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ABSTRACT

Uplift modelling is a fundamental component of marketing effect modelling,
which is commonly employed to evaluate the effects of treatments on outcomes.
Through uplift modelling, we can identify the treatment with the greatest benefit.
On the other side, we can identify clients who likely to make favourable decisions
in response to a certain treatment. In the past, uplift modelling approaches relied
heavily on the difference-in-difference (DID) architecture, paired with a machine
learning model as the estimation learner, while neglecting the link and confidential
information between features. We proposed a framework based on graph neural
networks that combine causal knowledge with an estimate of uplift value. Firstly,
we presented a causal representation technique based on CATE (conditional av-
erage treatment effect) estimation and adjacency matrix structure learning. Sec-
ondly, we suggested a more scalable uplift modeling framework based on graph
convolution networks for combining causal knowledge. Our findings demonstrate
that this method works effectively for predicting uplift values, with small errors
in typical simulated data, and its effectiveness has been verified in actual industry
marketing data.

1 INTRODUCTION

Uplift modeling (Diemert E, 2018) has traditionally relied on randomized experiments, such as
randomized controlled trials (RCTs) (Whittal M L, 2010), in which customers are randomly allo-
cated to either receive or not receive the intervention. In such instances, obtaining an accurate and
interpretable estimate from observational data becomes critical. However, carrying out such an ex-
periment in a business context frequently results in several challenges, including high costs in terms
of time and money, uneven intervention distribution, and selection bias in the specific population.

Response modeling or outcome prediction uses supervised learning models to model the relation
between features and target variables to predict response variation. Although response modeling
is typically preferable to random targets, distinguishing between treatment-induced be- behavioral
changes is often challenging. The population that should be targeted is the one most likely to re-
spond positively to the intervention. As a result, a thorough knowledge of the behavioral changes
that occur after the intervention is essential. Uplift modeling simulates the causal effect between
the intervention and the outcomes based on response modeling. Causal inference frameworks and
machine learning models are corporated to provide accurate forecasts and optimized performance
on intuitive metrics.

The counterfactual nature of intervention data is central to causal inference in Rubin’s Potential
Outcome Framework (POF) (B., 2005). This characteristic pertains to a person’s inability to both
receive and refuse intervention. This means that the effects of many therapies cannot be seen in
the same person. Two frameworks that have been extensively examined for causal impact estima-
tions based on this counterfactual characteristic are the meta-learner framework (Ton J F, 2021)
and the customised machine learning model-based framework (Chen H, 2020). The ultimate goal
is to increase the accuracy of causal impact estimation through the use of feature engineering and
validation approaches such as PS matching (Caliendo M, 2008), weighting (Li F, 2018), feature
representation (Muandet K, 2013), and so on.

In the past, researchers in uplift modelling were largely concerned with how to employ unbiased data
and models in the estimation framework. We increased the amount of data information by defining
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causal knowledge and implementing structured representation, then used a graph convolution neural
network (Zhang S, 2019) to efficiently and directionally integrate feature neighbourhood informa-
tion, achieving excellent performance in uplift modelling and prediction tasks. The following is a
description of our paper’s contribution to methodological and empirical evaluation perspectives:

• First, we propose to use conditional average treatment effect (CATE) as the attribute representing
the causal information of the feature and as part of uplift modeling and propose a causal network
model framework to effectively calculate it based on knowledge distilling and double machine learn-
ing.

• Second, we propose to learn the causal diagram structure of the data before uplift modeling and
reconstruct the data according to the learned adjacency matrix.

• Third, we propose an uplift modeling estimator based on graph convolution neural networks,
which can integrate and characterize neighborhood feature attributes according to the cause and
effect diagram structure and improve the performance of downstream tasks.

2 RELATED WORK

The estimation of the uplift value in uplift modeling is often based on the Potential Outcome Frame-
work(POF) (B., 2005). The individual treatment effect(ITE) can be expressed as:

ITE : τ(i) = Yi(1)− Yi(0) (1)

Shere Yi(1) and Yi(0) represents the result of the outcome variable under the treatment condition
and control condition, respectively, for individual i, τ(i) is the ITE value.

Considering that the individual effect of treatment will vary from individual and the high cost of
marketing experiments in the industry, the conditional average treatment effect(CATE) is proposed
as the effect of treatment on subgroups evaluated by the conditional average treatment effect (CATE),
which is calculated by:

CATE : τi = E [Yi(1) | Xi]− E [Yi(0) | Xi] (2)

where Xi is the feature vector for individual i.

For the estimation of CATE and ITE, the most direct method is to make an unbiased adjustment to
the regression model. Series of meta learners represented by s-learner are designed based on the
concept, that is, train one or more models with y as the output training target, input T and X, and get
the change of Y by changing the value of T to estimate ITE and CATE.

τ(x) = E[Yi(1)Yi(0)|X] = E[τi|X] (3)

Another series of methods for uplift modeling prediction is the probability score matching
(PSM) (Caliendo M, 2008) method based on randomized controlled trials (RCT) (Whittal M L,
2010). By calculating the probability score P (t | x), each sample is given a different treatment
object according to its similarity, so for sample i, we find sample j:

argminj dist(i, j) = |P (t | xi)− P (t | xj)| (4)

Then CATE could be calculated by:

τ̂ =
1

n

[ ∑
i:ti=1

(yi − yj) +
∑
i:ti=0

(yj − yi)

]
(5)

In addition, the industry’s research on lift modeling also includes methods based on the Covariate
Balancing Method and Modeling Unobserved Confounder. Typical methods of the first category
include Inverse Probability of Treatment Weighting (IPTW) (Chesnaye N C, 2022), Entropy Bal-
ancing (EB) (J, 2012), and Approximate Residual Balancing (ARB) (Athey S, 2018), in which core
is how to re-assign weights to samples. The core of the second type of method is to model the con-
founder. One way is to model the instrumental variable, which is represented by the two-stage least

2



Under review as a conference paper at ICLR 2023

square (2SLS) method (A, 1996). The first stage is to fit the impact of the change of I on T, and the
second stage is to fit the impact of the change of T on y caused by the change of I. The other way is
to use deep learning to represent the confounder, such as SITE (Yao L, 2018), Dragonnet (Tso F P,
2013), and CEVAE (Louizos C, 2017).

The past research mainly focused on adjusting and optimizing the uplift value estimation model in
a structured or unstructured way. Estimation methods based on the foundation model have shown
us the importance of embedding causal structure knowledge into the estimation process. This paper
will try to conduct data mining on features. On the one hand, it expands the amount of information
by defining and applying causal information; on the other hand, it reconstructs structured origin
data through causal diagram structural information and uses GCN to learn neighborhood informa-
tion from unstructured reconstructed data to improve the performance of uplift modeling using the
framework of meta learner (Ton J F, 2021).

The structure of the paper is as follows. Section II reviews the critical concepts of uplift modeling
and frameworks of the learning approach. In Section III, we introduce the methodology of our causal
knowledge framework. Section IV evaluates these methods with both synthetic and real-world data.
Finally, Section V summarizes the findings and recommends future research for uplift modeling
applications.

3 METHODOLOGY

This section will introduce the calculation method and architecture of graph neural networks em-
bedded with causal knowledge. We propose an interpretable causal graph network representation
learning framework with features as nodes. It can expand the representation of features by node
embedding, mapping the originally scalar features into a high-dimension space, and then integrating
the causal information and structural information into the graph features through graph convolution
to achieve a more accurate estimation of uplift value.

3.1 CAUSAL KNOWLEDGE REPRESENTATION

We propose a framework for computing causal knowledge representation. We transfer knowledge
through the concept of the soft target in knowledge distillation as the estimation target of the causal
estimator. We estimate each feature’s causal average treatment effect(CATE) and take it as the
weight of the feature based on the causal effect. This work has been proven to obtain more informa-
tion.

Figure 1: Causal Weighting Calculation Frame-
work

Figure 2: Causal Graph for Feature X1

Figure 1 shows the architecture of the causal average treatment effect(CATE) calculation. Firstly,
in the module of knowledge distillation and representation, We will build a knowledge distillation
task for label Y(0/1), using the teacher model(XGBoost (Chen T, 2015), etc. as base regressor) to
get the probability Ŷ as the soft label to replace Y as the target label. Secondly, in the multi-head
causal weight calculation module, we establish a causal graph for each feature as shown in Figure 2,
use the soft label Ŷ got in Module 1 as a knowledge label, and estimate CATE in the framework
of double machine learning (DML) (Chernozhukov V, 2017). Since the CATE estimation of each
feature is independent, we designed a multi-head mechanism to make the calculation more efficient.
Double machine learning is a classic estimator to estimate (heterogeneous) treatment effects when

3



Under review as a conference paper at ICLR 2023

treatment is classified and all potential confounders/controls. DML makes the following structural
equation assumptions for the data generation process:

Y = θ(X) · T + g(X,W ) + ϵ E[ϵ | X,W ] = 0 (6)

T = f(X,W ) + η E[η | X,W ] = 0 (7)

E[η · ϵ | X,W ] = 0 (8)

After modeling Y and T, respectively, the estimated CATE value θ(X) satisfies the equation:

Ỹ = θ(X) · T̃ + ϵ (9)

Here Ỹ is the residual of Y, T̃ is the residual of T.

Considering E[ϵ ·η | X] = 0, the problem of estimating θ(X) can be transformed into the following
regression problem.

θ̂ = argmin
θ∈Θ

En

[
(Ỹ − θ(X) · T̃ )2

]
(10)

3.2 CAUSAL GRAPH STRUCTURE LEARNING

The graph network structure contains the dataset’s prior information. The connection relationship
indicates the direction and distance of information transmission and determines the direction and
degree of information sharing and transmission of nodes in the subsequent graph network character-
ization operation.

Here, we use the classical Bayesian network structure as the structure of the causal feature repre-
sentation graph. Scoring search is a standard method to solve the problem of Bayesian network
structure to evaluate the degree of fit between the Bayesian network and training data and then find
the optimal Bayesian network based on the scoring function. The goal is now to solve the following
task:

argmax
G∈G

score(G,D). (11)

The scoring function introduces the inductive preference of what kind of Bayesian network you want
to obtain. Here we use the Bayesian Information Criterion(BIC) (Neath A A, 2012) as the score
function, which approximates the Bayes Dirichlet equivalent uniform(BDeu), sharing the critical
property of decomposability.

score(G,D) =
∑
Xi

score (Xi,Πi,D) (12)

Scorebic(g : D) = l((θ̂, g) : D)− logM

2
Dim[g] (13)

D is the given data, M is the number of training samples, g is the given structure, Dim[g] is the
number of independent parameters of model g, is the maximum likelihood estimate of the parameter
given the structure g and the data D.

After determining the scoring function, here we use the hill-climbing (Selman B, 2006) algorithm
as the optimization algorithm for the structural learning problem. The Hill-climbing algorithm is a
classical algorithm for local search based on a greedy algorithm, starting with a candidate solution
and continuing to search in its neighborhood until there is no better solution. The steps of the local
search algorithm are described as follows: Firstly, initialize a feasible solution X. Secondly, select a
moved solution s (x) in the neighborhood of the current solution so that f (s (x)) ¡ f (x), s (x) in S
(x). If there is no such solution, X is the optimal solution, and the algorithm stops. Thirdly, make x
= s (x) and repeat the second step.
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3.3 GNN BASED UPLIFT MODELING

After Causal Knowledge Representation and Causal Graph Structure Learning, we obtained more
information about the dataset and a specific relationship between features. Considering the excellent
representation ability of graph neural networks, we propose a graph neural network representation
framework based on causal graph representation, which can integrate this information more effi-
ciently.

GCN (Zhang S, 2019) is a multi-layer neural network that can operate directly on the graph and
induce nodes to obtain information on neighborhood vectors based on the neighborhood attributes
of nodes. Consider a graph G = (V, e), where V (— V — = n) and E are the sets of nodes and edges,
respectively. It is assumed that each node is connected to itself, that is, (v, v) ∈ E for any v. Let
x ∈ Rn×m be a matrix containing all N nodes and their vector features, where m is the dimension
of the vector, and each row xv∈ Rm are the vectors of V. We introduce the adjacency matrix A
and its degree matrix D of G, where dii =

∑
j Aij Due to the characteristics of the self-circulation

hypothesis, the diagonal element of a is set to 1. In general, GCN can only capture information
about its neighbors through one layer of convolution. We can integrate information about a wider
range of neighbors by stacking multiple GCN layers:

H(l+1) = σ
(
D̂− 1

2 ÂD̂− 1
2H(l)W (l)

)
(14)

Here H(l+1) and H(l) are the output and input matrices. Â = A + I , where A is the adjacency
matrix, and I is the identity matrix. D̂ is the degree matrix of Â, D̂− 1

2 ÂD̂− 1
2 is the normalized

symmetric adjacency matrix, and W (l) ∈ Rm×k is a weight matrix. σ is an activation function, e.g.,
a LeakyReLU.

Here we use GCN to extract and integrate features based on the causal neighborhood structure we
learned in the previous step. We take advantage of the feature that GCN can efficiently fuse features
according to the neighborhood structure to get graph embedding of each sample and then perform
prediction tasks based on it. Figure 3 shows that we have expanded the information on each feature.
In addition to the value of each feature itself, we have also expanded the information of structural
features and causal weights.

Figure 3: GNN-based uplift modeling architecture.
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For the estimation of uplift value, we refer to the design method of S-learner in meta learner and use
our GNN-based model as the base learner.

µ0(x) = E[Y (T = 0) | X = x] (15)

µ1(x) = E[Y (T = 1) | X = x] (16)

After µ0 and µ1 are calculated, respectively, the uplift value for each sample can be calculated:

D̃1
i := Y 1

i − µ̂0

(
X1

i

)
(17)

D̃0
i := µ̂1

(
X0

i

)
− Y 0

i (18)

Here D̃1
i and D̃0

i are the uplift values for samples in the intervention group and control group.

4 EXPERIMENTS

4.1 DATASET

4.1.1 SYNTHETIC DATASET

We used a method to simulate the generation of a dataset containing individual treatment effects,
which is available in causalml. In Chen H (2020) research, it is used as a method to provide simulated
data, which is available in Causalml. This synthetic method in the study provides the test groundings
for estimating individual treatment effects and facilitating validation. The following is the generating
mechanism: for different choices of X-distribution Pd, there is dimension d, noise level σ, propensity
function e∗(·), baseline primary effect b∗(·), and treatment effect function τ∗(·). The distributions
and relations are mathematically expressed in terms:

Xi ∼ Pd (19)

εi | Xi ∼ N(0, 1) (20)

Wi | Xi ∼ Bernoulli (e∗ (Xi)) (21)

Yi = b∗ (Xi) + (Wi − 0.5) τ∗ (Xi) + σεi (22)

The generation mechanism is featured by nuisance components and an easy treatment effect func-
tion. The initial distribution is constructed from Xi1 ∼ Unif(0, 1)d is constructed, followed by
e∗(Xi = trim0.1{sin(πXi1Xi2)} and τ∗(Xi) = (Xi1 +Xi2)/2 to compute propensity scores and
treatment effects, respectively. The treatment W is generated as a binary distribution. Eventually,
interval trimming of the distribution is performed via trim(x) = max{η,min(x, 1−η)}. This sim-
ulation method is adpoted as a scaled version of the Friedman (Friedman, 1983) function, where a
baseline main effect is computed through b∗(Xi) = sin(πXi1Xi2)+2(Xi1−0.5)2+Xi4+0.5Xi5.

4.1.2 REAL-WORLD DATASET

We use the criteo uplift dataset (Diemert Eustache, Betlei Artem et al., 2018) as the evaluation of the
real-world dataset, which is constructed by collecting data from the incremental test. It randomly
divides the people into two categories, whether it is advertised or not. The criteo uplift dataset has
25 million rows, each representing a user with 11 characteristics, a treatment indicator, and two tags
(click and conversion). Here we use conversion as the tag we focus on in uplift estimation. Figure 4
shows the results after learning the Bayesian network structure of the dataset.
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Figure 4: Correlation network between confounders, treatment, and outcome from the real-world
dataset, CRITEO

4.2 RESULT

4.2.1 SYNTHETIC DATASET

In this case, the actual causal effect of features can be calculated easily because the datasets are
produced with a certain mechanism The absolute loss (Abs) is adopted to measure the deviation
between the actual causal effect and the estimated causal effect. As for the prediction accuracy,
the mean squared error (MSE) is adopted. The proposed method has been compared to traditional
models like linear regression (LR), SVR, and XGBoost.

Figure 5: Mean squared error for y-prediction accuracy of base methods and ours with the numbers
of confounders are 5, 9, and 20, respectively.

Figure 5 shows that the origin GNN-based model performs similarly to traditional models in the
traditional regression task, while the GNN-based model performs much better when combined with
the causal weighting. As for uplift modeling estimation, as shown in Figure 6, causal weighting
combined architecture has a much more apparent effect. Before combining causal weighting in-
formation, GNN based model is slightly better than LR and SVR in the estimation of uplift value
but worse than xgboost while achieving a very accurate result when adopting the causal weighting
combined architecture. Another result is that GNN based model can have a much more stable per-
formance when the number of confounders increases, which means that it can have a much more
robust performance when facing more complex situations.
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Figure 6: Absolute error of ITE of base methods and ours with the numbers of confounders are 5, 9
and 20, respectively.

Table 1: AUUC for uplifting evaluation and MSE for y-prediction of baseline methods and proposed
method

Model AUUC MSE

LR 0.4980 0.0026
SVR 0.5475 0.0037
XGBoost 0.8756 0.0025
GCN 0.5443 0.0028
GCN (Causal Weighting) 0.8807 5e-06

4.2.2 REAL-WORLD DATASET

In a real-world dataset, the actual causal effect of treatment remains unknown, leading to the above-
mentioned indicators being inapplicable. As a result, Area Under Uplift Curve (AUUC) is adopted
to measure the performance of an uplifting model on the real-world dataset. AUUC can be calculated
as follows:

AUUC(f) =

∫ 1

0

V (f, x)dx ≈
n∑

k=1

V (f, k) (23)

whereV (f, k) =
1

|T |
∑

i∈f(D,k)

yi1[ti=1] −
1

|C|
∑

j∈f(D,k)

yj1[tj=0] (24)

Here f(D, k) can be the k first samples of the dataset when ordered by the prediction of the model
f , |T | is the number of samples in the treatment group(t=1), and |C| is the number of samples in the
control group(t=0).

For certain causal relationships, the higher the AUUC is, the better the uplifting model performs.
The AUUC of the baseline models and ours are listed in Table 1.

Table 1 shows that when estimating the uplift value in the real-world dataset, although origin GNN
has a similar performance with LR and SVR, it has a better performance than XGBoost when with
the causal weighting combined architecture.

5 CONCLUSION AND FUTURE WORK

In this work, we investigated how to describe causal information in uplift modelling (add conditional
average treatment effect (CATE) and build an adjacency matrix using Bayesian network structure
learning). In addition, we addressed how to incorporate this causal information into uplift estima-
tions by proposing a framework for uplift modelling that is based on graph neural networks.

Experiments on simulated and real-world datasets reveal that while the origin graph convolutional
neural network performs comparably to conventional approaches when directly predicting uplift
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values, when paired with causal neighbourhood features and causal representation information, it
demonstrates exceptional performance in both the prediction job and the uplift estimation task of
the target, owing to the GCN’s excellent neighbourhood learning features.

It is worthwhile to investigate more methods of characterising causal knowledge in the future.
Weighted adjacent matrices might be seen as a means of guiding graph convolutional neural net-
works to provide accurate data. Alternatively, it is equally intriguing to investigate the size of the
receptive domain of neighbourhood features. A wider receptive domain denotes more information,
which might aid us in enhancing the performance of this job in downstream prediction.
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