, e.g., (Arjovsky et al., 2019; Zhang
et al., 2022b) aim to learn invariant representation across environments by minimizing the Invariant
Risk Minimization term. (Ganin et al., 2016) and (Li et al., 2018) use an adversarial way with the
former performing domain-adversarial training to ensure a closer match between the source and the
target distributions. Lack of disentanglement and the guidance of medical prior knowledge limits
their performance on unseen domains.

3 METHODOLOGY A Malignant Mass
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Figure 2: Causal Graph of our model. For
vma, vmi, vd that respectively denote macroscopic,
microscopic, and center-dependent features, the
(vma, vmi) are associated with the disease status y
and vd is affected by domain variable d.

Problem Setup & Notations. Denote X ∈
X , Y ∈ Y, A ∈ A respectively as the image, be-
nign/malignant label, and clinical attributes. We
here formulate different centers as different do-
mains and collect datasets {xdi , ydi , Adi }

nd
i=1 from

multiple domains (healthcare centers) d ∈ D.
Our goal is to identify causal features from
training domains (centers) DTr, so that the in-
duced disease predictor can generalize well to
new unseen domains (external cohort) DTe. Let
m := |DTr| be the number of training domains
(centers) and n :=

∑
i=1 nD be the total train-

ing samples.

In the following, we first introduce our causal
model that incorporates medical priors regard-
ing heterogeneous data from multiple domains
in Sec. 3.1. With this modeling, we show that
the domain-agnostic causal features can be dis-
entangled from domain-aware features if we can
fit distributions of each domain well. Guided by
this result, we in Sec. 3.2 propose a variational
auto-encoder (VAE)-based method as a gener-
ative model to fit these distributions, so as to
learn causal features for disease prediction.

3.1 DOMAIN-AGNOSTIC CAUSAL MODEL FOR MEDICAL IMAGE

We first formally define the notion of domain-aware features and domain-agnostic casual features,
in the framework of our proposed structural causal model in Fig. 2 (b). In this model, we roughly
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Figure 3: Overview of our VAE-based method, which is composed of two-branch encoder: Domain-
Agnostic Disease-Relevant Encoder (DADR) to extract macroscopic features vma, microscopic
features vmi, and Domain-Aware Disease-Irrelevant Encoder (DADI) to extract domain-specific
effects vd. In DADI, images from different centers are fed into corresponding domain-aware layers
respectively, to model the variation of domain effects. In DADR, we implement graph convolution
(Disease-Attribute Generative Model) to capture relations among clinical attributes.

decompose latent factors v of the input image x into domain-agnostic causal features (vma, vmi)
that are determined by the disease status y, and other domain-aware features vd affected by the
domain variable d. For domain-agnostic casual features, we further denote vma as macroscopic
features that generate clinical attributes vma (such as shapes, margins (Sickles et al., 2013; Wang
et al., 2021b; Zhao et al., 2022)) that are normally utilized by clinicians for disease prediction, and
vmi as microscopic features (such as textures, curvatures of contours (Ding et al., 2020a)) that may
be difficult to observe but can encode the high-frequency patterns of lesions. For vd, it can encode
biases introduced during the imaging acquisition process from different centers/medical devices.

If we directly train a predictor p(y|x) using a neural network, the extracted representation from x can
entangle the causal features (vma, vmi) and center effects vd because conditioning on x can induce
the spurious path from vd to (vma, vmi), making vd and (vma, vmi) correlated with each other. Such
an entanglement makes it hard to generalize well on new centers’ data. Specifically, if we denote
S as the learned representation from training domains’ data, then S’s distribution of the diseased
group can be affected by vd, which is domain-aware. Therefore, this distribution can change a lot
on another domain’s data, which may cause difficulty in discriminating the diseased group from the
normal one in terms of S’s distribution.

To remove this domain dependency, it is desired to disentangle causal features from domain-aware
features. Indeed, this disentanglement can be achieved via acquisition from multiple domains with
diverse distributions. Specifically, the difference between (vma, vmi) and vd mainly lies in whether
this feature is domain-invariant. The diversity among domains can thus provide a clue to identify
invariant information, i.e., (vma, vmi) in our scenario, as shown in the following theorem:
Theorem 3.1 (Informal). Suppose that multiple domains are diverse enough. Then as long as we can
fit each domain’s distribution well, then for each image x← fx(v

⋆
mi, v

⋆
ma, v

⋆
c ), the learned factors

(ṽmi, ṽma, ṽd) has ṽmi = hmi(v
⋆
mi), ṽd = hd(v

⋆
d), ṽma = hma(v

⋆
ma) for some hmi, hma, hd.

Remark 3.1. The diversity condition means the extent of dependency vd on d and (vma, vmi) on y
are large enough, which can be shown to hold generically in the appendix.

This theorem informs that as long as we can fit data well, we can identify each factor, particularly
domain-agnostic causal features (vma, vmi) up to the transformation that does not depend on vd.
In this regard, the learned domain-agnostic causal features are disentangled from domain effects.
Guided by this analysis, we propose a variational auto-encoder (VAE)-based method, as a generative
model to fit data from each center.
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3.2 GENERATIVE MODELING FOR DOMAIN-AGNOSTIC CAUSAL FEATURES

In this section, we first obtain the objective function via reformulating the Evidence Lower BOund
(ELBO) in VAE, which are composed of Domain-Aware Prior Models, Domain-Aware/Agnostic
Inference Models to learn latent factors, and Disease-Attribute Generative Models to reconstruct
X,A and to predict y.

Objective Function of VAE. To learn pd(x, y,A) for each domain d, we decompose the whole
log-likelihood into log pdθ(x, y,A) = log pdθ(x) + log pdθ(y,A|x), in which the term log pdθ(x)

can be replaced by the ELBO of VAE (Kingma & Welling, 2013), i.e., Eq
ψd

(v|x)

(
log

pdθ(x,v)
q
ψd

(v|x)

)
that is ≤ log pdθ(x). Here, the “=" can only be achieved once the variational distribution
qψd(v|x) equals to the ground-truth posterior pdθ(v|x). In this case, we have pdθ(y,A|x) =∫
pθ(A|vma)pθ(y|vma, vmi)qψd(vma, vmi, vd|x)dvmidvmadvd, since A ⊥ vmi, vd|vma and y ⊥

vd|(vma, vmi) according to Fig. 2(b). The empirical loss for data in domain d is:

ℓd(qd, pdθ) = −
1

nd

nd∑
i=1

(
log pdθ(yi, Ai|xi) + Eq

ψd
(v|xi)

(
log

pdθ(xi, v)

qψd(v|xi)

))
,

= − 1

nd

nd∑
i=1

(
log
(
Eq

ψd
(v|xi) (pθ(Ai|vma)pθ(yi|vma, vmi))

)
+ Eq

ψd
(v|xi) (log pθ(xi|v))−KL(qψd(v|xi), pdθ(v))

)
. (1)

with qψd(v|x) learned to approximate pdθ(v|x). To optimize the loss, we need to respectively parame-
terize the prior models pdθ(vma, vmi, vd) := pθ(vd|d)p(vma, vmi), inference models qψd(v|x) (i.e.,
encoder) and generative models pθ(x|vma, vmi, vd), pθ(A|vma), pθ(y|vma, vmi) (i.e., decoder). In
the following, we will introduce our implementation for these models. As illustrated in Fig. 3, we
propose a two-branch encoder: Domain-Agnostic Encoder to extract (vma, vmi) and Domain-Aware
Encoder to extract vd. For the latter, we incorporate a domain-aware BN to capture the variation of
multiple domains. With learned causal features, we implement graph convolution network to capture
relations among clinical attributes.

Domain-Aware Prior Models. Following the causal graph in Fig. 2, we factorize pdθ(vma, vmi, vd)
into pdθ(vma, vmi, vd) = p(vma, vmi)pθpri(vd|d), where the p(vma, vmi) can be modeled as isotropic
Gaussian while pθd(vd|d) is domain-aware, and is parameterized as a Multilayer Perceptron (MLP)
with one-hot encoded vector d ∈ Rm as input.

Domain-Aware/Agnostic Inference Models. To disentangle causal features (vma, vmi) from domain
effects, we adopt a mean-field approximation to factorize qψd(vd, vma, vmi|x) as qψ1(vma, vmi|x) ∗
qψd2 (vd|x), with qψ(vma, vmi|x) and q(vd|x, d) respectively implemented via a domain-agnostic
disease-relevant encoder (DADR) and a domain-aware disease-irrelevant encoder (DADI). This
parameterization is inspired by the domain-invariant/-variant properties of (vma, vmi) and vd. By
attributing the domain-aware effects to feature vd while sharing parameters of the domain-agnostic
encoder ψ1 for all centers, the domain-aware effects can be removed in learned macroscopic and
microscopic information, leading to robust generalization ability across domains.

With shared parameters of the domain-agnostic encoder, we have

pdθ(y|A, x) =
∫
pθ(A|vma)pθ(y|vma, vmi)qψ(vma, vmi|x)dvmidvma. (2)

which hence does not depend on the domain index d. To reflect the variety of different domain
effects, the domain-aware encoder contains a Domain-Aware Layer (DAL), which is composed of m
batch-normalization (BN) layers with (γd, βd) for each center: fd = BNγi,βi(f̂) = γdf̂ + βd, with
f̂ = f−µB√

δ2B+ϵ
denoting the normalized features by the mini-batch mean µB and variance δB .

Disease-Attribute Generative Models. To learn vma, vmi, vd, we constrain them to well recover
x and predict A, y, respectively via pθx(x|v), pθy (y|vma, vmi) and pθA(A|vma). Specifically, to
capture macroscopic patterns in vma, we constrain it to estimate the clinical attributes A that include
macroscopic information such as shape, margins, lobulation, etc. As correlations among clinical
attributes can be helpful for disease diagnosis, we propose to reconstruct A via Graph Convolutional
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Table 1: AUC evaluation of public/in-house datasets on external cohorts (unseen domains), i.e.,
training and testing data are from different domains. ⃝: domains for testing, •: domains for training).

InH1
InH2
InH3

DDSM

⃝
•
•
•

•
⃝
•
•

•
•
⃝
•

•
•
•
⃝

ERM (He et al., 2016) 0.822 0.758 0.735 0.779
(Chen et al., 2019) 0.877 0.827 0.804 0.830

Guided-VAE (Ding et al., 2020b) 0.872 0.811 0.779 0.811
IAIA-BL (Barnett et al., 2021) 0.861 0.803 0.767 0.782

ICADx (Kim et al., 2018) 0.882 0.802 0.777 0.826
(Li et al., 2019) 0.848 0.794 0.769 0.815

DANN (Ganin et al., 2016) 0.857 0.811 0.781 0.813
MMD-AAE (Li et al., 2018) 0.860 0.783 0.770 0.786

DIVA (Ilse et al., 2020) 0.865 0.809 0.784 0.813
IRM (Arjovsky et al., 2019) 0.889 0.830 0.795 0.829
(Chattopadhyay et al., 2020) 0.851 0.796 0.772 0.797
DDG (Zhang et al., 2022b) 0.867 0.811 0.778 0.802

EFDM (Zhang et al., 2022c) 0.864 0.812 0.765 0.796
Ours 0.948 0.874 0.858 0.892

Ours (2/3 DAL) 0.946 0.874 0.853 0.889
Ours (1/2 DAL) 0.942 0.871 0.847 0.883
Ours (1/3 DAL) 0.930 0.863 0.842 0.871

Ours (one layer DAL) 0.926 0.857 0.835 0.864
Ours (DAL -> ME) 0.946 0.873 0.855 0.891
Ours (DAL -> GL) 0.947 0.872 0.854 0.887

Network (GCN) Kipf & Welling (2016) that is flexible to capture the topological structure in the
label space. More details are left in the appendix.

Training and Testing. With above parameterizations, we optimize prior parameters θpri := {θd},
inference parameters ψ := {ψd} with ψd := (ψ1, ψ

d
2) such that ψd2 includes (γd, βd) and other

layers’ parameters that do not depend on d, and generative parameters θgen := (θx, θy, θA) via
L(θpri, ψ, θgen) :=

∑
d ℓ
d(θd, ψ

d, θgen) with ℓd defined in Eq. 1. During testing stage for a new im-
age x, we first extract causal features (vma, vmi) from x, followed by prediction via pθy (y|vma, vmi).

4 EXPERIMENTS

Datasets and Implementation. To evaluate the effectiveness of our model, we apply our model on
mammogram mass benign/malignant classification, which drives increasing attention recently (Wang
et al., 2021a; Zhao et al., 2018; Wang et al., 2021b; Lei et al., 2020; Wang et al., 2020; 2022) due to
its clinical use. Public dataset (DDSM (Bowyer et al., 1996)) and three in-house datasets (InH1,
InH2, and InH3) what we use are from different centers (center4, 1, 2, 3 respectively). Different
medical devices, different regions/countries, and different image formats cause domain gaps. For
each dataset, we randomly split it into training, validation, and testing sets with an 8:1:1 patient-wise
ratio. The inputs of the network are resized into 224 × 224 with random horizontal flips and fed
into networks. To verify the effectiveness of multi-center benign/malignant diagnosis, we show our
performances on the external cohort (unseen domains) in Tab. 1 (training data and testing data are
from different domains). To remove the randomness, we run for 10 times and report their average
values. To further validate our effectiveness, we also give internal cohort (source domain,i.e., the
same domain as training domain) results of each dataset which can be seen as the upper bounds of
each dataset. For a fair comparison, the number of above-all training sets all keep the same. Area
Under the Curve (AUC) is used as the evaluation metric image-wise. More details of datasets and
implementation are shown Appendix.

4.1 RESULTS

Compared Baselines. We compare our model with the following methods: a) ERM (He et al., 2016)
directly trains the classifier via ResNet34 by Empirical Risk Minimization; b) Chen et al. (Chen
et al., 2019) achieves multi-label classification with GCN for attributes prediction; c) Guided-VAE
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Table 2: AUC evaluation of public/in-house datasets on internal cohorts (source domains, i.e.,
in-distribution: training and testing data are from the same domains. −: do not use,

⊙
: the same

domain for training and testing).
InH1
InH2
InH3

DDSM

⊙
-
-
-

-⊙
-
-

-
-⊙
-

-
-
-⊙

ERM (He et al., 2016) 0.888 0.847 0.776 0.847
(Chen et al., 2019) 0.924 0.878 0.827 0.871

Guided-VAE (Ding et al., 2020b) 0.921 0.867 0.809 0.869
ICADx (Kim et al., 2018) 0.911 0.871 0.816 0.879

(Li et al., 2019) 0.908 0.859 0.828 0.875
IAIA-BL (Barnett et al., 2021) 0.910 0.865 0.821 0.856

Ours-single 0.952 0.898 0.864 0.919

(Ding et al., 2020b) also implements disentangle network but lacks the medical prior knowledge of
attributes during learning; d) Li et al. (Li et al., 2019) improve performance by generating more
benign/malignant images via adversarial training; e) ICADx (Kim et al., 2018) also proposes the
adversarial learning method but additionally introduces shape/margins information for reconstruction;
f) DANN (Ganin et al., 2016) uses an adversarial way to ensure a closer match between the source
and the target distributions; g) MMD-AAE (Li et al., 2018) extends adversarial autoencoders by
imposing the Maximum Mean Discrepancy (MMD) measure; h) DIVA (Ilse et al., 2020) proposes a
generative model with three independent latent subspaces; i) IRM (Arjovsky et al., 2019) designs
Invariant Risk Minimization term to learn invariant representation across environments; j) Prithvijit et
al.(Chattopadhyay et al., 2020) add domain-specific masks learning for better domain generalization.
k)IAIA-BL (Barnett et al., 2021) diagnoses based on pixel-level prediction. l) DDG (Zhang et al.,
2022b) formulates a constrained optimization to solve domain generalization. m) EFDM (Zhang
et al., 2022c) matches empirical distribution functions.

Results & Analysis on external cohorts (unseen domains). To verify the effectiveness of our
method under unseen domains (out-of-distribution), we train our model on the combination of three
datasets from three different centers and test on the external cohort (another unseen dataset from
other centers). As shown in Tab. 1 (Lines 1-18), our methods can achieve state-of-the-art results
under unseen domains in all settings.

Specifically, the first six lines are the methods based on different representation learning and we
extend them to our domain generalization task. The next seven lines are the methods aiming at
domain generalization. (Li et al., 2019) generates more data under the current domain, the larger
number of data improves the performance compared with ERM (He et al., 2016) but the augmentation
for the current domain greatly limits its ability of domain generalization. (Chattopadhyay et al., 2020)
learns domain-specific masks (Clipart, Sketch, Painting), however, the gap that exists in medical
images can not balance through mask learning. DANN (Ganin et al., 2016), DDG (Zhang et al.,
2022b), EFDM (Zhang et al., 2022c) and MMD-AAE (Li et al., 2018) design distance constraints
between the source and the target distributions. However, simple distance constraints are not the key
to cancer diagnosis and are not robust enough. The advantage of Guided-VAE (Ding et al., 2020b) and
DIVA (Ilse et al., 2020) over mentioned methods above may be due to the disentanglement learning in
the former methods. IRM (Arjovsky et al., 2019) learns invariant representation across environments
by Invariant Risk Minimization. However, lacking the guidance of the disentanglement learning
limits their performance. Guided-VAE (Ding et al., 2020b) introduces the attribute prediction which
improves their performance more than DIVA (Ilse et al., 2020). The improvements in ICADx (Kim
et al., 2018), Guided-VAE (Ding et al., 2020b) prove the importance of the guidance of attribute
learning. Although ICADx (Kim et al., 2018) uses the attributes during learning, it fails to model
correlations between attributes and diagnosis, which limits their performance. With further exploration
of attributes via GCN, our method can outperform ICADx (Kim et al., 2018), Guided-VAE (Ding
et al., 2020b). Compared to (Chen et al., 2019) and IAIA-BL (Barnett et al., 2021) that also implement
attribute learning, we additionally employ disentanglement learning with variance regularizer which
can help to identify invariant disease-related features during prediction.

Comparisons on internal cohorts (source domains). We further compute the in-distribution AUC
performance of every single dataset under internal cohorts (Tab. 2). Our method shows stable
performance while other methods drop a lot under external cohorts compared with Tab. 1.
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Table 3: Overall Prediction Accuracy (ACC) of Multi Attributes (Mass shapes, Mass margins)
on external cohorts (unseen domains, i.e., out-of-distribution: training and testing data are from
different domains). Testing names are noted in the table.

Methodology InH1 InH2 InH3 DDSM
ERM-multitask 0.618 0.560 0.596 0.662

Chen et al. (Chen et al., 2019) 0.827 0.795 0.748 0.842
ICADX (Kim et al., 2018) 0.743 0.647 0.612 0.739

Proposed Method 0.914 0.877 0.858 0.934

Specifically, we implement the methods which aim at representation learning on internal cohorts, i.e.,
training and testing on the data from the same domain. Such in-distribution results can serve as the
upper bounds of our generalization method. To adapt our proposed mechanism to the in-distribution
situation, we change our network with two branches without domain-aware BN layers accordingly
for extracting features into a, s, z since training data is only from one center(Ours-single), i.e., one
domain without domain influence. As shown in Tab. 2, based on the disentanglement mechanism and
the guidance of attribute learning, Ours-single still gets the state-of-art performance. We argue that
the disentangling mechanism with the guidance of attributes helps effective learning of disease-related
features under a single domain. Results in Tab. 2 can be seen as the upper bound results of each setting
in Tab. 1. Our results in Tab. 1 are slightly lower than results in Tab. 2 by 0.4% to 2.7%. We argue that
based on our mechanism for domain generalization, our method can get evenly matched performance
compared under external cohorts (out-of-distribution) with internal cohorts (in-distribution). For
example, as shown when testing on DDSM (Bowyer et al., 1996), performances of our model training
on InH1+InH2+InH3 and training on DDSM itself are comparable.

4.2 ABLATION STUDY

Ablation study on each component. To verify the effectiveness of each component in our DarMo,
we evaluate some variant models on external cohorts as shown in our appendix-Tab.4.

To abate the impact of the combination of training domains, we also train our model under different
training combinations and show results in Appendix. Results indicate that influences between
different domains are not obvious and three domains are sufficient to achieve comparable results.

Ablation study on the ratio of using domain-aware layers. To verify the effectiveness of the ratio
of using DAL, we replaced the original BN layer with DAL in different ratios. The results are shown
in Tab. 1 Line18-21, specifically, 1/3 means only 1/3 BN layers in the network are replaced, others,
and so forth. As shown, under the lower ratio, the performance drops due to the poorer domain
interpretability. The higher ratio can get better performance.

Ablation study on Domain-Aware Mechanism To deeply investigate the proposed domain-aware
BN layer, we analyze various implementation forms of multiple domains as follows: a) Multiple
Encoders(ME). Since the irrelevant encoder contains the information of domain environments, an
intuitive idea is to use multiple irrelevant encoders so as to each domain has one irrelevant encoder
directly. b) Grouped Layer(GL). To reduce the parameter quantity of ME, we consider several groups
of blocks with each group containing two blocks in the same structures. Each group only responds to
one block each time, and different domains are different block combinations. The number of groups
is set to n that satisfies 2n = m (m denotes the number of domains, if m is not the exponential
power of 2, find m̂ that is larger than m and is the least number that satisfies 2n = m̂). Thus each
domain is a permutation combination based on each group choosing one block. c) Domain-Aware
BN Layer(DAL). To further reduce the parameter quantity and achieve domain generalization, we
propose the domain-aware BN layer for each domain. The scaling and shifting parameters in each
layer are learned adaptively.

We conduct experiments under the mechanisms above and the results are shown in Tab. 1 Line18-23.
Three different kinds of mechanisms have comparable performance. Since BN can usually be used as
an effective measure for domain adaptation (Ioffe & Szegedy, 2015), DAL can be slightly better than
the others with lighter computation, especially compared to ME.

4.3 PREDICTION ACCURACY OF ATTRIBUTES

We argue that attributes can be the guidance of benign/malignant classification. In the current domain
generalization task, under external cohorts (unseen domain), we also calculate the prediction accuracy

8



Published as a conference paper at ICLR 2023

Reconstruction
of vd+vma+vmi

Input

Reconstruction
of vma+vmi

Reconstruction
of vd

Reconstruction
of vma

Reconstruction
of vmi

Input

Reconstruction
of vd+vma+vmi

Reconstruction
of vma+vmi

Reconstruction
of vma

Reconstruction
of vmi

Validation Test

Shape 
IRREGULAR 

Margins 
ILL_DEFINED

Predicted
Attributes

Shape 
IRREGULAR 

Margins 
SPICULATED

Shape 
OVAL 
Margins

CIRCUMSCRIBED

Shape
IRREGULAR 

Margins 
OBSCURED

Shape 
ROUND 
Margins 

CIRCUMSCRIBED

Predicted
Attributes

Shape 
IRREGULAR 

Margins 
SPICULATED

Shape
OVAL 

Margins 
OBSCURED

Figure 4: Visualization on valid(internal) and test(external) cohorts. Red rectangles: lesion regions;
green rectangles: white dots caused by machine shooting. Each row: the reconstruction of different
latent variables. Validation: 1st and 4th columns are from the center2, the 2nd column is from the
center1, and the 3rd column is from the center3. Test: All columns are from center 4. Note that there
are no reconstruction results of vd at the test stage because the test domains have no corresponding
domain-aware encoders.

of attributes in ours and other attribute-based representative methods in Tab. 3. Our method gets the
best prediction accuracy on the attributes over other methods under out-of-distribution.

4.4 VISUALIZATION

We visualize reconstruction results of all latent factors and the predicted attributes of the current
image in Fig. 4 to validate that our model can successfully disentangle latent factors vma, vmi, and
vd. Since the DADI Encoder is partially domain-dependent, validating (Left in Fig. 4) and training
sets are from the same domain, but the testing set (Right in Fig. 4) is from a different unseen domain.
As we can see, the disease-related features vma + vmi mainly reflect the disease-related information
since they mainly reconstruct the lesion regions without mixing others. The disease-irrelevant vd
features mainly learn features such as the contour of the breasts, pectoralis, and other irrelevant
glands without lesion information. It is worth noting that the white dots on the image which are
caused by machine shooting are learned by vd as visualization. This means that through the ability
of domain generalization, our method can disentangle the irrelevant part successfully and prevent
it from predicting the disease. Moreover, the macroscopic features vma capture the macroscopic
attributes of the lesions, e.g., shape and density; while the microscopic features vmi learn properties
like global context, texture, or other invisible features but related to disease classification. These
results further indicate the effectiveness and interpretability of our DarMo.

5 CONCLUSION
We propose a novel Domain Agnostic Representation Model (DarMo) on domain generalization for
medical diagnosis, in order to achieve robustness to multi centers. We evaluate our method on both
public and in-house datasets. Potential results demonstrate the effectiveness of our DarMo, we will
try to generalize this method to other medical imaging problems such as lung cancer, liver cancer, etc.
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A FORMAL DESCRIPTION OF THEOREM 3.1

In this section, we present the formal version and the proof of theorem 3.1, which claims the
disentanglement between disease-related features and center effects. In the following, we first
introduce model assumptions, followed by definition of disentanglement; finally, we present the
formal version of theorem 3.1 and its proof.

Model Assumptions and Notations. According to the causal graph in Fig. 2, the joint distribution
over (y, vd, vmi, vma, A, x) given each domain can be factorized as conditional factors Pearl (2009);
Schölkopf et al. (2021):

p(y, vd, vmi, vma, A, x|d) = p(y)p(vd|d)p(vmi|y)p(vma|y)p(x|vd, vmi, vma)p(A|vma).

In the following, we will introduce the assumption of each conditional factor. Specifically, for latent
variables vd, vmi, vma, we assume that vmi|y, vma|y and vd|d belong to the following exponential
families:

p(vd|d) := pTvd,Γ
vd
d
(vd|d), pTvmi,Γvmiy

(vmi|y), pTvma ,Γvmay
(vma|y), (3)

where

pTu,Γuo (u|o) =
qu∏
i=1

exp
( ku∑
j=1

Tui,j(ui)Γ
u
o,i,j +Bi(ui)− Cuo,i

)
, (4)

for any u ∈ {vmi, vma} with o = y; and u = vd with o = d. The {Tui,j(ui)}, {Γuo,i,j} denote the
sufficient statistics and natural parameters, {Bi} and {Cuo,i} denote the base measures and normalizing
constants to ensure the integration of distribution equals to 1. Let Tu(u) := [Tu

1 (u1), ...,T
u
qu(uqu)]

∈ Rku×qu
(
Tu

i (ui) := [Tu
i,1(ui), ..., T

u
i,ku(ui)], ∀i ∈ [qu]

)
, Γu

o :=
[
Γu

o,1, ...,Γ
u
o,qu

]
∈ Rku×qu

(
Γu

o,i :=
[Γu

o,i,1, ...,Γ
u
o,i,ku ], ∀i ∈ [qu]

)
. This assumption has been widely assumed in the literature of causal

representation learning and causal learning Khemakhem et al. (2020); Sun et al. (2021).

For x,A, we assume the following additive noise model (ANM):

x = fx(vmi, vma, vd) + εx, A = fA(vma)+A, (5)

where εx, εA denote the exogenous variables of X and A, respectively.

Definition of Disentanglement. With such model assumptions and formulations, we introduce our for-
mal definition of disentanglement. First, we denote θ := {Tvmi ,Tvd ,Tvma ,Γvmi

y ,Γvma
y ,Γ

vd
d , fx, fA}

in the above models. We define the disentanglement as follows:

Definition A.1 (Disentanglement of Latent Space). We say that the vmi, vma, vd are disentangled
with each other under θ, if for any θ̃ := {T̃vmi , T̃vd , T̃vma , Γ̃vmiy , Γ̃vmay , Γ̃vdd , f̃x, f̃A} that giving
rise to the same observational distributions: pθ(x,A, y|d) = pθ̃(x,A, y|d) for any x, y,A and d,
there exists invertible matrices Mvmi ,Mvma ,Mvd and vectors bvd , bvmi , bvma such that:

T̃([f̃−1
x ]I(x)) =MvmiT([f−1

x ]I(x)) + bvmi , (6)

T̃([f̃−1
x ]A(x)) =MvmaT([f−1

x ]A(x)) + bvma , (7)

T̃([f̃−1
x ]D(x)) =MvdT([f−1

x ]D(x)) + bvd , (8)

where the I,A,D denote the space of the latent variables vmi, vd, vma. Correspondingly, for f−1(x)
that transforms x into the latent space (I,A,D), [f−1

x ]I(x), [f−1
x ]A(x) and [f−1

x ]D(x) respectively
denote the elements of f−1(x) in the space I, A and D.

Remark A.1. This definition is a variation of A-identifiability of Khemakhem et al. (2020) and the
identifiability in Sun et al. (2021), which means the latent variables can be determined up to affine
transformation with an invertible transformation matrix. Specifically, for any x← fx(v

∗
mi, v

∗
ma, v

∗
d),

the [f−1
x ]I(x), [f−1

x ]A(x) and [f−1
x ]D(x) respectively return true latent variables v∗mi, v

∗
ma, v

∗
d . Then

if the model θ̃ can perfectly fit the joint distribution over each domain, i.e., pθ(x,A|d), [f̃−1
x ]I(x),

[f̃−1
x ]A(x) and [f̃−1

x ]D(x) can recover v∗mi, v
∗
ma, v

∗
d up to linear transformations with invertible

matrices Mvmi , Mvma and Mvd .

Formal Version of Theorem 3.1. We present the formal version of theorem 3.1 as follows:
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Theorem A.2 (Formal version of theorem 3.1). Under the causal model in Fig. 2 with Eq. 3 and
Eq. 5, for any θ, we have that vmi, vd, vma are disentangled, under following assumptions:

1. The characteristic functions of εx, εA are almost everywhere nonzero.

2. fx, fA are bijective functions;

3. The sufficient statistics are differentiable almost everywhere; besides, {Tui,j}1≤j≤ku are
linearly independent in I, A or D for each i ∈ [qu] for any u = vmi, vma, vd.

4. There exists m different values of domain variable d, (i.e., d1, ..., dm) and K different
values of disease label y, (i.e., y1, ..., yK) such that

[
[Γvdd2 − Γvdd1 ]

T, ..., [Γvddm − Γvdd1 ]
T
]T ∈

Rm×(qvd×kvd ) and
[
[Γu=vmi,vmay2 − Γu=vmi,vmay1 ]T, ..., [Γu=vmi,vmayK − Γu=vmi,vmay1 ]T

]T ∈
Rm×(qu×ku) have full column rank.

Remark A.2. These assumptions have been widely assumed in the literature of independent com-
ponent analysis and representation learning Khemakhem et al. (2020); Sun et al. (2021); Li et al.
(2021). Assumptions 1-3 is easy to satisfy. Specifically, the characteristic functions of εx and εA are
almost everywhere non-zeros for most discrete (such as binomial, Poisson, geometric) continuous
variables (such as Gaussian, student-t). For assumption 2, as it has been empirically verified Kramer
(1991) that the extracted low dimensional embedding is able to recover the original image, it is
natural for fx to be bijective. The bijectivity of fA is to ensure the disentanglement of vma (up to
affine transformation), as similarly adopted in Li et al. (2021).

For assumption 4, it is required that distribution across domains and disease status are diverse
enough, which is easy to satisfy. Based on this assumption, m (the number of domains) and K (the
number of disease statuses) are respectively required to be larger than the dimension of vd, and
the dimension of (vmi, vma). This suggests that we should collect data from as many domains as
possible, although empirically we find that three domains are enough to achieve disentanglement
and generalization (as shown in Tab. 1 and Tab. 2 that out-of-domain performance is comparable to
in-distribution performance). For disease label, we can access a more finer label, e.g. breast cancer
stage D’Orsi et al. (2018), although empirically we find that binomial benign/malignancy label is
able to disentangle disease-related features.

Proof. For simplicity, we denote p̃(u|o) := pT̃u,Γ̃uo
(u|o). Since pθ(x|d, y) = pθ̃(x|d, y), then we

have ∫
pfx(x|vmi, vma, vd)p(vmi, vma|y)p(vd|d)dvmidvmadvd=∫

pf̃x(x|vmi, vma, vd)̃p(vmi, vma|y)p̃(vd|d)dvmidvmadvd.

According to the chain rule of changing from vmi, vma, vd to x̄ := fx(vmi, vma, vd), we have
that

∫
pεx(x− x̄)p(f−1

x (x̄)|d, y)Jf−1(x̄)dx̄=
∫
pεx(x− x̄)p(f̃−1

x (x̄)|d, y)Jf̃−1(x̄)dx̄, where Jf (x)
denotes the Jacobian matrix of f on x. Denote p′(x̄|d, y) := p(f−1

x (x̄)|d, y)Jf−1(x̄). Applying
Fourier transformation to both sides, we have F [p′](ω)φεx(ω) = F [p̃′](ω)φεx(ω), where φεx
denotes the characteristic function of εx. Since they are almost everywhere nonzero, we have that
F [p′](ω) = F [p̃′], which means that p′(x̄|d, y) = p̃′(x̄|d, y). This is equivalent to the following:

log volJfx(x) +
∑

u=vmi,vma

qu∑
i=1

(logBi([f
−1
x,i ]U (x))− logCui (y)

+

ku∑
j=1

Tui,j(f
−1
x,i (x))Γ

u
i,j(x)) +

qvd∑
i=1

(logBi([f
−1
x,i ]D(x))

− logCvdi (d) +

kvd∑
j=1

T vdi,j (f
−1
x,i (x))Γ

vd
i,j(x)).

= log volJf̃x(x) +
∑

u=vmi,vma

qu∑
i=1

(log B̃i([f̃
−1
x,i ]U (x))− log C̃ui (y)
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+

ku∑
j=1

T̃ui,j(f̃
−1
x,i (x))Γ̃

u
i,j(x)) +

qvd∑
i=1

(log B̃i([f̃
−1
x,i ]D(x))

− log C̃vdi (d) +

kvd∑
j=1

T̃ vdi,j (f̃
−1
x,i (x))Γ̃

vd
i,j(x)). (9)

Subtract the Eq. 9 with y = y1 from Eq. 9 with y = yk for k ̸= 1, we have that∑
u=vmi,vma

(
⟨Tu([f−1

x ]U (x)),Γ
u
(yk)⟩+

∑
i

log
Cui (y1)

Cui (yk)

)

=
∑

u=vmi,vma

(
⟨T̃u([f̃−1

x ]U (x)), Γ̃
u

(yk)⟩+
∑
i

log
C̃ui (y1)

C̃ui (yk)

)
, (10)

for all k ∈ [m], where Γ̄(y) = Γ(y)− Γ(y1). Denote b̃u(k) =
∑
u=vmi,vma

∑qu
i

C̃ui (y1)C
u
i (yk)

C̃ui (yk)C
u
i (y1)

for
k ̸= 1. Similarly, by subtracting the Eq. 9 with d = d1 from Eq. 9 with d = dl for l ̸= 1, we have

⟨Tvd([f−1
x ]D(x)),Γ

vd
(dl)⟩+

∑
i

log
Cvdi (d1)

Cvdi (dl)

= ⟨T̃vd([f̃−1
x ]D(x)), Γ̃

vd
(dl)⟩+

∑
i

log
C̃vdi (d1)

C̃vdi (dl)
, (11)

for all k ∈ [m], where Γ̄(d) = Γ(d) − Γ(d1). Denote b̃vd(l) =
∑
i
C̃
vd
i (d1)C

vd
i (dl)

C̃
vd
i (dl)C

vd
i (d1)

for l ̸= 1, we
have that:

Γ
vd,⊤

Tvd([f−1
x ]D(x)) = Γ̃

vd,⊤
T̃vd([f̃−1

x ]D(x)) + b̃vd , (12)

Γ
vmi,⊤

Tvmi([fx]
−1
I (x)) + Γ

vma,⊤
Tvma([fx]

−1
A (x))

= Γ̃
vmi,⊤

T̃vmi([f̃x]
−1
I (x)) + Γ̃

vma,⊤
T̃vma([f̃x]

−1
A (x)) + b̃vma + b̃vmi . (13)

Similarly, we also have p′(Ā|y) = p̃′(Ā|y), which means that

log volJfA(A) +

qvma∑
i=1

(logBi([f
−1
A ]A,i(A))− logCvmai (d)

+

kvma∑
j=1

T vmai,j ([f−1
A ]A,i(A))Γ

vma
i,j (x))

= log volJf̃A(A) +

qvma∑
i=1

(logBi([f̃
−1
A ]A,i(A))− logCvmai (d)

+

kvma∑
j=1

T̃ vmai,j ([f̃−1
A ]A,i(A))Γ̃

vma
i,j (A)), (14)

which has that

Γ
vma,⊤

Tvma([f−1
A ]A(A)) = Γ̃

vma,⊤
T̃vma([f̃−1

A ]A(A)) + b̃vma . (15)

Denote v := [x⊤, A⊤]⊤, ε := [ε⊤x ,
⊤
A ]⊤, h(v) = [[fx]

−1
I (x)⊤, [f−1

A ]A(A)
⊤]⊤. Applying the same

trick above, we have that

Γ
vma,⊤

Tvma([fx]
−1
A (x)) = Γ̃

vma,⊤
T̃vma([f̃x]

−1
A (x)) + b̃vma . (16)

Combining Eq. 12, 13, 16, we have that

Γ
vd,⊤

Tvd([f−1
x ]D(x)) = Γ̃

vd,⊤
T̃vd([f̃−1

x ]D(x)) + b̃vd , (17)
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Γ
vma,⊤

Tvma([fx]
−1
A (x)) = Γ̃

vma,⊤
T̃vma([f̃x]

−1
A (x)) + b̃vma . (18)

Γ
vmi,⊤

Tvmi([fx]
−1
I (x)) = Γ̃

vmi,⊤
T̃vmi([f̃x]

−1
I (x)) + b̃vmi . (19)

Applying the same trick in (Sun et al., 2021, Theorem 7.9) due to assumption 3, 4, we have that

(Γ
u,⊤

)−1Γ̃
u,⊤

are invertible for u = vmi, vma, vd. The proof is completed by setting Mu, bu in

Def. A.1 as (Γ
u,⊤

)−1Γ̃
u,⊤

and b̃u for u = vmi, vma, vd.

B OBJECTIVE FUNCTION

B.1 FINAL LOSS

Our final loss function is the summation of the loss in Eq. 1, i.e.,
∑
d ℓ
d
∑
d ℓ
d(qd, pdθ), where each

ℓd(qd, pdθ) is:

ℓd(qd, pdθ) = −
1

nd

nd∑
i=1

(
log pdθ(yi, Ai|xi) + Eq

ψd
(v|xi)

(
log

pdθ(xi, v)

qψd(v|xi)

))
,

= − 1

nd

nd∑
i=1

(
log
(
Eq

ψd
(v|xi) (pθ(Ai|vma)pθ(yi|vma, vmi))

))
︸ ︷︷ ︸

prediction ofA, y

− 1

nd

nd∑
i=1

Eq
ψd

(v|xi) (log pθ(xi|v))︸ ︷︷ ︸
reconstruction loss

− 1

nd

nd∑
i=1

KL(qψd(v|xi), pdθ(v))︸ ︷︷ ︸
KL divergence

.

The first term is to the cross entropy loss for A and y; for each sample xi, we first generate vmi, vma
from xi via qψd(v|xi), then feed vmi, vma into pθ(yi|vma, vmi) and vma into pθ(Ai|vma to predict
y and A, respectively. The second and third terms are respectively reconstruction loss and KL
divergence loss in VAE.

B.2 DERIVATION OF OUR OBJECTIVE

The log-likelihood over the observations (x, y,A) in the Bayesian network is given by:

log p(x, y,A; θ) = log p(x; θ) + log p(A|x; θ)
+ log p(y|x,A; θ) (20)

which forms the learning objective of our problem. Next, we give the details about how the loss
functions for optimization are derived from the likelihood.

For the log-likelihood log p(x; θ) of each domain, we have the ELBO as a lower bound on the
log-likelihood:

log p(x; θ) = KL(q(vd, vmi, vma|x)||p(vd, vmi, vma|x))+
Eq(vd,vmi,vma|x) log p(vd, vmi, vma, x)− Eq(vd,vmi,vma|x) log q(vd, vmi, vma|x)

≥Eq(vd,vmi,vma|x) log
(
p(vd, vmi, vma, x)

q(vd, vmi, vma|x)

)
= −KL(q(vd, vmi, vma|x)||p(vd, vmi, vma))
+ Eq(vd,vmi,vma|x) log (p(x|vd, vmi, vma)) (21)

where q(·|x) denotes q(vd, vmi, vma|x) for simplicity. Specifically, we use θ to parameter-
ize p(vd, vmi, vma, x) and ϕ to parameterize q(vd, vmi, vma|x). The prior joint distribution
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pθ(vd, vmi, vma, x) can be factorized into pdθ(z)pθ(vmi, vma)p
d
θ(x|vd, vmi, vma). Under mean-field

approximation, the posterior qϕ(vd, vmi, vma|x) can be factorized into qdϕ(vd|x)qϕ(vmi, vma|x).
Note that the index d is added since vd and x are domain-variant and vmi, vma are domain-invariant.
The final two terms in Eq. 21 are the KL loss and reconstruction loss in the loss functions.

For the conditional log-likelihood log p(A|x; θ), we have:

log p(A|x; θ) = log

∫
pθ(A|vma)pθ(vma|x)dvma (22)

where pθ(vma|x) is re-parameterized by the posterior model qϕ(vma|x) in the variational framework
above. Under one-time sampling, we have log p(A|x; θ) = log pθ(A|vma)pθ(vma|x). Since the
different attributes are independent in A, and each attribute {gi}i∈[C] ∈ A ([C] := {1, ..., C}) obeys
binomial distribution, we can rewrite the log-likelihood as:

log p(A|x; θ) = log p(g1, · · · , gC |x; θ)

= log
C∏
i=1

p(gi|x; θ)

= log

C∏
i=1

ĝi
gi(1− ĝi)1−gi

=

C∑
i=1

gi log ĝi + (1− gi) log(1− ĝi) (23)

where ĝi denotes the probability of that the sample x contains attribute i (i.e., gi being 1 under the
prediction of pθ(A|vma)qθ(vma|x)). Thus we derive the multi-label loss for the Graph Convolutional
Network.

For the conditional log-likelihood log p(y|x,A; θ), we have:

log p(y|x,A; θ) =

log

∫
pθ(y|vmi, vma)pθ(vmi, vma|x,A)dsda (24)

where pθ(vmi, vma|x,A) is re-parameterized by the posterior model qϕ(vmi, vma|x) in the
variational framework above. Under one-time sampling, we have log p(y|x,A; θ) =
log pθ(y|vmi, vma)qθ(vmi, vma|x). Since y obeys binomial distribution, we can rewrite the log-
likelihood as:

log p(y|x,A; θ) = log ŷy(1− ŷ)(1−y)

= y log ŷ + (1− y) log(1− ŷ) (25)

where ŷ denotes the probability of y being 1 under the prediction of pθ(y|vmi, vma)qθ(vmi, vma|x).
Thus we derive the loss function for the binary classification of benign/malignant.

C ABLATION STUDY ON EACH COMPOMENT

Here are some interpretations for the variants: a) DADI denotes whether using DADI encoder during
the reconstructing phase, while DAL denotes using domain-aware layers for distinguishing multiple
domains in DADI encoder; b) Attribute Learning denotes the way to predict attributes: × means
no predictions of attributes, multi-task means using a fully connected layer to predict the multiple
attributes, and Lgcn means using our Disease-Attribute Generative Model to predict attributes; c) vmi
denotes whether split the latent factor vmi out for disentanglement in training; d) Medical Image
Decoder denotes whether use the reconstruction loss in training.

As shown in Tab. 4, every component is effective. It is worth noting that using naive GCN also leads
to a boosting of around 5% in average. Such a result can demonstrate that the attributes can guide the
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Table 4: Ablation Study: AUC evaluation of public/in-house datasets on external cohorts (unseen
domains, i.e., out-of-distribution: training and testing data are from different domains, testing on
InH1/InH2/InH3/DDSM while training on the other three). Testing names are noted in the table.

DADI Attribute Learning vmi Medical Image Decoder InH1 InH2 InH3 DDSM
× × × × 0.822 0.758 0.735 0.779
× multi-task × × 0.851 0.793 0.775 0.801
× Lgcn × × 0.877 0.827 0.804 0.830
× Lgcn × ✓ 0.911 0.846 0.816 0.844

DAL Lgcn × ✓ 0.931 0.862 0.841 0.878
DAL × × ✓ 0.913 0.840 0.823 0.852
× Lgcn ✓ ✓ 0.916 0.851 0.821 0.859

DAL Lgcn ✓ ✓ 0.948 0.874 0.858 0.892

Table 5: Ablation study on the combination of training data sets. Take testing on the public dataset
DDSM as an example. (OOD settings)

train on
InH(1,2)

train on
InH(1,3)

train on
InH(3,2)

train on
InH(1,2,3)

0.885 0.881 0.887 0.892

learning of disease-related features. Meanwhile, disentanglement learning also causes a noticeable
promotion, which may be due to that the disease-related features can be easier identified through
disentanglement learning without mixing information with others. Moreover, Lines 5-6 validate that
disease-related features can be disentangled better with the guidance of exploring attributes. Lines
7-8 validate that distinguishing multiple domains improves the generalization performance.

D MORE ABLATION STUDY

We also explore the impact of the combination of training domains and try different training combina-
tions for unseen test domains. Take testing on DDSM (Bowyer et al., 1996) as an example. As shown
in Tab. 5, the more types of domains the better effect of our model. Due to the different correlations
between different domains, the effect will be different under different combinations. But based on
the inter mechanism of our model, influences between different domains are not obvious and three
domains are sufficient to achieve comparable results.

Under the setting: testing on DDSM (Bowyer et al., 1996) (OOD) while training on InH1+InH2+InH3,
we also list the results of our invariant model DarMo (OOD model) under testing on the testing set
of InH1/InH2/InH3 (in-distribution) as shown in Tab. 6. We also do experiments under the setting:
training on InH1+InH2+InH3+DDSM and testing on InH1/InH2/InH3/DDSM. In addition, under
the same setting, we also test our variant model Ours-single (in-distribution model). The results
of testing on unseen DDSM (Bowyer et al., 1996) (OOD) is 0.861, testing on InH1/InH2/InH3 (in-
distribution) which are from the same training sets (InH1+InH2+InH3) are 0.944, 0.880, and 0.853
respectively. The variant model testing on InH1/InH2/InH3 (the same domain as the training set)
behaves comparably with ours in Tab. 6 and is slightly better since our DarMo split some inter-domain
correlation which can decent performance under domain generalization. Thus, the variant model
faces a larger drop over our invariant model DarMo when generalizing to the unseen DDSM dataset
(0.892 vs 0.861).

E MORE DETAILS OF DISEASE ATTRIBUTE GENERATIVE MODELS.

To capture macroscopic patterns in vma, we constrain it to estimate the clinical attributes A that
include macroscopic information such as shape, margins, lobulation, etc. Besides, we constrain it
and vmi to predict the disease label y, with vmi accounting for additional microscopic information
of lesions. We note that such constraints align with the causal graph in Fig. 2, as only vma → A
and y ⊥ vc|vma, vmi. Finally, we constrain all factors to reconstruct the input x, with vd responsible
for the domain-aware effects in x (Medical Image Decoder ). Indeed, such asymmetric roles
of vma, vmi, vd in terms of relations with y,A, x can additionally help to disentangle them from
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Table 6: AUC of testing on data set InH1/InH2/InH3/DDSM while training on InH1+InH2+InH3.
test on
InH1

test on
InH2

test on
InH3

test on
DDSM

0.939 0.874 0.852 0.892
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Figure 5: Distribution of lesions’ characteristics in each center (dataset).

each other, on the basis of the two-branch encoder. We parameterize pθ(y,A, x|v) as pθx(x|v),
pθy (y|vma, vmi) and pθA(A|vma).
To utilize these relations, we parameterize the pθ(A|vma) by a Graph Convolutional Network (GCN)
which is a flexible way to capture the topological structure in the label space. Along with (Chen et al.,
2019), we build a graph G = (V,E) with twelve nodes and consider each attribute as a node, e.g.,
Shape-circle, Margin-clear. Each node Vi ∈ V represents the word embedding of the attributes. Each
edge e ∈ E represents the inter-relevance between attributes. The inputs of the graph are feature
representationsH l and corresponding correlation matrixB which is calculated in the same way Wang
et al. (2021b). For the first layer, H0 ∈ Rc×c′ denotes the one-hot embedding matrix of each
attribute node where c is the number of attributes, c′ is the length of embeddings. Then, the feature
representation of the graph at every layer (Kipf & Welling, 2016) can be calculated via H l+1 =
δ(BH lW l), where δ(·) is LeakyRelu (Maas et al., 2013), W l is the transformation matrix which is
the parameter to be learned in the lth layer. The output {Âk}k = GCN([Causal-Encoder(x)]A)) is
learned to approximate attributes {Ak}k.

F MORE DETAILS OF IMPLEMENTATION AND DATASETS.

External cohorts are unseen before testing, i.e., have not been used in the training phase. For each
dataset, the region of interest (ROIs) (malignant/benign masses) are cropped based on the annotations
of radiologists the same as Kim et al. (2018). The training/valid/testing samples we use contain 1165
ROIs from 571 patients/143 ROIs from 68 patients/147 ROIs from 75 patients in DDSM (Bowyer
et al., 1996), 684 ROIs from 292 patients/87 ROIs from 38 patients/83 ROIs from 33 patients in InH1,
840 ROIs from 410 patients/104 ROIs from 50 patients/105 ROIs from 52 patients in InH2, and 565
ROIs from 271 patients/70 ROIs from 33 patients/70 ROIs from 34 patients in InH3. The distribution
of lesions’ characteristics in each center (dataset) we use is shown in Fig. 5. And the distribution of
ages in each center we use is shown in Fig. 6.

For a fair comparison, all methods are conducted under the same setting and share the same encoder
backbone, i.e., ResNet34 (He et al., 2016). Meanwhile, the decoder is the deconvolution network of
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Figure 6: Distributions of ages in each center (dataset).

the encoder. For attribute annotations, in DDSM (Bowyer et al., 1996) annotations can be parsed from
the ".OVERLAY" file. The third line in the ".OVERLAY" file has annotations for types, shapes, and
margins of masses. And in our in-house datasets, we obtain attribute annotations from the verification
of one director doctor based on the annotations of three senior doctors. We implement all models with
PyTorch. We implement Adam for optimization. The weight hyperparameter in variance regularizer
β is 1 in our experiments.

The clinical attributes contain circle, oval, irregular, circumscribed, obscured, ill-defined, is-lobulated,
not-lobulated, is-spiculated, not-spiculated. We add additional benign and malignant nodes to learn
the correlation between the combination of attributes and benign/malignant. For the implementation
of compared baselines, we directly load the published codes of ERM (He et al., 2016), Chen et al.
(Chen et al., 2019), DANN (Ganin et al., 2016), MMD-AAE (Li et al., 2018), DIVA (Ilse et al., 2020),
IRM (Arjovsky et al., 2019) and Prithvijit et al.(Chattopadhyay et al., 2020) during the test stage;
while we re-implement methods of Guided-VAE (Ding et al., 2020b), ICADx (Kim et al., 2018) and
Li et al. (Li et al., 2019) for lacking published source codes.

G TEST SET OF DDSM

We use the same To provide convenience for the latter works, we publish the list of our test division
on the public dataset DDSM (Bowyer et al., 1996).

ben ign_12_case1889 ben ign_04_case3357 c a n c e r _ 0 1 _ c a s e 3 0 8 4
ben ign_04_case0304 ben ign_09_case4060 ben ign_05_case1491
c a n c e r _ 0 8 _ c a s e 1 4 6 4 c a n c e r _ 0 9 _ c a s e 0 0 4 9 c a n c e r _ 1 1 _ c a s e 1 6 7 8
c a n c e r _ 0 4 _ c a s e 1 0 9 0 c a n c e r _ 0 5 _ c a s e 0 1 5 7 ben ign_06_case0366
ben ign_04_case0270 ben ign_02_case1321 c a n c e r _ 0 5 _ c a s e 0 1 4 2
c a n c e r _ 0 5 _ c a s e 0 1 2 7 ben ign_04_case3103 c a n c e r _ 0 7 _ c a s e 1 1 4 3
c a n c e r _ 0 8 _ c a s e 1 1 2 8 ben ign_11_case1792 ben ign_06_case0396
c a n c e r _ 1 5 _ c a s e 3 3 7 1 ben ign_07_case1686 ben ign_13_case0485
ben ign_09_case4085 c a n c e r _ 0 2 _ c a s e 0 1 1 2 c a n c e r _ 1 5 _ c a s e 3 3 9 8
ben ign_03_case1435 c a n c e r _ 0 1 _ c a s e 3 0 2 7 c a n c e r _ 0 7 _ c a s e 1 1 1 4
c a n c e r _ 0 3 _ c a s e 1 0 7 0 ben ign_03_case1432 c a n c e r _ 0 6 _ c a s e 1 1 8 2
c a n c e r _ 0 5 _ c a s e 0 1 4 0 ben ign_12_case1947 ben ign_12_case1922
c a n c e r _ 0 5 _ c a s e 0 2 1 0 c a n c e r _ 0 8 _ c a s e 1 4 0 3 c a n c e r _ 0 5 _ c a s e 0 1 7 3
ben ign_01_case0235 ben ign_02_case1317 ben ign_11_case1836
c a n c e r _ 0 5 _ c a s e 0 2 2 2 c a n c e r _ 0 8 _ c a s e 1 5 3 2 ben ign_06_case0372
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c a n c e r _ 0 2 _ c a s e 0 0 7 7 ben ign_11_case1855 c a n c e r _ 0 5 _ c a s e 0 1 3 9
ben ign_08_case1786 c a n c e r _ 0 7 _ c a s e 1 1 5 9 c a n c e r _ 1 0 _ c a s e 1 5 7 3
c a n c e r _ 0 5 _ c a s e 0 1 8 1 ben ign_09_case4038 c a n c e r _ 0 5 _ c a s e 0 1 9 2
ben ign_06_case0363 c a n c e r _ 0 6 _ c a s e 1 1 2 2 ben ign_01_case3113
ben ign_09_case4003 ben ign_06_case0367 c a n c e r _ 1 2 _ c a s e 4 1 3 9
c a n c e r _ 1 4 _ c a s e 1 9 8 5 c a n c e r _ 0 5 _ c a s e 0 1 8 3 c a n c e r _ 1 0 _ c a s e 1 6 4 2
c a n c e r _ 0 5 _ c a s e 0 2 0 6 c a n c e r _ 0 3 _ c a s e 1 0 0 7 c a n c e r _ 1 2 _ c a s e 4 1 0 8
c a n c e r _ 0 9 _ c a s e 0 3 4 0 ben ign_07_case1412 c a n c e r _ 0 5 _ c a s e 0 0 8 5
ben ign_09_case4065 ben ign_03_case1363 ben ign_09_case4027
ben ign_10_case4016 ben ign_13_case3433 ben ign_09_case4090
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