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ABSTRACT

Performing survival analysis on distributed healthcare data is an im-
portant research problem, as the existing privacy laws and emerging
data-sharing regulations prohibit the sharing of sensitive patient
data across multiple institutions. The distributed healthcare survival
data is typically heterogeneous, non-uniformly censored, and comes
from patients with multi-morbidities (or competing risks), which
may lead to biased and inaccurate risk predictions. To address these
challenges, we propose federated learning for survival analysis
with competing risks. Specifically, (a) we propose a simple algo-
rithm to estimate consistent federated pseudo values for survival
analysis with competing risks and censoring; and (b) we introduce
a novel and flexible federated pseudo-value-based deep learning
framework named FedCRA, where we employ a transformer-based
model; named TransPseudo, to enable subject-specific prediction
of the marginal risk of an event while preserving the data privacy.
Extensive experiments on two real-world distributed healthcare
datasets with non-IID and non-uniform censoring properties and
on synthetic data with different censoring settings demonstrate
that our FedCRA framework with the TransPseudo model performs
better than the federated learning framework with state-of-the-art
survival models for competing risks analysis (CRA).
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1 INTRODUCTION

Multimorbidity, i.e., the presence of two or more chronic conditions
in a person, is a prevalent and urgent problem in healthcare [7, 17],
especially among older patients. In the United States, the prevalence
of more than 2 morbidities was 59.6%, whereas the percentage was
92% among individuals over 65 years during 2013-14 [12]. Multi-
morbid patients face the risk of adverse outcomes, such as mortality,
due to different clinically significant diseases like cancer or heart
disease. These outcomes, such as death from cancer or death from
heart disease, are considered competing events, and their risks are
referred to as competing risks [14, 21]. The occurrence of one com-
peting event precludes the occurrence of other competing events,
thus, influencing the risk of other competing events. The standard
survival analysis, also known as time-to-event analysis, ignores
the competing risks or treats the competing events as censoring
in the marginal risk prediction of the event of interest, leading to
biased and inaccurate risk predictions. Recently, machine learning
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Figure 1: Challenges of Federated CRA in SEER dataset

models have been developed for competing risk analysis (CRA)
[11, 14, 21, 26], which have shown promising improvement over
traditional statistical CRA models [6, 7] and achieved state-of-the-
art performance. However, a limited amount of survival data are
typically collected by a single medical center due to resource and
privacy constraints, which is insufficient to develop an efficient
machine learning-based survival model for accurate risk predic-
tions. The National Cancer Institute took a great initiative to collect
large-scale survival data on registered cancer patients from the
hospitals of several regions in the USA through the Surveillance,
Epidemiology, and End Results (SEER) [10] program. However, such
initiatives are expensive and time-consuming, and far fewer. On the
other hand, while collaborations across multiple medical centers to
gather harmonized large-scale datasets is feasible, such collabora-
tions are hindered by the strict privacy laws and regulations on user
data sharing, such as Health Insurance Portability and Accountabil-
ity Act (HIPAA) and European Union’s General Data Protection
Regulation (GDPR). To overcome data sharing limitations from mul-
tiple institutions, Federated Learning (FL) [16] has been proposed
as a viable solution, where models are shared and trained among
multiple institutions instead of sharing data. In this paper, we study
the solution of competing risk analysis problem under the federated
learning settings (with the assumption that data sharing is infea-
sible) and propose a federated competing risk analysis (FedCRA)
framework. We are inspired by the recent success of federated sur-
vival analysis [2, 19, 20, 25] in achieving performance close to the
gold-standard centralized training.

Even though CRA is a well-studied problem [11, 14, 21, 26], we
found no work on modeling competing risks in an FL setting, espe-
cially on some real-world challenges of Federated CRA including
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non-IID data, and non-uniform censoring. In this paper, we investi-
gate the following challenges in Federated CRA and develop novel
methods to provide potential solutions to the problems.

e Challenge 1: Data Heterogeneity: The dissimilarities in
patient demographics, event distributions, and clinical histo-
ries among various collaborative medical centers result in
non-IID data.

e Challenge 2: Non-Uniform Censoring (NUC): Censor-
ing, i.e., partial information of subjects’ event status, is a
key challenge in survival analysis that leads to biased and
inaccurate risk predictions [23]. This bias exacerbates in FL
due to the non-uniformity of censoring distributions across
clients, as shown in Figure 1 (Subplot: KM estimate of the
survival estimate). Moreover, the censoring rate also varies
across different medical centers, leading to heterogeneous
data distributions and sub-optimal performance of the local
survival models.

Proposed Solutions: To address the challenges in federated
CRA, we propose a first-of-its-kind federated pseudo-values-based
deep learning framework, FedCRA, to solve CRA in an FL manner.
We also propose a novel client-specific Transformer-based CRA
model, TransPseudo. FedCRA jointly trains TransPseudo models
in a federated framework to learn a global updated model without
sharing raw data, which is further used to predict the probability of
an event at or before time ¢ due to cause k, i.e., cause-specific cumu-
lative incidence function (CIF), given the covariates for a patient
in a client. We introduce federated pseudo-values to efficiently handle
non-uniform censoring and account for the heterogeneity in event time
and censoring distribution. Our federated pseudo values preserve
patient data privacy since they are derived from aggregated sum-
mary information (containing no identifying information) instead
of raw data.
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Figure 2: Benefit of participating in our FedCRA framework
(TransPseudo-Federated). Our federated pseudo value-based
TransPseudo model shows improvement in average C-Index
performance over the local DeepHit and local TranPseudo
models on distributed non-IID SEER datasets for all three
clients (WEST, CENTRAL, and EAST regions).

We show in figure 2 that all decentralized clients can improve
their prediction accuracy for CRA by participating in our FedCRA
framework, thus improving patient outcomes. We also conduct
extensive experiments on multiple realistic federated settings with
real CRA data: SEER [21] and eICU [18] as well as on several syn-
thetic datasets with different censoring settings to demonstrate
the efficacy of our FedCRA framework to improve the model’s

Rahman and Purushotham

performance while preserving data privacy and to address data
heterogeneity and non-uniform censoring. We show that our pro-
posed FedCRA framework achieves close performance to the gold-
standard centralized training on centrally aggregated data. More-
over, FedCRA performs better than the FL framework with SOTA
CRA models.

2 PROPOSED FEDCRA FRAMEWORK

In this section, we will first introduce the notation, preliminaries,
and the Federated CRA problem settings and then describe our
proposed FedCRA Framework.

Notations and Problem Settings: Let K medical centers/clients
participate in federated learning to learn a global model for con-
ducting CRA. Each client has its own local survival data with mul-
tiple competing events, and individuals in a client are followed
up to a particular study period. For an individual i in client k,
we denote the CRA data (D) as a tuple, Dy = {Xjg, Yik, Sir s
where Xix = (Xik1, Xik2, - Xikp)s Yik, Gix respectively are the p-
dimensional vector of observed covariates, observed event time
and event indicator for individual i in client k. The event indicator,
8 = r, if the i*" individual in client k experienced the event r,
where r € {1,2,...,L} events and §;; = 0, if the individual is cen-
sored. Let T;;. be the event time for individual i in client k. The first
event of the L number of events is only observed, and therefore
the event time of i*”* individual in client k is the earliest event time,
defined as Ty = min(Ti}c, Tizk’ . TIII‘() The observed time for individ-
ual i in client k is the minimum of event time and censoring times
Cik, Yir = min(Ty, Cyi). For individual i in client k, let us define
the cumulative incidence function (CIF), denoted as F,(t|x;x), as
the probability of an occurring event r at or before time t given the
covariate Xjx; Fr(t|x;r) = P(T < t,0 = r|x;). The objective in Fed-
erated CRA problem is to learn a global model and accurately predict
the CIF, Fy(t|x;y), for each event, by utilizing the federated learning
algorithms such as FedAvg [16], to aggregate the client-specific models
trained on their own CRA data Dy,.

Overview of our FedCRA Framework: The recent success of
pseudo value-based deep neural networks in standard survival anal-
ysis [22, 23], CRA [21] and federated survival analysis (FSA) [20] has
motivated us to develop a pseudo-value-based deep learning model
for solving CRA in a federated manner. However, federated CRA is
a more intricate problem due to the complex interaction between
covariates and competing events and the real-world challenges
in federated CRA, such as non-IID data and non-uniform censor-
ing. As a result, simple deep neural networks need more learning
capacity for obtaining accurate predictions and satisfactory perfor-
mance in federated CRA. On the other hand, the transformer-based
model has a strong learning capacity and has achieved SOTA perfor-
mance in a wide range of tasks [8, 26], which motivates us to design
transformer-based models for performing complex CRA in an FL
manner. Therefore, we propose an FL framework for CRA; we call
it FedCRA, where we first derive the pseudo values in a federated
fashion and use them as response variables (ground truth) in our
proposed client-specific Transformer-based models, TransPseudo.
Then we conduct federated training with the TransPseudo models
for learning the global model parameters.
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Federated Pseudo Values for CIF: Due to censoring, i.e., in-
complete event status or ground truth, the direct application of
standard regression or classification techniques becomes infeasible.
Pseudo values can be considered the natural replacement for the
incompletely observed CIF [4], thus, can be used to efficiently han-
dle censoring [1, 21, 27]. The traditional Jackknife pseudo values,
computed on local client data, exhibit local consistency but suffer
from global inconsistency due to heterogeneity in the event and
censoring distributions of the clients. Computing pseudo values on
merged data in a central server from clients can address the prob-
lem; however, data privacy laws and regulations make it infeasible.
Moreover, the pseudo values, requiring leave-one-out computation
for each subject in a sample, become computationally expensive
and infeasible for federated CRA as the number of clients and sam-
ple size increases. To overcome these challenges, we introduce a
novel federated pseudo values derivation approach for federated
CRA, which uses the summary information from the clients instead
of raw data that do not disclose the patient identifying information
and, thus, preserve the data privacy. The leave-one-out computa-
tion required for pseudo values derivation is performed in parallel
on the clients, reducing computational complexity and enabling
scalability for FL. Furthermore, our federated pseudo values are di-
rectly derived from the estimate of global CIF, incorporating global
information on the time-to-event distribution to account for the
heterogeneity in client data. The federated pseudo values derivation
approach is described as follows.

Federated Pseudo Values Derivation: First, each client trans-
forms the inputs, i.e., event time and status, into summary informa-
tion, such as the number of subjects at risk at time #p; (Rpx), number
of events (dy), number of subjects experienced event r; (d,) and
number of censored (cy) at a vector of unique time points (7z) in
the local data. Clients send the summary information to the global
server, where the server aggregates the summary information at
the union of the vector of unique time points of clients, 7 = Uy 7y,
to form a global partial table. The global partial table contains the
total number of subjects at risk at time ¢ty € 7, Ry = Zle Rok the
total number of events, d = Zf:l dg., the total number of subjects
who experienced event r; d, = Zle dyi and the total number
of censored, ¢ = Zlk(=1 ci at the vector of unique time points 7.
The server fills up the partial table by computing the number of

subjects at risk at subsequent time points (t1, f2, ..) using the for-
mula: Rtj = Rtj,l - Rtj,l - d;jfl -ty Then, the server compute

A dy;
the global survival function as SC(t) = Htjefst(l - R—?) and
J

drtj

the global CIF as FC (1) = Dtyerst SC (1) R, The global server

sends the global partial table and the gloszil CIF to the clients.
Clients first create leave-one-out global partial tables by omit-
ting the ith subjects from the risk set R(tp) and from d, d,,c at
which time point the event or censoring occurred (denoted as
d~tk gk c=ik) Then clients fill the risk set at the subsequent
time points in the leave-one-out global partial table using the fol-
lowing formula: R;jik = R;j’f - d;j’f - c;j’f, where t; € 7. Using

the complete table, clients compute the leave-one-out global CIF as
—ik

ik i A
FP=H (1) = thETStS - (t)R;_"]k' Finally, each client computes
i
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the pseudo values for their subjects using the following equation:
Jiter(t) = nES ()= (n=1)ES~ K (1);i = 1,2, .., n, k = 1,2, .., K. Here,
n is the total number of subjects of all clients, i.e., n = Zf(zl ng and
t can be a pre-specified single time point or a vector of time points,
Y (provided by the user). ﬁrG () is the AJ estimate of the global CIF
for event r at time t and ﬁrG ik (t) is the leave-one-out AJ estimate
of the global CIF, obtained by omitting i*” subject from client k. For
a subject i in client k, pseudo values are calculated for all R causes
at a vector of pre-specified time points, Y. Our federated pseudo
values are directly derived from the consistent estimate of global
cumulative incidence function FrG (t) [5] and can be shown to be
consistent by following the lemma 2 in [9].

Proposed TransPseudo Model: Our TransPseudo model adapts
the FT-Transformer (Feature Tokenizer + Transformer) architecture
[8] and uses covariates as input and predicts CIF via federated
pseudo values as response variables (ground truth). First, a Feature
Tokenizer transforms the inputs X (both numerical and categorical
covariates) into embeddings Q € RF*9. The embeddings of all
covariates (both numeric and categorical) are stacked to create an
embedding matrix Q. Then, a transformer module first appends the
output token [OT] embedding to the embedding matrix Q. After that
a stack of L Transformer layers Hy, Hy, ..., Hy, are applied as: Q; =
H;(Qj—1) where Q¢ = stack[[OT], Q]. TransPseudo model predicts
the CIF using the final representation of the output token [OT]
as F(7) = Sigmoid(Linear(ReLU(LayerNorm(H]EOT])))). See the
paper [8] for the details of the transformer module. The architecture
of our proposed TransPseudo model is shown in figure 3.

We introduce a pseudo-value-based binary cross-entropy (PBC)
loss for Federated CRA with R competing events. The loss LII:BC(t)
for client k at time ¢ is defined as,

R ng
1 .
L0 = =g 20 2~ [Uir (0 > 0.9)logF (elxig)
r=1i=1

+(1 = 1(Jigr (1) > 0.5))l0g(1 = Ey(t]xix))]

where Fy(t|x;;) and Ji,(t) respectively are the predicted CIF
and the pseudo values at time point ¢ for ith individual in client
k. Note that ¢ can be a prespecified single time point or a vector
of time points, Y, where pseudo values are calculated based on the
research interest. If we calculate the loss for a vector of time points,
then the final loss is }; LII:BC(t).

Federated Training: Our FedCRA framework employs our pro-
posed client-specific TransPseudo models that communicate with a
global server. During each communication round, the global server
sends the clients a global TransCRA model represented by w®. The
local clients then update their local models by incorporating the
global model parameters and training their models using their re-
spective local data. The newly trained local models, denoted as
sz, are then sent back to the global server. Using a standard FL
algorithm, FedAvg [16], the global server aggregates the updates
from the local models to update the global model. Subsequently,
the updated global model is sent back to the local clients by the
global server. This process is repeated for a specified number of
communication rounds, denoted as V. Once the V rounds are com-
pleted, the globally updated model is utilized to make personalized
CIF predictions.
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Figure 3: Architecture of TransPseudo model. Here, X ; and X][num] are the categorical and numeric covariates, respectively,

and Wj[wt] and Wj[num] are their corresponding weights. b; are the biases.

3 EXPERIMENTS

We conduct extensive experiments to answer the following research
questions.

e RQ1: What are the advantages of employing federated pseudo
values as opposed to traditional Jackknife pseudo values in
the FedCRA framework?

e RQ2: How does our FedCRA perform on real-world dis-
tributed CRA data with non-independent and identically
distributed (Non-IID) and Non-uniform censoring properties
compared to the FL framework with the state-of-the-art CRA
approaches?

e RQ3: How robust is the FedCRA framework under different
types and amounts of censoring?

Synthetic datasets with different censoring mechanisms:
To replicate different censoring scenarios in FL, we generate 5
distributed synthetic CRA datasets with different censoring mecha-
nisms, such as (a) time censoring (TC), (b) interim censoring (IC), (c)
case censoring (CC) with 25%, 50%, and 75% censoring [20], consid-
ering 10 decentralized clients assumed each client to have different
covariate distributions (non-IID). To construct these datasets, we
generate 12 numerical covariates from a multivariate normal distri-
bution with mean mu and variance ¢2. Additionally, we generate
two binary variables from a binomial distribution with probabil-
ity p. Survival times are generated from exponential distribution
considering the linear and nonlinear interaction among covariates.

SEER Data: The Surveillance, Epidemiology, and End Results
(SEER) [10] program of the National Cancer Institute collected
data from breast cancer patients registered at multiple hospitals in
the United States to provide cancer statistics in the United States.
The dataset contains 6 competing events and 28366 patients, out
of which 23.2% patients died of cervical cancer (CC), 2.6% died
due to other cancers (OCN), 2.4% died of cardiovascular disease
(CVD), 1.1% died due to chronic medical disease (CMD), 0.6% died
of infectious disease (ID), and 1.8% died due to other causes (OCS)
[21]. To replicate a realistic distributed CRA data scenario with

non-uniform censoring (NUC) for FL, we first partitioned the SEER
data into 3 clients based on the regions of the hospitals: West,
Central, and East. Next, we chose a fixed number of subjects for all
clients based on the minimum number of censored and uncensored
subjects in the clients. Then, we varied the censoring percentages
chosen from [0.2, 0.3, 0.4, 0.50, 0.55] for each client and adjusted
the number of uncensored subjects by subtracting the number of
selected censored subjects from the total fixed number of subjects.
This setup enables us to evaluate FL models in a geographically
distributed data environment and under non-uniform censoring
settings.

eICU Data: The eICU dataset is a widely used public clinical
dataset obtained from the eICU Collaborative Research Database
[18], where data are collected from patients admitted to the ICU
setting and gathered from multiple hospitals in the United States.
We extracted 17342 patients who were diagnosed with one or more
of the following four diseases: cancer (CN), liver disease (LV), im-
munosuppression (IM), and diabetes (DI). Death from each disease
is considered a competing event, and we only consider the death of
patients diagnosed with a single disease as an event. We imputed
the missing values using Multivariate Imputation by Chained Equa-
tions (MICE) [24] separately for each client. To simulate real-world
non-IID distributed CRA data, we partitioned the eICU dataset
into 4 clients based on the region of the hospital: (1) Midwest, (2)
Northeast, (3) South, and (4) West.

Table 1: Comparing federated and Jackknife pseudo values
using TransPseudo model

Combined test data local test data

Dataset| Federated Training local Training Federated Training

Jackknife Fed.Pseudo|Jackknife Fed. Pseudo|Jackknife Fed.Pseudo
SEER [0.72 (0.032) 0.83 (0.019) [0.80 (0.011) 0.86 (0.007) [0.80 (0.018) 0.91 (0.017)
eICU [0.74 (0.006) 0.83 (0.008) [0.75 (0.035) 0.83 (0.016) [0.79 (0.019) 0.87 (0.017)




Federated learning for competing risk analysis in healthcare

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

Table 2: C-Index comparison of the models on the SEER and eICU datasets

Setup | Model SEER eICU
Event — cC OCN CVD CMD ID ocs CN LV IM DI

Centraliged) CS"COXPH [ 079 (0.015) 0.78 (0.010) 0.80 (0.007) 0.84(0.023) 0.68(0.207) 0.7 (0.026)[[ 0.80 (0.001) 0.71(0.117) 0.72 (0.008) 0.80 (0.000)
(Combined DeepHit |0.88 (0.010) 0.85 (0.018) 0.82 (0.018) 0.76 (0.046) 0.81 (0.107) 0.82 (0.022) || 0.71 (0.022) 0.65 (0.071) 0.56 (0.058) 0.67 (0.026)
Test Data) | SurvIRACE | 0.84 (0.028) 0.83 (0.025) 0.83 (0.026) 0.79 (0.051) 0.83 (0.080) 0.80 (0.067) || 0.77 (0.015) 0.82(0.035) 0.76 (0.021) 0.81 (0.006)_
TransPseudo| 0.87 (0.006) 0.88 (0.027) 0.88 (0.018) 0.89 (0.065) 0.89 (0.064) 0.86 (0.010)||0.82 (0.018) 0.89 (0.028) 0.82 (0.034) 0.89 (0.014)
Federated | CS"COXPH [0.79.(0.013) 079 (0.007) 080 (0.009) 0.84(0.022) 0.75(0.027) 076 (0.031) |0.79 (0.001) 0.80 (0.004) 0.70 (0.007) 0.80 (0.000)
(Combined DeepHit (0.83 (0.008) 0.83 (0.030) 0.86 (0.014) 0.84 (0.049) 0.87 (0.038) 0.82 (0.028) || 0.71 (0.024) 0.68 (0.022) 0.59 (0.021) 0.77 (0.019)
Test Data) | SurvITRACE | 0.82 (0.007) 0.81(0.025) 0.82(0.017) 0.78(0.078) 0.84(0.058) 0.80 (0.051) | 0.75 (0.009) 0.80 (0.034) 0.72(0.043) 0.78 (0.008)
TransPseudol 0.80 (0.007) 0.82 (0.041) 0.83 (0.013) 0.87 (0.034) 0.86 (0.073) 0.83 (0.021)|[0.81 (0.021) 0.87 (0.027) 0.83 (0.012) 0.80 (0.014)
Local | CS-CoxPH |0.79 (0.033) 0.79(0.047) 0.81 (0.040) 0.84 (0.042) 0.68(0.119) 0.78 (0.056) || 0.69 (0.012) 0.63 (0.035) 0.61 (0.051) 0.80 (0.017)
Training | DeepHit |0.87(0.007) 0.82(0.028) 0.83(0.017) 0.78 (0.076) 0.83 (0.065) 0.83 (0.033)[| 0.67 (0.039) 0.67 (0.049) 0.56 (0.063) 0.79 (0.007)
(Local |SurvIRACE | 0.84 (0.028) 0.83 (0.025) 0.83(0.026) 0.79 (0.051) 0.83 (0.080) 0.80 (0.067) || 0.70 (0.030) 0.67 (0.009) 0.71 (0.037) 0.80 (0.010)
Test Data) |TransPseudo|0.88 (0.004) 0.87 (0.017) 0.86 (0.019) 0.91 (0.020) 0.84 (0.021) 0.81 (0.025) ||0.86 (0.029) 0.78 (0.061) 0.82 (0.014) 0.89 (0.010)
Local | CS-CoxPH |0.79 (0.028) 0.79 (0.040) 0.80 (0.042) 0.84 (0.037) 0.74(0.105) 0.7 (0.052)][ 0.76 (0.000) 0.73 (0.005) 0.68 (0.007) 0.82 (0.001)
Federated | DeepHit |0.88 (0.009) 0.85 (0.022) 0.88 (0.020) 0.86 (0.056) 0.90 (0.040) 0.86 (0.027) || 0.83 (0.012) 0.79 (0.021) 0.71(0.052) 0.80 (0.017)
(Local | SurvITRACE | 0.87 (0.002) 0.82 (0.035) 0.81(0.026) 0.79 (0.048) 0.83 (0.091) 0.81 (0.049) || 0.76 (0.059) 0.69 (0.031) 0.76 (0.042) 0.79 (0.006)
Test Data) |TransPseudo| 0.87 (0.014) 0.91 (0.021) 0.91 (0.018) 0.95 (0.022) 0.91 (0.061) 0.89 (0.020)||0.89 (0.007) 0.82 (0.036) 0.88 (0.029) 0.89 (0.002)

Table 3: Model comparison on different censoring settings

Setup Model TC IC CC25 CC50 CC75
;«? DeepHit | 0.68 (0.009) | 0.68 (0.012) | 0.65 (0.004) | 0.67 (0.007) | 0.72 (0.007)
ol
g"' SurvIRACE | 0.72 (0.014) | 0.69 (0.015) | 0.67 (0.006) | 0.67 (0.009) | 0.67 (0.008)

I~J
& |TransPseudo|0.79 (0.005)|0.79 (0.005)|0.75 (0.009) 0.80 (0.004) | 0.82 (0.008)

DeepHit
SurvTRACE

0.66 (0.007) | 0.66 (0.006) | 0.65 (0.006) | 0.65 (0.009) | 0.65 (0.002)
0.70 (0.004) | 0.68 (0.005) | 0.67 (0.009) | 0.68 (0.007) | 0.71 (0.009)
&' |TransPseudo [0.72 (0.008)|0.71 (0.009)| 0.68 (0.006) |0.71 (0.011)|0.76 (0.007)

Experimental Setup: To evaluate the performance of the mod-
els, we consider three training setups: (1) Gold standard centralized
training: models are trained on combined training data shared from
clients to the server, (2) Local training: clients’ own data are used
to train their models locally, and (3) Federated training: clients
communicate with a global server by sharing their models instead
of raw training data to update a global model.

Evaluation Criteria: In both centralized and federated settings,
we use the combined test data from clients to evaluate the models.
We also use the client’s local test data to evaluate the locally trained
models as well as federated trained local models (training of updated
global model by FL on local client data). We use the time-dependent
concordance index (C-Index) [3] as our evaluation metric and use
pycox [13] package to compute them.

Implementation Details: Each client’s data is randomly split
into 80% training and 20% test data. We use 10% or 20% of the train-
ing data as validation sets. We ran the experiment 5 times with
different random initialization or a different set of censoring per-
centages (for SEER) and reported the average performance with cor-
responding standard deviation. We train our proposed TransPseudo
models using the Adam optimizer [15] with an early stopping cri-
terion based on the best validation loss. We use a learning rate
scheduler and select the batch size from [512, 1024]. For a central-
ized setting, the models are trained up to 500 epochs with a patience

of 10. For the federated settings, we perform a hyperparameter tun-
ing to select the best learning rate, the number of local epochs, and
total communication rounds. Based on the hyper-parameter tuning,
we choose the learning rate, the number of local epochs, and total
communication rounds 0.0001, 20, and 20, respectively. To obtain
the prediction of CIF, we use Sigmoid activation function in the
final output layer. We set 10/# to 99" percentile of the time horizon
with an interval of 10 for SEER and Synthetic datasets and [10, 20,
40, 80, 160, 320, 740] for eICU dataset, as the pre-specified time
points for calculating pseudo values and evaluating the models.

Models Comparison: We compare our proposed FL framework
FedCRA with our proposed client-specific models, TransPseudo,
to FL framework with three state-of-the-art CRA models: i) Statis-
tical model, Cause-specific Cox proportional hazards model (CS-
CoxPH) [6] ii) Deep-learning-based model, DeepHit [14], and iii)
Transformer-based model, SurvTRACE [26].

4 RESULTS AND DISCUSSION

Jackknife pseudo values vs. federated pseudo values: To show
the effectiveness of employing our proposed federated pseudo val-
ues in our FedCRA framework as opposed to the traditional jack-
knife pseudo values, we evaluate and compare the performance of
federated trained and locally trained TransPseudo models using
both pseudo values on the combined test set and the local test sets
of distributed SEER and eICU datasets. Table 1 demonstrates that
the TransPseudo model with our proposed federated pseudo values
shows up to 9% improvement over the traditional Jackknife pseudo
values in terms of C-Index.

Comparing model performance on real-world distributed
CRA datasets: Table 2 shows that our TransPseudo model outper-
forms CS-CoxPH, DeepHit, and SurvTRACE by 10.2%, 5.5%, and
5.8% in the centralized setting, 8.0%, 3.5%, and 4.1% in local training,
and 11.8%, 3.5% 8.5% in federated setting evaluated on the local test
set of SEER data, respectively. DeepHit and TransPseudo perform
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similarly in the federated setting evaluated on the combined test set
of SEER data. However, TransPseudo outperforms CS-CoxPH and
SurvTRACE by 4.7% and 2.3%. Our TransPseudo model, compared
to CS-CoxPH, DeepHit, and SurvTRACE, respectively, obtains 9.8%,
20.8%, and 6.5% better C-Index in the centralized setting, 15.5%,
16.5%, and 11.8% in local training, 5.5%, 14% and 6.5% in federated
setting evaluated on the combined test set of eICU data and 12.3%,
8.7% and 12% in federated setting evaluated on the local test set of
eICU data. Our findings highlight the effectiveness of TransPseudo
in improving the local performance of the models and suggest the
potential of FL for CRA.

Comparing model performance on various censoring set-
tings: Table 3 demonstrates that our TransPseudo model achieves
9.3% and 5.6% overall improvement over the DeepHit and Surv-
TRACE models, respectively, in the centralized setting evaluated on
the combined test set of synthetic datasets with different censoring
mechanisms, such as time censoring (TC), Interim Censoring (IC)
and Case Censoring (CC). In the federated settings, our TransCRA
model outperforms DeepHit by 5.8% and shows similar performance
as the SurvTRACE model. The results support the effectiveness of
using federated pseudo values in the TransPseudo model to handle
different types of censoring.

Limitations: While our TransPseudo model provides accurate
predictions, it requires more computational time and resources for
training than the deep learning-based and statistical CRA models,
such as DeepHit and CS-CoxPH. Furthermore, it is important to
note that our federated pseudo values derivation assume covariate-
independent censoring. However, it may not hold true for all real-
world CRA datasets.

5 CONCLUSION

In this paper, we studied the emerging problem of competing risk
analysis (CRA) in federated learning. We proposed FedCRA, a first-
of-its-kind pseudo-value-based federated framework for CRA, Fed-
CRA, aimed at estimating the subject-specific CIF in the presence
of competing events and censoring. Additionally, we introduced
TransPseudo, a transformer-based model specifically designed for
CRA. We also introduced federated pseudo values, which allow us
to analyze the CRA data in a federated framework while preserving
privacy. We conducted experiments on both real and synthetic dis-
tributed CRA datasets with non-IID, non-uniform censoring prop-
erties and demonstrated the superiority of our FedCRA framework
over the FL framework employing state-of-the-art CRA models.
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