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Abstract—Recent advancements in artificial intelligence (AI)
and large language models (LLMs) have shown that AI mod-
els can exhibit human-level capabilities in performing some
tasks. With such abilities, they have convinced researchers that
further research on artificial intelligence should be performed
more responsibly and by considering different dimensions of Al
technologies. There are several aspects of artificial intelligence
and machine learning that we should pay more attention to.
Among others, trustworthiness and alignment are two important
open problems in the fields of machine learning and artificial
intelligence that seek effective and more reliable solutions.

In this article we discuss how cryptographic constructions and
techniques from secure computation can be adapted to enhance
the trustworthiness of AI and ML models. Particularly we focus
on constructions based on secure distributed computation and
coded computing based on polynomials. Polynomials have shown
to be very effective mathematical tools for designing solutions to
different problems in various areas of engineering and technol-
ogy. They are universal approximators and powerful encoding
techniques, that can also behave as abstract or mathematical
bridges connecting different engineering domains (e.g., secure
computation and trustworthy machine learning).

Index Terms—Trustworthy Artificial Intelligence, Trustworthy
Machine Learning, Secure Computation, Secure Distributed
Matrix Computation, SDMC, Large Language Models, LLMs,
Trustworthy Al, Trustworthy ML, AI Safety, ML Safety, Value
Alignment, Alignment, AI, ML.

I. INTRODUCTION

Recent advancements in artificial intelligence (AI) and par-
ticularly large language models (LLMs) have surprised most
people by showing sort of human-level capabilities in doing
different tasks (such as question-and-answering as well as
text generation and summarization). With such capabilities,
researchers, particularly the pioneers of Al, have started to
speak out about the potential future risks of advanced Al
tools/technologies. More importantly, they have been recom-
mending that further research on AI should be carried out
more responsibly by considering different dimensions of Al
technologies and tools.

There are at least two main aspects of artificial intelligence
that should be carefully researched. On one hand, Al tools
and technologies can be used for a whole variety of good
purposes. They can be used as search engines or digital
assistants allowing people to benefit from their capabilities
(e.g., for researchers and software developers to boost their
productivity and to extract knowledge from huge text corpus
from the Internet). They can potentially be used in education,

in finance and e-commerce [1], and many other application
domains [2]. Overall, Al technologies can potentially help the
global economy boom signiﬁcantl

Besides the potentially beneficial applications mentioned
above, there are contrary views that highlight the other side
of Al technologies and how they might adversely affect
humans’ lives. Some believe that Al systems can eliminate
many job or can gradually replace humans in different
sectors. Therefore, humans might go out of the loop in
different businesses [3]]. More importantly, there are various
studies that highlight AI and ML tools come with different
shortcomings and challenges such as algorithmic bias, fairness,
ethical and data privacy concerns, hallucination, inaccuracy
and unreliability in certain scenarios/environments [4]].

The aforementioned issues related to AI and ML have
mainly been formulated as the concepts of trustworthiness (or
robustness) and alignment (or value alignment) in artificial
intelligence and machine learning [5[]. Trustworthiness and
robustness have been the center of researchers’ attention in
the last couple of decades. There are various studies that
discuss the problems related to trust in ML and Al systems;
and there have been ongoing research on how trust-related
issues in Al can be mitigated [6]]. Alignment is another
research problem in machine learning that has been more or
less pointed out in the previous research [7]. With the hypes
around recently introduced Al tools, e.g., OepnAIl’s ChatGPT
and other ChatBots, alignment has been highlighted as an
important problem more than before.

Motivated by the importance of these problems and that they
might become more crucial in the near future, in this article
we briefly review the important open problems in Al and ML.
We also highlight some high-profile principles of Al. Having
the AI principles in mind, we then discuss how cryptographic
and mathematical tools can be used for alleviating trust-
related issues in Al and ML and tackling relevant challenges.
We particularly focus on polynomial coded computation and
techniques from secure multiparty computation (MPC). Both
secure computation and polynomial coded computing are well-
known techniques and have attracted significant attention in
the last decades.

Uhttps://www.mckinsey.com/fi/news/generative-ai-holds-huge-economic-
potential-for-the-global-economy
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Polynomials, in particular, have already proven that they
can be very helpful and effective tools for solving problems
in various areas of engineering and technology. Some promi-
nent polynomial-based solutions with engineering applications
include error-correcting codes (e.g., Reed-Solomon codes [§])),
secret sharing (e.g., Shamir secret sharing [9]), verifiable secret
sharing (VSS) [10], fully homomorphic encryption (FHE)
[11], zero-knowledge proofs (ZKP) [12], arithmetization in
zero-knowledge proof systems (e.g., RICS [I3] and QAP
[14]), Lagrange coded computing (LCC) [[15]], private polyno-
mial computing (PPC) [16]], verifiable polynomial delegation
(VPD) [17], [18], polynomial commitment schemes (e.g.,
the FRI protocol [19]), straggler mitigation in distributed
computing [[15]], secure matrix multiplication [15], etc. Poly-
nomials have also been studied in artificial neural networks,
see e.g., polynomial neural network [20], deep polynomial
neural networks [21], Lagrangian neural networks [22]], and
polynomial classifiers [23], etc.

In this article we highlight some of the well-known appli-
cations of polynomials, particularly those relevant to secure
computation and trustworthy machine learning. We provide
insights on how various mathematical properties of polyno-
mials make them powerful tools for solving various problems
in engineering and technology. Furthermore, we present the
concept of secure distributed matrix computation (SDMC),
which is a coded computing technique based on polynomials
that extends the idea of secret sharing from sharing data to
sharing both data and computation in a secure way.

The proposed secure distributed matrix computation
(SDMC) scheme enables applying the principles of Al in real
applications and also mitigating the drawbacks of Al tools
to some extent. In particular, SDMC allows humans to be in
the loop in multiparty computation and distributed Al (DAI)
systems wherein humans and Al systems are collaboratively
working toward completing a task. Even more, SDMC has
built-in capability for guaranteeing the security and privacy of
the shared data in such DAI systems.

A. Article Organization

This article is organized as follows. We continue by sec-
tion [l in which we highlight some of the important open
problems and challenges of Al and ML. We also discuss
some high-profile principles of Al (e.g., the Asilomar Al
principles). Since in this article we leverage mathematical and
cryptographic techniques as potential solutions for Al and
ML related problems, in section we highlight some of
the interesting applications of polynomials in various areas
of engineering and technology. The provided overview will
be helpful for understanding the potentials of polynomials as
powerful encoding techniques for bridging the gap between
secure computation and trustworthy machine learning; and
thus designing effective solutions for open problems in Al
and ML. In section we present the notion of secure
distributed matrix computation (SDMC), which in fact, is a
polynomial-based solution for alleviating trust-related issues
(or trustworthiness) in multiparty computation AI and ML

applications. In section [V] we discuss some potential future
research directions. The article is concluded in section [V1l

II. OPEN PROBLEMS IN AI AND AI PRINCIPLES

In this section we review some of the important open
problems and challenges in artificial intelligence and machine
learning safety. We also highlight some of the high-profile Al
principles.

A. Open Problems in Al and ML Safety

There are various open problems in artificial intelligence
and machine learning safety [5]], which are expected to become
more important in the near future. In this section we provide
a brief overview of them.

The amount of research on Al and ML safety seems to be
marginal; although, big AI companies have recently decided to
invest more on trustworthiness and safety aspects of artificial
intelligence and machine learning research and technologies.
Nevertheless, the manuscript [5] is one of the works that
categorizes open problems in machine learning safety into four
broad categories, namely robustness, monitoring, alignment,
and systemic safety [5]. Other important problems in Al and
ML safety include, data security and privacy, algorithmic bias
and fairness, verification and validation. The main theme be-
hind most of these problems is how to build machine learning
and artificial intelligence models that respect human values
and we humans can truly trust them in various situations.

Table [[] summarizes some important open problems in Al
and ML safety. This article aims at proposing mechanisms
mainly for secure and trustworthy machine learning (SaTML).
Hence, in this section we discuss the problems that are more
relevant to the topic of this article, i.e., trustworthy ML and
Al using cryptographic constructions and based on techniques
from privacy-preserving and secure multiparty computation.

The notion of trust in general has been studied from
various perspectives and quite extensively. Some early and
fundamental works include the trust model attributed to Mayer,
Davis and Schoorman [24]] and a computational model for trust
[25]. The Mayer’s trust model considers three pillars or key
factors contributing to trust, namely ability, benevolence, and
integrity [24f]. Marsh’s computational model [25]], on the other
hand, has focused on the computational aspect of trust and
has provided a precise formalism of the concept of trust that
can be embedded in Al systems, particularly in distributed Al
systems (DAI).

Following these works [24], [25]], there have been numerous
works for modeling and measuring trust. For example, in
[26] an information theoretic approach for measuring trust
has been provided that relates the notion of trust to the
concept of uncertainty in information theory (which in turn
can be related to uncertainty quantification in machine learning
models). A brief overview of different trust evaluation models
can be found in [27], in which the authors have also used
cryptographic techniques for secure trust evaluation (STE).

Another important open problem in artificial intelligence
and machine learning research is the alignment problem



[ Open Problems in Al and ML Safety [5]

Robustness How to create Al and ML models that are robust and reliable against adversarial attacks and in unusual situations.
Monitoring How to detect abnormal usage and unexpected functionalities of AI and ML models.

Alignment How to design Al and ML models that respect true and universally-accepted human values.

Systemic Safety How to address or handle risks and attacks to AI and ML systems.

TABLE I
OPEN PROBLEMS IN AT AND ML SAFETY [5]

(sometimes referred to as value alignment). With recent
advancements in Al, this problem is expected to become
more important, thus requiring further research for designing
effective solutions. As discussed in [7]], the alignment problem
in Al can be a challenging one; and it might be too soon
to judge what approaches can be better solutions for this
problem. Nevertheless, some earlier relevant researches have
argued the potential of solutions based on (hybrid) inverse
reinforcement learning (IRL) [28]] and cooperative inverse
reinforcement learning (CIRL) [29]] (see also [30]). These
approaches along with alignment verification methods (e.g.,
[31]) might be helpful tools for aligning the intents of Al &
ML models with true human values and steering Al systems
properly based on the Al principles [31].

The third research challenge which, during the last few
years, has become more important than before is data security
and privacy [32]. With the increased use of digital devices
and online/cloud services in our daily lives, data security
and privacy are expected to become more crucial than ever;
thus seeking more effective solutions. While data security, in
general, has been studied quite extensively in the last few
decades, addressing security and privacy issues in machine
learning applications is still challenging because of the very
large dimensions of machine learning models and the big
data phenomenon. Therefore, further research on security
and privacy-related aspects of machine learning and artificial
intelligence models is required; so that more effective solutions
can be developed.

B. AI Principles

Artificial intelligence safety has been an important concern
since early days of AI research [32], [33]. Over the past
decades several sets of Al principles have been developed.
Their main goals have been to provide general guidelines for
how Al research and development should be conducted and
how to develop beneficial Al systems. The Asilomar Al prin-
ciples [34] is an example of Al principles that provide some
guidelines for beneficial Al development. Another framework
of principles for Al in society has been provided in [32] (also
in [35]). This framework [32] proposes five principles based
on an analysis of several high-profile Al principles (including
the Asilomar, Montreal, IEEE, EGE, AIUK, Partnership Al
principles) and other guidelines (e.g., Al4People) [32f. In
this article, we refer to this set of five principles [32f as
SPrinciples4 Al

The Asilomar Al principles covers a broad list of Al-
related topics which are categorized into three categories,
namely research, ethics and values, and long-term issues. Each

category highlights several sub-categories that are outlined in
Table [IIl The framework of [32], on the other hand, develops
its principles based on existing bioethics principles and by
adding an extra aspect which is specific to Al (i.e., expli-
cability). There are various other sets of rules or principles
for AI. Asimov’s Three Laws of Robotics [36] is another
example, that can perhaps provide some fundamental rules
for developing standard and carefully-designed guidelines for
ethical artificial intelligence and machine learning systems
[37]. The aforementioned Al principles are summarized and
highlighted in Table [[I] and Table

The above two sets of Al principles provide general guide-
lines about how AI research and development should be
conducted. Furthermore, they highlight the ultimate goals of
Al tools and technologies (i.e., to promote common good
and well-being of sentient creatures as well as eliminating all
sort of discrimination). In particular, the unified framework
of five Al principles in society [32] integrates the common
principles of several other high-profile Al principles. With
these principles in mind, in the next sections we discuss how
mathematical and cryptographic techniques can be used for
addressing open problems in artificial intelligence and machine
learning safety.

III. CRYPTOGRAPHIC AND MATHEMATICAL TECHNIQUES
FOR TRUSTWORTHY AI AND ML SAFETY

In this section we highlight cryptographic and mathematical
techniques that can be useful for alleviating the issues of trust,
data privacy as well as alignment in machine learning and ar-
tificial intelligence models. We start by reviewing some of the
important properties and applications of polynomials, that have
proven their effectiveness as powerful and universal problem
solvers in various areas of engineering and technology. Some
well-known examples include error-correcting codes, secret
sharing, Lagrange coded computing, as well as post-quantum
cryptographic schemes such as multivariate cryptography and
FHE schemes based on the ring of polynomials, etc.

A. Polynomials as Powerful Encoding Techniques

Polynomials (as some fundamental mathematical structures)
have been around for a long time. In different eras in history
they have had different applications; and there have been
various polynomial-based problems that have interested math-
ematicians. Among others, Diophantine equations are polyno-
mial equations with integer coefficients; and the well-known
Fermat’s last theorem is an example of a Diophantine equation
[38]], [39]]. Fermat’s last theorem is closely related to elliptic
curves, which are the foundation of an important branch of



[ The Asilomar Al Principles [34]

Research Ethics and Values

Long-Term Issues

- Research Goals

- Research Funding

- Science-Policy Link
- Research Culture

- Race Avoidance

- Safety

- Value Alignment

- Human Values

- Responsibility

- Failure Transparency
- Judicial Transparency
- Al Arms Race

- Personal Privacy

- Shared Benefit

- Shared Prosperity

- Liberty and Privacy
- Human Control

- Non-subversion

- Capability Caution

- Importance

- Risks

- Common Good

- Recursive Self-Improvement

TABLE I
THE ASILOMAR AI PRINCIPLES [34]

[ SPrinciples4Al: The Unified Framework of Five Principles for Al in Society [32] ]

Beneficence

Al technologies should promote the common good, well-being of sentient creatures, human dignity, and help sustain the planet.

Non-maleficence
technologies are not misused.

Al researchers and developers should develop Al technologies responsibly, so that personal privacy is guaranteed and the Al

Autonomy Al developments should promote the autonomy of all human beings; and there should be a balance between human-led and
machine-led decision making.

Justice Al technologies should promote justice, fairness, as well as shared benefit and prosperity. Furthermore, Al developments should
eliminate all sorts of discrimination.

Explicability Al decision making processes should be transparent, understandable, and interpretable. Explicability specifies intelligibility

(how AI processes work) and accountability (who is responsible for the work logic of Al technologies).

TABLE III
THE UNIFIED FRAMEWORK OF FIVE PRINCIPLES FOR AI IN SOCIETY [32]]

applied cryptography, called elliptic curve cryptography (ECC)
[38]]. Other remarkable efforts on polynomials were done by
Joseph-Louis Lagrange, whose works such as the celebrated
Lagrange interpolation have been used in engineering domains
quite extensively (e.g., in secret sharing [9], error-correcting
codes [8], Lagrange coded computing [15], and Lagrangian
neural networks [22]).

In this article, we review some of the well-known appli-
cations of polynomials, by focusing mainly on those that are
more relevant to data security and privacy as well as to secure
computation and trustworthy machine learning. We highlight
the intuition behind how polynomials and their properties have
been utilized as mathematical tools for providing solutions to
various engineering and technology problems. The discussed
properties of polynomials as a rich mathematical structure
provide insights on how to utilize polynomial-based techniques
for tackling important problems in machine learning and
artificial intelligence areas.

B. Secret Sharing

Secret sharing [9]] is one of the appealing applications of
polynomials. The main idea behind secret sharing [9] is how to
divide a secret (i.e., a piece of data D) into different pieces in
such a way that the data can be reconstructed only if a certain
number of the pieces are available. Secret sharing relies on a
very fundamental property of polynomials, that is by having a
sufficient number of points on a polynomial, the polynomial
can be reconstructed (thanks to Lagrange interpolation) [9].
However, any number of points less than a certain threshold
cannot give any information about the secret.

In order to share a piece of data or secret, the data is encoded
in a polynomial; and the shares of the data are generated
by simply evaluating the polynomial on different points in a

predefined domain (e.g., 0,1,2,...,n € Z). The data recovery
(or secret reconstruction) is guaranteed by a nice property of
polynomials; that is, by having ¢ points on a polynomial of
degree ¢t — 1, the polynomial (thus the secret data) can be
reconstructed. However, by any number of points less than ¢
points, the polynomial cannot be reconstructed. The parameter
t is called the threshold which indicates the minimum number
of points required for polynomial reconstruction.

In this particular application of polynomials [9] the fact
that a certain number of points on a polynomial is needed
for its proper reconstruction has been used for addressing a
very important problem in data security and engineering. It is
interesting to note that this property of polynomials (yet with
a different interpretation) has been used for addressing other
important problems in engineering, e.g., for error-correcting
codes such as Reed-Solomon error-correcting codes [8[], and
for verifiable computation in ZKP systems (see e.g., RICS and
QAP [40], [41]D).

The idea of secret sharing [9] has been the foundation for
many other important subsequent works with applications to
cryptography (interested readers might refer to these survey
[42], [43]] for further discussion on secret sharing and its ap-
plications in other domains). With data garnering more values
as the digital gold or digital oil, secret sharing techniques
can provide effective tools for sharing data while preserving
its security and privacy. It is worth noting that another well-
known secret sharing scheme is attributed to Blakley [44]].

C. Lagrange Coded Computing and Private Polynomial Com-
puting

Two other interesting applications of polynomials in private
computing are: Lagrange coded computing (LCC) [[15]] and
private polynomial computing (PPC) [16]. Lagrange coded



computing (LCC) [15] is a novel technique for addressing
engineering problems in distributed computation settings, in
which different workers are collaboratively performing a com-
putational task. LCC, that leverages Lagrange polynomials,
provides solutions to three important problems in distributed
computing, i.e., resiliency for alleviating the issue of strag-
glers, security for dealing with malicious or Byzantine parties
(or workers), privacy guarantees for the distributed datasets
[15]. LCC achieves this by encoding the dataset and sharing
the encoded dataset among the workers; and letting the work-
ers to perform the computation on the encoded data.

Private polynomial computing (PPC) [16] generalizes the
idea of private information retrieval (PIR) to private computa-
tion. PPC incorporates and borrows ideas from well-known
techniques based on polynomials, such as Reed-Solomon
error-correcting codes [8]], Shamir secret sharing [9]], Lagrange
coded computation [|15]]; and provides schemes for evaluating
polynomials on Lagrange encoded data. Similar to LCC,
PPC provides solutions to the challenges of stragglers in
distributed computation as well as privacy preservation of data
using data hiding techniques such as secret sharing [9]. It is
worth noting that Reed-Solomon (RS) codes [[8] are maximum
distance separable (MDS) codes and are closely related to
Shamir secret sharing scheme [45]]. These properties make RS
codes powerful encoding techniques for various applications in
which data privacy matters (e.g., private information retrieval
from MDS coded databases [46]).

D. Polynomials as Universal Privacy-Enhancing Techniques

The useful properties of polynomials and their widespread
usage in cryptography and secure computation make polyno-
mials a sort of universal privacy-enhancing techniques. Other
than secret sharing [9]], Lagrange coded computing [15]], and
private polynomial computing [16]], there are various other
interesting and important applications of polynomials. Some
prominent applications include fully homomorphic encryption
(FHE), which is empowered by the RLWE problem [47]
based on the ring of cyclotomic polynomials, quadratic arith-
metic programming (QAP) [14] and rank-1 constraint systems
(R1CS) [13], verifiable polynomial delegation (VPD) [17],
[18]], polynomial commitment schemes [[17]], and much more.
On the other hand, polynomials are universal approximators
and have been used in various other applications, e.g., in
polynomial neural networks [20], deep polynomial neural
networks [21]], and polynomial classifiers [23].

The robustness and usability of polynomial-based tech-
niques can be seen quite well with their applications in zero-
knowledge proof (ZKP) systems, particularly for the arithem-
tization of computation and verifiable computation [48]], [49].
In ZKP applications, typically there are two parties, namely a
prover and a verifier. The interactions between the two parties
are simulated using polynomials in the form of computational
protocols, e.g., IOP protocols and FRI protocol (fast Reed-
Solomon interactive oracle proof) [19]. In these applications
the parties use polynomial-based techniques (e.g., RICS and
QAP) for encoding their data and arithmetization of their

computations. These techniques enable tying and entangling
the data and computation with rigorous mathematical rela-
tions. Applying such techniques on the data and computations
enforces the parties to follow the protocol’s rules. In other
words, if a party does not follow the rules of the computational
protocol, the party can be detected by the protocol.

The extensive utilization of polynomials in engineering ap-
plications and cryptographic constructions gives polynomials
the capability to behave as sort of abstract bridges between
secure computation and various other engineering applications.
This property, in turn, can be very handy for designing
privacy-preserving and privacy-enhancing solutions, e.g., for
trustworthy machine learning and artificial intelligence safety.
In particular, polynomials can be useful tools for verification
of artificial neural networks [50f], [51] and their robustness
[52[]-[54].

E. Polynomials as Robustness Verification Techniques for
ANN

As mentioned in section [[] (also in Table [I), robustness
of machine learning and artificial intelligence models is an
important open problem in these fields. There have been
ongoing researches for developing robust ML models as well
as techniques for verifying the robustness of ML models [52]-
[54].

Among other approaches, polynomial-based techniques and
concepts have been interesting ways for addressing the is-
sue of robustness in some machine learning models. Some
polynomial-based techniques, that can be useful for enhancing
the safety and robustness of ML models, include polynomial
optimization for robustness verification of artificial neural
networks [54], polytopes and polynomial zonotopes for robust-
ness of reinforcement learning [55]], robustness and verification
of neural networks [50], [S1]], [56], safety verification [57] of
neural networks, reachability analysis of neural networks [58]],
and support vector machines [59]]. Polytopes and zonotopes
can also be helpful for designing provable defense mechanisms
against adversarial attacks on (deep) neural networks [|60], [61]]
as well as for the verification of Lagrangian neural networks
[62] and Lipschitz neural networks [5O].

As machine learning and artificial intelligence tools become
more pervasive, it is important to design robust machine
learning models and to develop defense mechanisms against
adversarial attacks on ML and AI models. Cryptographic
constructions, particularly techniques based on polynomials,
are rigorous mathematical tools that can be used both for
addressing data security and privacy issues as well as for
designing more robust ML and AI models.

IV. FROM SECRET SHARING TO SHARING COMPUTATION
SECURELY: SECURE DISTRIBUTED MATRIX COMPUTATION
(SDMC)

In this section we present the idea of secure distributed ma-
trix computation (SDMC). This idea is built on top of several
other important foundational works, including Lagrange coded



computation, secure matrix multiplication, and secret sharing
techniques [15]], [63[], [64]], and [9].

As discussed in the previous sections, polynomials have
been utilized in various areas of engineering and technology
for solving different important problems. Earlier applications
of polynomials seem to be mainly for encoding the data,
e.g., Reed-Solomon error-correcting codes [8]], secret sharing
schemes [39], the NTRU cryptosystem [[65[], etc. However,
in recent years with the advancements in computation tech-
nologies and the big data phenomenon, the applications of
polynomials have been extended to encoding computations as
well. Some examples that we discussed in the previous section
include Lagrange coded computing (LCC) [[15]], private poly-
nomial computing (PPC) [16]], fully homomorphic encryption
(FHE) schemes [11], as well as applications in ZKP systems
such as FRI protocol [19], RICS and QAP [40]], [41].

In this section we leverage the existing techniques even
further for applications to trustworthy and privacy-preserving
machine learning. Our idea is to utilize well-known techniques
based on polynomials, e.g., coded computing, secure matrix
multiplication, and secret sharing, for performing matrix com-
putation in a distributed and secure fashion.

We would like to emphasize that in previous works, e.g.,
in Lagrange coded computing [15] and private polynomial
computing [16], the goal of the polynomial-based construc-
tions was to deal with the issue of stragglers, malicious
parties, and data privacy. More specifically, in those previous
works, the parties could be untrusted parties (where a party
is a worker performing some computational tasks). For the
setting of the problem in this article, the participating parties
are assumed to be honest and trustworthy parties, typically
human entities that want to be in the loop in multiparty-
computation scenarios that deal with distributed Al systems
(DAI). The main purpose is to design a mechanism in which
human entities can participate in DAI systems appropriately.
Most importantly, the proposed mechanism can be helpful
for ensuring data privacy and balancing between human-
led and machine-led decision processes, which are important
principles in the Unified Framework of Five Principles for Al
in Society (see Table [II] in Section [II).

A. Assumptions and Problem Settings

The setting for the research problem that we want to address
in this article is as follows. We assume there are some Al
system(s) that are supposed to be programmed for performing
some tasks using Al and ML models. One approach is to pro-
gram the Al systems and let them perform their jobs. Instead of
this classic approach, a different paradigm is to deploy secure
distributed computation (with human entities in the loop) and
to perform the computations securely. Therefore, in addition to
Al system(s) we assume there are some trusted human entities
that want to be in the loop, while the Al systems are doing
their jobs. Then, to perform some computational tasks (i.e., to
evaluate a function), the parties distribute the computation and
evaluate the function in a distributed manner. To achieve this,

they use the secure distributed matrix computation techniques
that we discuss in following subsections.

B. Secure Matrix Multiplication

Matrix multiplication is a commonly-used operation with
significant applications in machine learning applications that
deal with big data sets. Two novel secure matrix multiplication
techniques have been proposed in [63] and [64]. In what
follows we provide an overview of the proposed methods.

1) Secure Matrix Multiplication based on [63]: The pro-
posed technique for secure matrix multiplication in [|63]] relies
on (a, 8)—polynomial codes and works as follows [63].

Given two matrices A € IF’;XZ and B € Fflxm, the
goal is to compute A X B in a secure distributed manner.
Here, [F, is a large finite field; and £, [, and m are posi-
tive integers representing the dimensions of the matrices. To
perform the matrix multiplication securely, first the matrices
need to be encoded using polynomial encoding techniques,
e.g., (a, B)—polynomial codes [63]. In order to encode the
matrices, each of the matrices is partitioned horizontally and
vertically (along its rows and columns), as follows [63]:

A= (Al,Ag,... ,A,,L) and B= (Bl,B27...7Bn) (1)

The A and B matrices can then be encoded using the
following equations:

A=Y Ay )
j=1
j=1

where z; for ¢ = 1, ..., n denotes a unique number assigned
to each party (or computational worker). Assuming each party
can store and process % fractions of matrix A, then the
parameters « and [ are defined as: & = 1 and 8 = m, as
suggested in [63]].

To compute the multiplication of A and B, each party (say
party ¢) needs to perform specific computations on the received

shares (or encoded version) of the matrices as follows:

Ci=A, xBi= i Z A Byt @

j=1k=1

Once the parties are done with their computations, they will
pass their results to a specified party so that the remaining
parts of the computation can be performed. The computation
result is finalized and determined after all the parties provide
the shares of their results. In other words, without the results
of a certain number of the parties, the final computation result
cannot be reconstructed. This will be useful for ensuring that
the computation is carried out in a distributed manner.



2) Secure Matrix Multiplication based on [64]: Some other
novel approaches for secure multix multiplication were pro-
posed in [[64]]. In particular, the fully secure distributed matrix
multiplication of [64] works as follows.

Similar to the approach of [63], two matrices A € Fi*!
and B € Ffzxm are given and the goal is to compute A X
B in a secure distributed manner. To achieve this, the two
matrices first need to be partitioned; and then to be encoded
using polynomial encoding techniques. The scheme of [64]]
suggests the following partitioning and encoding approaches:

Ay
A

and B = (Bl,BQ,...,BT) (5)

Ay
The A and B matrices can then be encoded using the
following equations [64]:

r l
A= Al 4> Ra ! (©6)
k=1

Jj=1

r l
Bi _ Z Bjxgj_l)(“_T) + Z RBk$§r+k—l)(l+r) (7)
j=1 k=1

where ¢ = 1, ..., n denotes a unique number assigned to each
party. [ is the number of computing parties that may collude.
A; and B; are the encoded matrices for party with ID = 3.
Furthermore, R4, is a random matrix with uniformly selected
elements corresponding to submatirx Ap.

Once the A and B matrices are encoded and the encoded
matrices are distributed among the parties, the parties can
perform operations on their corresponding shares. Particularly,
for performing a multiplication operation on A and B, the
parties need to do the following computation [64]]:

r r r l
Aix B =Y Y ABa™ +3Y Y AjRp ™ (8)

j=1k=1 j=1k=1
l r l l
+3°N Ra,Bie™ + 33 Ra,Rpa™  (9)
=1 k=1 j=1k=1

where the variables j and k vary between the range specified
in the lower and upper bounds of the summations in the
equations. Furthermore, 77 = j + (k — 1)({ + r) — 1;
To=j+k+r—1)(+r)-L T35 =j+r+(k-1)(I+r)—1;
and Ty =j+r+ (k+r—1)(I+r)—1, as suggested in [64].

It should be noted that since the matrices were encoded,
each party by itself cannot get the final result of the computa-
tion. To be able to compute the final result of the computation,
the participating parties need to provide their computation re-
sults. This property of the coded computation will be useful for
having human parties to be in the loop while the computation
are performed in a distributed Al application scenario or in a
distributed AI (DAI) system.

C. Secure Matrix Addition

The encoding techniques discussed in the previous sub-
sections can be used for designing secure distributed matrix
addition schemes as well. With addition and multiplication
gates on matrices, it would be possible to perform arbitrary
computation on matrices defined over finite fields.

Mathematically speaking, assuming two matrices A € F}*!
and B € Fi*! are given and the goal is to compute A + B
in a secure distributed manner. We use the («, 3)-polynomial
codes [63] to encode the two matrices (by setting 5 = m):

Ay =" A (10)
j=1
. n
Bi =) _ Bz’ (11)
j=1
where x; for ¢ = 1,...,n is a unique number assigned

to each party. Recall that m is the ratio (or portion) of the
matrices that each party (or computational node) can store
and process. .

Given A; and B; as the encoded version of the matrices
A and B, the addition of the two matrices can be computed
distributedly as follows:

n n
Jj=1 Jj=1

This approach is an extension of the well-known Shamir

secret sharing scheme [9]]. In secret sharing it is possible

to compute the addition of two field elements, whereas with

secure distributed addition of matrices it is possible to compute

the addition of matrices over a finite field, e.g., A+ B € IF’;XZ.

D. Secure Distributed Matrix Computation

The secure distributed matrix addition and multiplication
schemes that we discussed above enable us to perform ar-
bitrary secure operations on matrices. In particular, since
polynomials are universal approximators, this property of
polynomials can be used for representing arbitrary functions
as polynomials. With a function represented as a polynomial,
it would be straightforward to evaluate it using the arithmetic
gates (i.e., addition and multiplication operations) over matri-
ces on a certain finite field, i.e., F,.

It is worth mentioning that polynomial representation of
functions for their secure evaluation has been utilized in
other applications, e.g., using Taylor series or Chebychev
polynomials for the evaluation of secure comparison problem
or the activation functions of neural networks. For example, in
[66]—[68] Chebyshev polynomials have been used as approxi-
mations for the ReLU activation functions in neural networks.

The idea of secure distributed matrix computation is as
follows. Given a function f and some matrices A and B over a
finite field, the goal is to evaluate the function over the matrices
in a secure distributed fashion. To achieve this, two main
steps need to be done. First the matrices need to be encoded



with appropriate techniques. This can be done using the
encoding techniques, e.g., with («, 8)-polynomial codes [63],
that were briefly discussed in subsection The second
step is to arithemtize the functions using arithmetic gates and
transform it into polynomial representation. Once the data and
function are properly encoded using polynomial codes and in
polynomial representation, the parties can then evaluate the
function on the encoded data in a secure distributed manner.

After all the parties compute their results, they need to
send the obtained results to a main party (which is a party
who wants to get the function evaluation). The main party
can then utilize some interpolation technique, e.g., Lagrange
interpolation, to obtain the final result of function evaluation.
It should be noted that the computation result can be obtained
only if a certain number the parties provide their results.
The minimum number of data points that are required for
reconstruction of results is called the threshold. We have
formalized the required steps for secure distributed matrix
computation (SDMC) in Protocol [T}

V. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

In the last couple of decades there have been significant
amounts of progress in different domains of digital technology.
With the rise of advanced AI technologies, big data phe-
nomenon, the emergence of disruptive technologies such as
Blockchain and cryptocurrencies, as well as quantum compu-
tation, the world is going to gradually move into a new era.
While these advances bring many opportunities, they have also
the impetus for adversly affecting our lives and the society. As
recommended by the Al principles, which were discussed in
Section |[I} researchers should also study and pay attention to
different aspects of these technologies, in particular the safety
and security of Al tools and systems (as summarized in Table
[ in Section [M). In what follows we highlight some future
research directions that can be helpful with this regard.

First and foremost, it is important to design effective and
comprehensive Al guidelines and to increase the awareness
of researchers and developers in the Al community. This
allows researchers and engineers to apply the guidelines
to their works and conduct their research and development
more responsibly. The Asilomar Al principles and the unified
framework of five principles for Al in society (SPrinciples4Al)
can be the foundations for more comprehensive Al princi-
ples. Each section or set of guidelines in the aforementioned
Al principles highlight some dimensions or aspects of Al
technologies that require further attention and research. For
example, balancing human-led and machine-led decision mak-
ing processes is an important aspect in the SPrinciples4Al
(under the category of autonomy in Table [T} in Section [[I-B).
The secure distributed matrix computation scheme that we
presented in this article can be a useful tool for keeping human
in the loop (HIL) so that they can ensure the balance between
human and machines in distributed Al systems (DAI). It also
provides data privacy measures thanks to its underlying data
encoding and coded computing techniques.

Protocol 1: Secure Distributed Matrix Computation
(SDMC)

Input: Matrices A € FF*! and B € FE*.
Requirements: There are n parties, who want to
perform a distributed computation task.
Objective: Compute f(A, B) in a secure distributed
manner.

Output: y = f(g, B), which is the encoded version of
y=f(A B).

1 Encode the matrices A and B using the appropriate
encoding techniques (e.g., using («, §)-polynomial
codes as discussed in section [[V-B):

n n
Ai = E Ajl’;nj Bl = E Bjx;n]
j=1 j=1

2 Distribute the encoded matrices among the parties.

3 Represent the function f as a polynomial using
arithmetic gates:

F(4,B) =" (4, By

where g is a multiplicative function of :4: and E

4 Evaluate each arithmetic gate using the appropriate
distributed addition or multiplication techniques:

5 The parties send their result to the main computational
node.

6 The main computational node uses interpolation to
obtain the final value of the function.

7 Return result:

y:J}V(AMB)

Trustworthiness and robustness of machine learning models,
value alignment, and data privacy are some major aspects of
artificial intelligence and machine learning safety. Particularly,
robustness of ML models has been the center of researchers
attention in the last couple of decades [6]], [52]], [[54] (which
is also among the open problems summarized in Table
in Section [l). As the AI and ML systems become more
persuasive, it is important to design effective and robust
models that can be relied on in different environments and
unusual (unseen) situations. In addition, with the rise of large
language models (LL.Ms), data privacy is expected to become
more important, and therefore seeks effective solutions.



Another interesting area of research is the study of trust
mechanisms in distributed AI (DAI) systems. In particular,
the techniques in decentralized computation and Blockchain
might be helpful for designing effective distributed trustworthy
Al systems empowered by computational trust models and
cryptographic constructions. A related disruptive technology is
the concept of decentralized autonomous organizations (DAO),
in which DAI systems can be used. Trust and reputation
mechanisms can be very useful mechanisms for improving
decentralized autonomous organizations (DAO) systems [69],
[70] as well.

Last but not least, some mathematical techniques have
been very effective tools for addressing various problems in
different areas of engineering and technology. Polynomial-
based techniques are among such tools that can be useful for
addressing open problems or tacking challenges of Al systems.
For example, polynomial zonotopes and polytopes [56] have
attracted attention for designing robust machine learning mod-
els as well as for stability analysis and verification of neural
networks [50], [57].

VI. CONCLUSION

In this article we reviewed some of the challenges and
open problems in artificial intelligence and machine learning
safety, namely trustworthiness, data privacy, and alignment.
We also highlighted a couple of high-profile principles of
artificial intelligence, including the Asilomar principles for
Al and a unified framework of five principles for Al in
society (SPrinciples4Al). We then discussed how mathematical
and cryptographic techniques can be used for secure and
trustworthy machine learning and Al safety.

In particular, secure distributed matrix computation (SDMC)
can be a useful mathematical tool for enforcing Al princi-
ples in distributed Al systems (DAI). SMDC is based on
rigorous mathematical foundations such as coded computation
and secret sharing. It provides better data privacy guarantees
and allows humans to be in the loop in multiparty compu-
tation scenarios in which Al systems are collaborating. It
also enables balancing human-led and machine-led decision
processes, which is an important Al principle as stated in the
framework of five principles for Al in society. Mathematical
and cryptographic constructions can be a useful tool for
tackling open problems in Al In the future research we would
like to study the applicability of other mathematical techniques
for improving the safety and security of Al and ML systems.
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