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ABSTRACT

Recently proposed one-stage instance segmentation models (e.g., SOLO) learn to
directly predict location-specific object mask with fully-convolutional networks.
They perform comparably well as the traditional two-stage Mask R-CNN model,
yet enjoying much simpler architecture and higher efficiency. However, an intrin-
sic limitation of these models is that they tend to generate similar mask predictions
for a single object at nearby locations, while most of them are directly discarded
by non-maximum suppression, leading to a waste of some useful predictions that
can supplement the final result. In this work, we aim to explore how the model can
benefit from better leveraging the neighboring predictions while maintaining the
architectural simplicity and efficiency. To this end, we develop a novel learning-
based aggregation framework that learns to aggregate the neighboring predictions.
Meanwhile, unlike original location-based masks, the segmentation model is im-
plicitly supervised to learn location-aware mask representations that encode the
geometric structure of nearby objects and complements adjacent representations
with context. Based on the aggregation framework, we further introduce a mask
interpolation mechanism that enables sharing mask representations for nearby spa-
tial locations, thus allowing the model to generate much fewer representations
for computation and memory saving. We experimentally show that by simply
augmenting the baseline model with our proposed aggregation framework, the
instance segmentation performance is significantly improved. For instance, it im-
proves a SOLO model with ResNet-101 backbone by 2.0 AP on the COCO bench-
mark, with only about 2% increase of computation. Code and models are available
at anonymous repository: https://github.com/advdfacd/AggMask.

1 INTRODUCTION

Semantic instance segmentation (Hariharan et al., 2014) aims to recognize and segment all the
individual object instances of interested categories in an input image. Recently, Wang et al. (2019)
proposed SOLO, a straightforward instance segmentation model that evenly divides the input image
into spatial grid and predicts object mask segmentation and classification score for each grid location
with fully convolutional networks (Long et al., 2015). Compared with the previous prevalent detect-
then-segment methods (He et al., 2017; Li et al., 2017), SOLO is much simpler and more efficient by
avoiding bounding box detection and feature re-pooling, while achieving comparable performance.

Albeit simple, as shown in Fig. 1 (a), the model tends to predict the same object at nearby locations,
those predictions can supplement the final result as some may better segment certain object parts,
but most of them are directly discarded by non-maximum suppression. It raises a natural question:
can we further improve the performance by leveraging the rich neighboring predictions?

A straightforward idea is to perform mask voting that averages those neighboring predictions as
they have sufficient overlap with the final results. Similar ideas have been explored in the object
detection field, known as box voting (Gidaris & Komodakis, 2015). In this work, we first carefully
examine such voting algorithm and find that it indeed improves the final performance, albeit the
improvement is quite minor. We hypothesize that unlike the bounding boxes, object masks are much
more complicated due to deformations and layering, thus cannot benefit much from simple post-
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Figure 1: Illustration of the main idea. (a) SOLO (Wang et al., 2019) learns a mapping function with
fully convolution network for predicting location-specific object masks; the predictions at neighbor-
ing locations can be similar but do not contribute to the final result. (b) The proposed AggMask
aims to exploit the neighboring predictions by aggregating them in a learning-based fashion. Mean-
while, by back-propagating through the aggregation function, the mapping function instead learns to
generate local shape descriptors (mask representations) that encode shape and layout information of
nearby objects and complement each other in combination, so as to generate mask of higher quality.

training voting. We therefore propose a framework named AggMask that helps the model better
harness the power of neighboring predictions by aggregating them in a learning-based fashion.

Specifically, as shown in Fig. 1 (b), we develop a learnable aggregation function that learns to
combine the neighboring mask prediction of each spatial location. With gradients back-propagated
through the aggregation function, the model learns to generate intermediate shape descriptors that
capture the information of objects at nearby locations, we name those shape descriptors as mask rep-
resentations, which stand in contrast with original location-specific object masks. The subsequent
aggregation function can then gather complementary information from neighboring representations
to improve segmentation quality. Motivated by the dynamic local filtering (Jia et al., 2016) that gen-
erates filter weights for adaptive local spatial transformation, we implement the aggregation function
by a small multi-layer convolution network with dynamically generated weights. This form of dy-
namic aggregation can perform adaptive combination and better handle the variations of object shape
due to diverse scale and spatial layout. Different from recent works (Wang et al., 2020; Tian et al.,
2020) that use dynamically instantiated network for generating the segmentation mask with a shared
base feature, we aim to adaptively combine the locally gathered predictions for final segmentation.
Our method is orthogonal and can be combined with those methods.

The location-specific masks can be redundant and costly in computation and memory. This is also
another intrinsic limitation of vanilla SOLO so the spatial grid resolution is limited. Since the
proposed aggregated learning can generate mask representations that encode neighboring objects
information, we propose to alleviate the spatial redundancy by allowing nearby locations to share the
same set of representations and deploy the dynamic aggregation to generate masks that differentiate
nearby objects. It behaves similarly to bilinear interpolation and thus named mask interpolation.

To summarize, the contributions are: 1) We identify the discarded neighboring prediction issue of
SOLO model and carefully examine the widely used voting algorithm to leverage the neighboring
predictions. 2) By analyzing deficiency of the simple voting scheme, we develop a learning-based
aggregation framework. It enables the learning of intermediate mask representations that capture
context object information and improves the final result by adaptively combining the neighboring
representations. 3) We further propose mask interpolation that effectively reduces the number of
generated representations to save computation and memory. 4) We conduct extensive experiments
and model analysis with the COCO and high-quality LVIS benchmarks to validate and understand
the proposed method. On COCO, a ResNet-101 based SOLO model gets 2.0 AP boost with only 2%
additional Flops. We also evaluate its generalization on SOLOv2 (Wang et al., 2020). We believe the
simple and effective framework and interpretable mask representations shed light for future research.

2 RELATED WORK

Instance Segmentation. This area is previously dominated by detect-and-segment methods, or
region-based methods (Li et al., 2017; He et al., 2017; Dai et al., 2016; Chen et al., 2019a; Lee &
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Park, 2019; Chen et al., 2018) which predicts instance masks under box region for each detected ob-
jects. E.g., Mask R-CNN employs an additional convolutional mask branch on Faster R-CNN (Ren
et al., 2015) to predict instance masks; Some recent works (Fu et al., 2019; Lee & Park, 2019) re-
place the detection network with a fast one-stage model and employ a lightweight head for mask
prediction. The feature re-pooling and subsequent per ROI processing in those approaches can be
costly, recently there has been a surge of interest in one-stage methods (Bolya et al., 2019; Sofiiuk
et al., 2019; Chen et al., 2019b; Tian et al., 2020; Xie et al., 2019; Chen et al., 2020; Qi et al.,
2020; Zhang et al., 2020; Wang et al., 2019; 2020), which directly predict instance masks along
with classification scores. E.g., YOLACT (Bolya et al., 2019) employs a mask assembly mechanism
that linearly combines prototypes with learned weights. TensorMask (Xie et al., 2019) general-
izes dense object detection to dense instance segmentation with an aligned feature representation.
SOLO (Wang et al., 2019) directly predicts location-specific masks with specifically designed FCN
architecture and objectives, which can be viewed as SOTA one-stage instance segmentation model.

Locally Aggregated Learning. Aggregating information from the neighborhood has been prevail-
ing in various research fields. E.g., convolutional networks (Fukushima, 1980; LeCun et al., 1995)
can be viewed as stacking convolution operators that fuse information from spatially neighboring
pixels to get new representation at each spatial location; Graph nerual networks (GNN) (Scarselli
et al., 2008; Battaglia et al., 2016) including variants Graph convolutional networks (GCN) (Kipf &
Welling, 2016) and GraphSAGE (Hamilton et al., 2017) follow a recursive neighborhood aggrega-
tion and transformation scheme to learn high quality representation of graphs data. We are inspired
by this formulation and try to explore the aggregated learning in one-stage instance segmentation.

3 PRELIMINARIES

3.1 SOLO FORMULATION

For an input image I , instance segmentation aims to predict set of {ck,Mk}nk=1, where ck is the
object class label and Mk is a binary 2-d map that segments the object, n varies with the number
of objects in the image. Without loss of generality, SOLO (Wang et al., 2019) spatially divides the
input image into G by G grid and learns two simultaneous mapping functions, which predict the
semantic category cij and the corresponding mask segmentation Mij for each spatial grid location:

Fc(I, θc) : I 7→ {cij ∈ RC |i, j = 0, 1, . . . , G}, (1)

Fm(I, θm) : I 7→ {Mij ∈ RH×W |i, j = 0, 1, . . . , G}. (2)
Here θc and θm̂ denote parameters for the above two mapping functions respectively. Fc andFm are
implemented with fully convolutional network and share the backbone parameters. C is the number
of object categories. Each element of cij is in the value range (0, 1) and indicates whether an object
of the corresponding category exists at the location (i, j). H , W are the height and width of the
output mask that aligns with full image content. With the semantic category and mask segmentation
predicted for each spatial location, the instance segmentation result is acquired by simple post-
processing of non-maximal suppression (NMS). For a detected object at location (i, j), the model
tends to generate similar mask prediction at nearby locations, e.g., Mi,j−1, however, Mi,j−1 is
discarded by NMS and does not contribute to the final prediction.

3.2 PILOT EXPERIMENTS: MASK VOTING

In this subsection, we present pilot experiments and analysis to validate whether the SOLO model
can benefit from the rich neighboring predictions by adopting the voting algorithm (Gidaris & Ko-
modakis, 2015). We compute the mask IOU as the similarity measure to gather the neighboring
mask predictions used for voting with three schemes: 1) simple averaging (avg. v.); 2) weighted av-
eraging with corresponding classification score (score v.); 3) weighted averaging with corresponding
IOU (IOU. v.). For each scheme, we perform grid search to find the optimal IOU threshold used for
voting. As shown in Tab 1, refining the mask prediction during inference with the voting procedure
can actually improve the final instance segmentation performance (e.g., 0.2 AP with simple aver-
aged voting). However, even with weighted voting, the improvement is minor and at most 0.3 in AP.
The voting procedure is simple post-processing and requires no modification to a trained model, but
object shape may have complex spatial layout, thus the simple voting algorithm may be suboptimal.
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- baseline +avg. v. +score v. +IOU v.
AP 35.8 36.0 36.1 36.1

Table 1: Results of different voting strategies
with SOLO-ResNet50. v. stands for voting.

Voting GT

Figure 2: Mask voting example. Voting denotes
voting result. GT is the desired ground truth.

Fig. 2 gives a toy example to illustrate that voting may provide suboptimal results as it averages the
candidates and is incapable to selectively combine segmentation of different parts.

4 PROPOSED METHOD

To address the above discussed limitation of simple post-training voting and more effectively lever-
age the neighboring predictions, we propose an aggregated learning framework. Specifically, we
aggregate the neighboring mask predictions with a learnable aggregation function:

Mij = Agg(Mij ⊕N (Mij), θa). (3)

Here Agg(·) and θa are aggregation function and its parameter. ⊕ means the concatenation op-
eration, and N (M̂ij) denotes the set of neighboring predictions that will be used for predict-
ing the final instance mask at location (i, j). We consider either 4 or 8 nearest neighbors, i.e.,
{M̂i−1,j , M̂i,j−1, M̂i+1,j , M̂i,j+1} or {M̂i+p,j+q}\M̂ij with p, q ∈ {−1, 0, 1}. More complex de-
signs may further improve performance but are beyond the scope of this work.

The mask prediction Mij is forced to be in the value range (0, 1) with sigmoid activation function.
To allow more freedom for learning the intermediate mask representation, we remove the sigmoid
activation before aggregation. To complement the top-down instance specific information in mask
representation, we also append bottom-up multi-level context feature Fc of only a few channels that
summarizes both high-level semantics and low-level fine details to guide the aggregation process:

Mij = Agg(M̂ij ⊕N (M̂ij)⊕ Fc, θa). (4)

where M̂ij is raw mask prediction without sigmoid activation, i.e., the mask representations to be
learned. The aggregation is differentiable and no explicit supervision is imposed for learning M̂ij .

Dynamic Aggregation In Eqn. (4), the same set of aggregation parameters θa is shared across all
grid locations. However, such a location-invariant scheme may be suboptimal for desired adaptive
combination as object shape varies significantly due to different spatial layouts, scales and context.
Inspired by dynamic local filter proposed in (Jia et al., 2016), we extend our aggregation function by
additionally learning a mapping function that generates position-specific aggregation parameters:

Fa(I, θa) : I 7→ {θij ∈ RH×W |i, j = 0, 1, . . . , G}, (5)

We then apply the predicted parameters for aggregating neighboring local mask representations:

Mij = Agg(M̂ij ⊕N (M̂ij)⊕ Fc, θij). (6)

Such a dynamic aggregation scheme not only achieves desired self-adaptive combination, but also
enable an interesting extension of AggMask discussed next.

Mask Interpolation In SOLO model, the grid resolution is limited as finer grids would result
in quadratically increasing mask representations and cause remarkably increased computation and
memory cost, e.g., a 20× 20 grid requires 400 mask predictions, while 40× 40 would require 1600
predictions. However, a finer grid, especially on low-level features, is beneficial to recognizing the
small objects or distinguishing the nearby objects. To address the limitation, we extend AggMask to
a variant with a larger grid resolution G for classification but a smaller grid resolution G′ (G′ < G)
for mask representation. The mapping functions for mask representation then becomes:

Fm̂(I, θm̂) : I 7→ {M̂ij ∈ RH×W |i, j = 0, 1, . . . , G′}, (7)

To generate mask predictions with finer classification grids, we simply allow nearby classification
locations to share the same set of neighboring mask representations for predicting the object mask:

Mij = Agg(M̂bi∗G′
G cbj∗

G′
G c
⊕N (M̂bi∗G′

G cbj∗
G′
G c

)⊕ Fc, θij). (8)
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Figure 3: Network Architecture. For objects at different locations, their corresponding spatially
neighboring mask representations are gathered and aggregated to form the segmentation. The frame-
work is fully convolutional and end-to-end trained. Note with mask interpolation, the grid resolution
of mask representation (G′) can be smaller than classification (G) to save computation and memory.

For instance when the grid resolution isG′=10 for mask representation andG=20 for classification,
both the masks M15,15 and M14,14 are predicted using the same set of neighboring representations
of M̂7,7, but with different dynamically generated weights θ15,15 and θ14,14. This can be viewed
as a spatial interpolation operation to obtain finer grid mask predictions given coarser grid mask
representations, which we name mask interpolation. It effectively reduces the number of repre-
sentations needed for a certain grid resolution, which offers two advantages. 1) We can increase a
model’s classification grid resolution to improve its discrimination ability for scenes of more dense
or small objects, with small computation overhead; 2) we can decrease the mask representation grid
resolution to save computation and memory cost with a negligble drop in performance.

Network Architecture Fig. 3 depicts the architecture of AggMask. The mapping function Fa

shares the feature extraction network with Fc and Fm. We instantiate the dynamic aggregation
function with a small multi-layer convolution network, which learns arbitrary nonlinear transforma-
tion. The multi-level context information is obtained by upsampling and combining FPN features,
followed by 1x1 convolution to obtain compact feature (e.g., 16 channels). The whole model is fully
convolutional and trained with the same loss formulation as in SOLO (Wang et al., 2020).

Relation with Existing Works Some recent works are closely related to our method. Bolya et al.
(2019) developed YOLACT that linearly combines a base set of prototype features to form the mask
segmentation, however, the prototypes are globally shared and the model requires a box detector to
wipe the noise outside object region. While proposed method learns locally shared mask representa-
tions that only encode information of spatially neighboring objects and no box detection is required.
Recently proposed CondInst (Tian et al., 2020) and SOLOv2 (Wang et al., 2020) can be viewed as
extensions of YOLACT, as YOLACT genearates linear combination weights which is equivalent to
1×1 convolution without bias, while CondInst and SOLOv2 extend that to general dynamic con-
volution. Our AggMask is built on the perspective of leveraging neighboring prediction, which is
orthogonal and can be further applied to methods like CondInst and SOLOv2. We demonstrate in
experiment that SOLOv2 can be further improved when augmented with our AggMask.

5 EXPERIMENTS

Dataset. We adopt COCO (Lin et al., 2014) and LVIS (Gupta et al., 2019) datasets for experiments.
We report the standard COCO-style mask AP using the median of 3 runs. As AP for COCO may
not fully reflect the improvement in mask quality due to its coarse ground-truth annotations (Gupta
et al., 2019; Kirillov et al., 2019), we additionally report AP evaluated on the 80 COCO category
subset of LVIS, which has high-quality instance mask annotations, denoted as AP∗. Note we directly
evaluate COCO-trained models against higher-quality LVIS annotations without training on it.
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Models and Implementation Details. In addition to SOLO (Wang et al., 2019), we also examine
the generalizability of proposed method on recent SOLOv2 (Wang et al., 2020). Unless otherwise
specified, we use 4 neighbors for the aggregation and 16 channels for the multi-level context feature.
We implement the dynamic aggregation with a 3-layer group convolution network for batched com-
putation of different locations. The grid resolution, except for the mask interpolation experiment, is
set as 40, 36, 24, 16 and 12 for different FPN levels. Other settings, including the training schedule,
loss weight, and label assignment rules are the same as SOLO and SOLOv2 for fair comparison.

5.1 MAIN RESULTS

Comparison with Direct Mask Prediction Baselines. As shown in Tab. 2, AggMask significantly
boosts both baseline SOLO and SOLOv2 across different backbones (e.g., 2.1 AP and 1.0 AP im-
provement over SOLO and SOLOv2 on ResNet-50 backbone). The performance gap becomes larger
when evaluating on LVIS dataset (AP∗), and especially significant for AP with high IoU (i.e., AP∗70,
AP∗80 and AP∗90). As high IOU AP is challenging metric that requires much higher segmentation
quality, this shows the effectiveness of proposed method in improving mask segmentation quality.
In terms of inference speed, AggMask introduces small additional cost compared to baselines.

Table 2: Comparison with baseline SOLO (Wang et al., 2019) and SOLOv2 (Wang et al., 2020).
R50 and R101 denote ResNet-50 and ResNet-101 backbones. AP∗ is mask AP evaluated on the 80
COCO categories subset of LVIS benchmark. Inference speed is measured with V100 GPU.

Model AP AP50 AP75 APs APm APl AP∗ AP∗
50 AP∗

60 AP∗
70 AP∗

80 AP∗
90 FPS

SOLO-R50 35.8 57.1 37.8 15.0 37.8 53.6 37.0 58.2 51.8 43.6 32.2 14.2 12.9
+AggMask 37.9 58.2 40.9 16.2 41.5 56.3 40.0 60.4 54.9 47.1 36.4 17.4 11.4

∆- +2.1 +1.1 +3.1 +1.2 +3.7 +2.7 +3.0 +2.2 +3.1 +3.5 +4.2 +3.2 -

SOLO-R101 37.1 58.1 39.5 15.6 41.0 55.5 38.6 59.7 53.5 45.8 34.3 15.6 11.5
+AggMask 38.6 58.9 41.7 16.5 42.6 57.7 41.2 61.9 55.8 48.4 37.7 18.5 10.2

∆- +1.5 +0.8 +2.2 +0.9 +1.6 +2.2 +2.6 +2.2 +2.3 +2.6 +3.4 +2.9 -

SOLOv2-R50 37.7 58.5 40.2 15.6 41.3 56.6 40.0 60.3 54.4 47.0 36.5 18.5 16.4
+AggMask 38.7 59.2 41.6 17.1 42.5 57.2 41.0 60.9 54.9 47.9 37.7 19.9 14.0

∆ - +1.0 +0.7 +1.4 +1.5 +1.2 +0.6 +1.0 +0.6 +0.5 +0.9 +1.2 +1.4 -

SOLOv2-R101 38.5 59.1 41.3 17.1 42.5 56.8 41.1 61.9 55.9 48.0 37.3 18.8 13.4
+AggMask 39.4 60.0 42.3 16.8 43.6 58.5 42.3 62.3 56.9 49.7 38.9 20.5 11.5

∆ - +0.9 +0.9 +1.0 -0.3 +1.1 +1.7 +1.2 +0.4 +1.0 +1.7 +1.6 +1.7 -

Incorporating Mask Interpolation. We study two instantiations to demonstrate the merit of mask
interpolation. 1) “+cls”: increasing the classification grid resolution from [40, 36, 24, 16, 12] to [50,
40, 24, 16, 12] for each FPN level while keeping the mask grid resolution unchanged; 2) “-mask”:
reducing the mask grid resolution from [40, 36, 24, 16, 12] to [20, 18, 12, 8, 6] while maintaining that

Table 3: Results of AggMask with mask interpolation. +AggMask+cls means increasing classifica-
tion grid resolution; +AggMask-mask means reducing mask grid resolution.

Methods AP AP50 AP75 APs APm APl AP∗ AP∗
50 AP∗

60 AP∗
70 AP∗

80 AP∗
90 FPS

SOLO-R101 37.1 58.1 39.5 15.6 41.0 55.5 38.6 59.7 53.5 45.8 34.3 15.6 11.5
+AggMask 38.6 58.9 41.7 16.5 42.6 57.7 41.2 61.9 55.8 48.4 37.7 18.5 10.2

+AggMask+cls 39.1 59.8 42.1 17.1 43.2 58.0 41.6 62.6 57.0 48.7 38.0 18.6 10.0
+AggMask-mask 38.8 59.4 41.8 16.5 42.8 58.3 41.1 61.5 56.0 48.4 37.6 18.7 10.9
decoupled-SOLO 37.9 58.9 40.6 16.4 42.1 56.3 39.6 60.5 54.5 46.5 35.6 16.7 10.6

SOLOv2-R101 38.5 59.1 41.3 17.1 42.5 56.8 41.1 61.9 55.9 48.0 37.3 18.8 13.4
+AggMask 39.4 60.0 42.3 16.8 43.6 58.5 42.3 62.3 56.9 49.7 38.9 20.5 11.5

+AggMask+cls 39.7 60.6 43.1 17.9 43.8 58.8 42.8 63.3 57.6 50.3 39.4 20.7 11.2
+AggMask-mask 39.2 60.0 42.2 16.9 43.3 58.5 42.2 62.4 56.5 49.4 38.8 20.1 12.1
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for classification. The former aims to improve the discrimination ability for small objects, while the
latter aims to reduce the memory and computation cost of mask representations. Note for “-mask”,
the number of representations is reduced quadratically. As shown in Tab. 3, “+cls” improves the
overall performance (38.8 to 39.1 AP), especially for small and medium-sized objects as reflected in
APs and APm, while the time overhead is almost negligible (10.0 vs. 10.2 FPS). On the other hand,
reducing the mask grid resolution improves the inference speed from 10.2 to 10.9 FPS while giving
a comparable performance. A similar trend is observed for both SOLO and SOLOv2. Our “-mask”
scheme also outperforms decoupled SOLO (Wang et al., 2019) in terms of both accuracy and speed.
As shown in Tab. 4 and Fig. 4, for the SOLO baseline model, AggMask and its mask interpolation
variant of +cls scheme introduce small additional computation (∼1.4% and ∼2.3%). While -mask
scheme can significantly reduce Flops of mask head cross FPN levels.

- AggMask Mask itp. Flops Params

SOLO
-R101

422.8G 55.1M
X 428.3G 55.4M
X +cls 433.8G 55.4M
X -mask 390.5G 54.6M

Table 4: Flops & parameter count analysis.
Flops is averaged over COCO val set.

level-1 level-2 level-3 level-4 level-5

100

102

GF
lo

ps

26.3 21.3

2.4

0.26 0.15

6.6 5.3

0.6

0.07 0.04

Flop of Mask Head Cross FPN Levels

Baseline
-mask

Figure 4: Flop reduction by mask interpolation.
Averaged over COCO val set.

Comparison with state-of-the-arts. We then compare our method with state-of-the-art instance
segmentation methods: PolarMask (Xie et al., 2019), YOLACT (Bolya et al., 2019), Tensor-
Mask (Chen et al., 2019b) and Mask R-CNN (He et al., 2017), on COCO test-dev split. As
shown in Tab. 5, SOLO and SOLOv2 augmented with AggMask outperform all baselines while
maintaining comparable inference speed, which well proves its effectiveness.

Table 5: Comparison with other methods on COCO test-dev set, all with ResNet-101 backbone.

Methods AP AP50 AP75 APs APm APl FPS

PolarMask (Xie et al., 2019) 30.4 51.9 31.0 13.4 32.4 42.8 12.3
YOLACT (Bolya et al., 2019) 31.2 50.6 32.8 12.1 33.3 47.1 23.4

TensorMask (Chen et al., 2019b) 37.1 59.3 39.4 17.4 39.1 51.6 2.6
Mask R-CNN (He et al., 2017) 37.8 59.8 40.7 20.5 40.4 49.3 10.0

SOLO (Wang et al., 2019) 37.8 59.5 40.4 16.4 40.6 54.2 11.5
SOLOv2 (Wang et al., 2020) 39.7 60.7 42.9 17.3 42.9 57.4 13.4

SOLO+AggMask+cls 39.5 60.6 42.9 17.4 42.5 56.1 10.0
SOLOv2+AggMask+cls 40.6 61.9 43.8 18.5 43.7 57.6 11.2

5.2 MODEL ANALYSIS

How Does Aggregation Help? By visualizing the learned mask representations (Fig. 5), we find the
activated area is larger than that of SOLO, showing our representations provide context information.
Meanwhile, we observe they capture complementary information of neighboring objects, which
helps to segment the object when combined. Some qualitative results are shown in Fig. 6.

Individual Design Choices. We carefully examine each proposed component to quantitatively jus-
tify our design choices (Tab. 6): 1) Dynamic aggregation vs. static aggregation. We compare
dynamic aggregation with a static alternative that uses fixed learned weights for aggregation. It out-
performs the static counterpart by large margins (37.9 vs. 36.5 in AP, and 40.0 vs. 38.5 in AP∗). This
verifies our assumption that dynamically generated weights is essential to achieve desired adaptive
aggregation. 2) Number of Neighbors. When neighbor number |N | = 0, the model is reduced
to learning a dynamic transformation from each local mask representation into the final mask, this
setting already brings 1.4 AP improvement upon the baseline. Introducing neighboring mask rep-
resentations further improves AP by 0.7. This suggests that neighboring representations provide
complementary information, which helps refine the final instance masks when aggregated. The AP
is diminishing when |N | = 8., possibly because the representation from far-away grid location may
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Figure 5: Visualization of mask representations. Compared to baseline SOLO mask prediction, we
find our mask representations 1) have larger high-response area, indicating it attends to surround-
ing context; and 2) capture complementary information, e.g., in addition to the monitor, ‘a’ has
attention on the lamp, while ‘b’ and ‘c’ attends to the desk and people respectively. The quality of
segmentation is higher than the baseline model and simply refining with the voting algorithm.
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Figure 6: Example results of Mask R-CNN, SOLO and AggMask. Right three columns are zoom-in
views of yellow rectangle areas, showing that AggMask can handle severe occlusions in crowded
scenes (a), it also more accurately segment large objects benefited from the aggregation (b).

contain context that is irrelevant to the current location, especially for small-sized objects. 3) Multi-
level context information. When the multi-level context feature is removed from the aggregation
process, the performance drops from 37.9 to 37.1 in AP and 40.0 to 39.2 in AP∗, demonstrating
multi-level feature is beneficial for supplementing dynamic aggregation with bottom-up semantic
information. If we remove mask representations and only use context information, AP drops steeply
to 33.8. This means the local mask representation is crucial for segmenting the objects while the
context information is complementary. 4) Number and size of dynamic convolution kernels. For the
dynamic aggregation network, we find the best performance is achieved with 3 layers; the improve-
ment is diminishing with more layers. For the convolution kernel, 3×3 is better than 1×1 (37.9 vs
37.7 in AP), meaning a larger receptive field for the aggregation layers generates better results.

Table 6: Model analysis results. “base” denotes baseline SOLO-R50 model. Due to space limit, we
only report AP and AP∗ results, please refer to Tab. 7 in Appendix for detailed results.

base. Aggregation |N | Multi-level context #Conv layers Conv kernel

dynamic static 0 4 8 w/ w/o only 1 2 3 4 1x1 3x3

AP 35.8 37.9 36.5 37.2 37.9 37.7 37.9 37.1 33.8 37.1 37.6 37.9 37.8 37.7 37.9
AP* 37.0 40.0 38.5 39.3 40.0 39.8 40.0 39.2 34.6 39.3 39.8 40.0 39.7 39.5 40.0

6 CONCLUSION

In this work, we explore a novel aggregated learning framework that leverages the rich neighboring
predictions based on the recent SOLO model, the framework in turn enables the model to generate
interpretable location-aware mask representations that encodes context objects information. It is
validated that the simple method significantly improves the segmentation quality of baseline models.
We believe our findings provide useful insight for future research on instance segmentation.
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A APPENDIX

A.1 DETAILED RESULTS OF MODEL ANALYSIS

The detailed results of model analysis (i.e., Tab. 6 of the main submission) are given in Tab. 7.

Table 7: Detailed results of model analysis (i.e., Tab. 6 of main submission).

AP AP50 AP75 APs APm APl AP∗ AP∗50 AP∗60 AP∗70 AP∗80 AP∗90
Baseline 35.8 57.1 37.8 15.0 37.8 53.6 37.0 58.2 51.8 43.6 32.2 14.2

agg-D 37.9 58.2 40.9 16.2 41.5 56.3 40.0 60.4 54.9 47.1 36.4 17.4
agg-S 36.5 56.4 39.0 15.2 39.8 54.8 38.5 59.6 53.7 45.8 34.3 15.5

|N |-0 37.2 57.2 40.1 15.3 40.6 56.0 39.3 60.0 53.8 46.8 36.0 17.0
|N |-4 37.9 58.2 40.9 16.2 41.5 56.3 40.0 60.4 54.9 47.1 36.4 17.4
|N |-8 37.7 57.9 40.6 15.6 41.4 55.9 39.8 60.3 54.5 46.7 36.2 17.6

multi-level-context-w 37.9 58.2 40.9 16.2 41.5 56.3 40.0 60.4 54.9 47.1 36.4 17.4
multi-level-context-w/o 37.1 57.0 40.1 15.0 40.7 56.1 39.2 59.7 54.0 46.2 35.6 16.7
multi-level-context-only 33.8 52.9 36.1 14.2 37.5 49.1 34.6 53.9 48.2 40.6 30.1 14.3

conv-layer-1 37.1 57.2 40.0 15.5 40.1 56.2 39.3 59.8 54.4 46.1 35.5 16.9
conv-layer-2 37.6 58.1 40.4 15.2 41.0 56.3 39.8 59.8 54.2 46.6 35.8 18.0
conv-layer-3 37.9 58.2 40.9 16.2 41.5 56.3 40.0 60.4 54.9 47.1 36.4 17.4
conv-layer-4 37.8 58.4 40.5 16.1 41.4 56.7 39.7 59.7 54.0 46.8 35.8 17.8

conv-kernel-1x1 37.7 58.1 40.6 16.0 41.2 56.3 39.5 59.8 54.2 46.4 35.4 17.7
conv-kernel-3x3 37.9 58.2 40.9 16.2 41.5 56.3 40.0 60.4 54.9 47.1 36.4 17.4
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