Classical Planning with Avoid Conditions

Marcel Steinmetz', Jorg Hoffmann', Alisa Kovtunova?, Stefan Borgwardt?

! Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
2 Institute of Theoretical Computer Science, Technische Universitit Dresden, Germany
lastname @cs.uni-saarland.de, firstname.lastname @tu-dresden.de

Abstract

It is often natural in planning to specify conditions that should
be avoided, characterizing dangerous or highly undesirable
behavior. PDDL3 supports this with temporal-logic state con-
straints. Here we focus on the simpler case where the con-
straint is a non-temporal formula ¢ — the avoid condition —
that must be false throughout the plan. We design techniques
tackling such avoid conditions effectively. We show how to
learn from search experience which states necessarily lead
into ¢, and we show how to tailor abstractions to recognize
that avoiding ¢ will not be possible starting from a given state.
We run a large-scale experiment, comparing our techniques
against compilation methods and against simple state prun-
ing using ¢. The results show that our techniques are often
superior.

Introduction

It is often natural in planning to specify conditions that
should be avoided. Work along these lines has so far focused
on temporal-logic formulas that must be true in the state se-
quence induced by the plan. One prominent early approach
used such formulas as control knowledge for effective hand-
tailored planning (Bacchus and Kabanza 2000; Doherty and
Kvarnstrom 2001). The PDDL3 language (Gerevini et al.
2009) features temporal formulas (among others) in the role
of state constraints. Work since then has devised compila-
tion techniques (Edelkamp 2006; Baier and Mcllraith 2006;
De Giacomo, De Masellis, and Montali 2014; Torres and
Baier 2015), and investigated how to effectively deal with
(soft-goal) temporal plan preferences (Baier, Bacchus, and
Mcllraith 2007, 2009).

Here we focus on the simpler case where the state con-
straint is a non-temporal formula ¢ that must be false
throughout the plan. We refer to such constraints as avoid
conditions. This special case is relevant as avoid conditions
naturally characterize dangerous or highly undesirable situa-
tions. For example, an avoid condition can capture states the
user knows to be dead ends; or risky states in a deterministic
approximation of a probabilistic planning application.

Avoid conditions can be trivially compiled into precondi-
tions, but this incurs a large overhead and is, as our exper-
iments illustrate, often not effective. Our contribution con-
sists in advanced algorithmic methods. Apart from several
compilation techniques, we adapt prior work in classical

planning to design a method /earning from the avoid condi-
tion during search, and a method using abstraction to predict
states starting from which ¢ cannot be avoided.

Our learning method is based on so-called trap learn-
ing. Traps (Lipovetzky, Muise, and Geffner 2016) are sets of
states from which there is no path to the goal. One can gen-
eralize from traps—and thus prune future search states—by
minimizing the states to retain only the core reason why an
escape is not possible. By initiating trap refinements from
dead-end states encountered during forward search, one can
incrementally extend the traps as a form of nogood learning
(Steinmetz and Hoffmann 2017a). We change the original
trap definition to take into account ¢, and show how trap
learning can be adapted accordingly.

Our abstraction method is a form of state abstraction, a
wide-spread method used to design heuristic functions in
planning (Edelkamp 2001; Helmert et al. 2014; Seipp and
Helmert 2018). Abstract state spaces group concrete states
s into block states A. Observe that, given such an abstract
state space, we know that s € A can be pruned if all paths
from A to a goal block traverse a block A’ where s’ = ¢
for all s’ € A’. In other words, given an abstraction, we can
predict that every plan for a state s will necessarily traverse
the avoid condition. The question remains how to tailor ab-
stractions for this purpose. To this end, we leverage so-called
Cartesian abstractions and their associated counter-example
guided abstraction refinement (CEGAR) process (Seipp and
Helmert 2013, 2018). We modify the CEGAR process to in-
corporate ¢ as an additional source of counter-examples and,
therewith, of refinement steps.

We run a large-scale experiment on satisficing plan-
ning, optimal planning, and proving unsolvability, evaluat-
ing compilations, learning, and abstraction. We do so on (a)
reformulated standard benchmarks that incorporate aspects
(more) naturally formulated as avoid conditions; (b) bench-
marks involving road maps (or similar), where we systemat-
ically impose avoid conditions of the form “do not use par-
ticular combinations of road segments”; and (c) a small col-
lection of benchmarks where we generated avoid conditions
automatically using trap learning (which is a bit artificial and
merely serves as a showcase). The results show that our new
methods can be superior, in particular for proving unsolv-
ability.

Preliminaries

We consider classical planning tasks in FDR nota-
tion (Béackstrom and Nebel 1995; Helmert 2006). A plan-
ning task is a tuple Il = (V, A, Z,G). V is a set of variables,
each v € V has a finite domain D,,. A fact is a variable as-
signment p = (v,d) for v € V and d € D,. The initial
state T is a complete assignment of V. The goal G is a par-
tial assignment of V. For a partial variable assignment P,
V(P) C V denotes the set of variables v for which P(v) is
defined. For v € (V\ V(P)), we write P(v) = L. Aisaset
of actions. Each action a € A has a precondition pre, and
an effect eff ,, both partial variable assignments, and a non-
negative cost ¢, € R{. The states S of II are all complete
variable assignments. An action a is applicable in a state s
if s(v) = pre,(v) for all v € V(pre,). The result is given
by s[a]] where s[a](v) = eff ,(v) for all v € V(eff,), and
s[a](v) = s(v) for the other variables. These definitions are
extended to sequences of actions in an obvious manner. A
plan for s is a sequence of actions 7 that is applicable in s
and s[7](v) = G(v) for all v € V(G). An optimal plan is a
plan with minimal summed up action cost. s is called a dead
end if there is no plan for s. A plan for 11 is a plan for Z. II
is called unsolvable if T is a dead end.

Throughout the paper, we treat partial variable assign-
ments, conjunctions of facts, and sets of facts synonymously.
For ease of presentation, we assume that every conjunction
of facts calling for different values for the same variable im-
plicitly simplifies to false. We consistently use 1) to denote
conjunctions, and ¢ for arbitrary propositional formulae. By
¥ and ¢ we refer to formulae in disjunctive normal form
(DNF) without negation, and treat them synonymously to
sets of conjunctions. For any propositional formula ¢, we
denote by [¢] C S the set of all states in which it is satisfied.

An avoid condition ¢ is an arbitrary propositional formula
over facts. A plan a, ..., a, for Il is called ¢-compliant if
Z ¢ [¢], and it holds for all 1 < ¢ < n that Z[aq, . ..,a;] &
[¢]. An optimal ¢-compliant plan is a ¢-compliant plan with
minimal action cost. We say that a state s is ¢-unsolvable if
there is no ¢-compliant plan for s.

Compilations

Compiling avoid conditions into the planning task is
straightforward in principle, but the naive method is very in-
effective so it is worth thinking this through more carefully.
Furthermore, compilations for temporal plan constraints are
well known and we address a special case here. Hence we
evaluate three compilation methods in our experiments. All
these compilations operate at the PDDL input level.

Conditions Compilation The first, and most straightfor-
ward, compilation ensures ¢-compliance by conjoining —¢
to the preconditions of all actions and the goal. We denote
by I17¢ the resulting FDR planning task. Trivially, the plans
of II™¢ are the ¢-compliant plans of II.

LTL Compilation Our second method uses existing
tools for compiling temporal formulas into planning

tasks (Edelkamp 2006; Baier and Mcllraith 2006). This usu-
ally works in two steps: (1) building an automaton repre-
sentation of the formula, and (2) encoding this automaton
into the planning task via additional state variables and ac-
tions. For our simple LTL formula G—¢ (always not ¢), the
automaton representation will always consist of exactly two
locations. The initial location is accepting and has a self-
loop conditioned by —¢. The other location is not accept-
ing, and is reached from the initial location if ¢ is satis-
fied. We denote by IT“™" the compilation of this automaton
into II. TI*™ enforces an update of the automaton location
in between applications of actions from II. The automaton
“blocks” as soon as it leaves its accepting state. Discarding
the automaton-related actions, the plans of IT*™" are exactly
the ¢-compliant plans of II. Moreover, plan optimality is not
affected provided the newly introduced actions have 0 cost.

Axiom Compilation Both I17? and IT"™" suffer from the
use of —¢, which causes a blow-up in FD’s translator if ¢
is a DNF (because —¢ is a CNF which the translator naively
transforms into a DNF). This motivates our last compilation,
which employs derived predicates, aka axioms (Hoffmann
and Edelkamp 2005), to avoid that problem.

Axioms are defined by rules of the form p < . The
fact p must not be affected by any action, i.e., its truth value
must be completely determined by the axioms. In the simple
(non-recursive) form of axioms that we need for our com-
pilation, p is true in a state iff the state satisfies one of its
associated rule conditions v,,. To enforce —¢ with axioms,
we introduce a rule (avoid) < ¢, and conjoin —(avoid) to
the precondition of every action and to the goal. We denote
by II? the resulting FDR task with axioms.

Trap Learning

The basic algorithm we assume for our new advanced tech-
niques is forward search on II, while pruning all states
that satisfy ¢. On top of this simple baseline, in what fol-
lows we introduce methods that can identify additional ¢-
unsolvable states: trap learning in this section, abstraction in
the next. Both methods preserve completeness (returning a
¢-compliant plan if one exists) and optimality (returning an
optimal ¢-compliant plan).

Background: Traps

Traps have been originally proposed for pruning dead ends
during search (Lipovetzky, Muise, and Geftner 2016). For-
mally, a trap is a set of states 77 C S that (T1) does not
contain any goal state, and (T2) is closed under transitions.
The two conditions together imply that every state in 7' is
a dead end. To make use of traps in practice, they must be
represented in some compact form. Lipovetzky, Muise, and
Geffner considered DNF formulae of small, fixed-size, con-
junctions over facts without negation. Verifying whether [¥]
satisfies (T1) and (T2) for such formula ¥ boils down to
syntactic checks on individual elements ¢ € W. For (T1)
one can compare 1) with G directly. The test of (T2) is based
on the progression operator Progress(i, a) — the conjunc-
tion of all facts necessarily true after applying a to any state

in [¢]. (T2) is satisfied if Progress(1, a) implies ¥ for all ¢
and a. The implication can be tested efficiently by syntactic
comparison to the members in .

Algorithm 1 Computation of s for the trap update ¥’ as
discussed in the text. 2 — 4 ensure that U’ satisfies (T2); 5 —
7 take care of (T1).

cpg < T forall s € S
while there are 15, a s.t. Progress(is, a) & ¥’ do
Vs < ths A (V) 5(v")) for some v” & V(1s)
end while
: for all Y5 s.t. ¢s & =G do
s < Ps A (v, s(v)) for some v € V(G) s.t. s(v) #
G(v)
7: end for

A A A

Steinmetz and Hoffmann (2017a) presented a method to
build such ¥ from experience made during search. Search
is started with using the empty trap, ¥ := 1, and is termi-
nated as soon as a goal state is found. ¥ is updated whenever
search has visited a set of states S such that (S N [¥]) = 0),
yet all transitions that leave S go into [¥]. In other words,
([¥]U S) is a trap that is not fully represented by ¥ yet. For
details how such S are identified exactly, we refer to (Stein-
metz and Hoffmann 2017a,b). The refinement then aims at
finding for every s € S some 1y C s such that O/ :=
UV \/8E & Vs still represents a trap. Once found, ¥ is re-
placed by ¥’ and search is resumed. The update ensures that
([¥] U S) C [¥'], i.e., the trap becomes increasingly larger.
Every state newly represented by ¥’ besides those in S may
lead to additional pruning in the remainder of the search.
To achieve this generalization, Steinmetz and Hoffmann at-
tempt to keep the size of the individual), as small as possi-
ble, via the greedy procedure sketched in Algorithm 1.

Tailoring To Avoid Condition

For the purpose of identifying ¢-unsolvable states, the orig-
inal trap conditions are overly restrictive. We relax the con-
ditions as follows. A set of states T C S is a ¢-trap if (T1')
every goal state in T satisfies ¢, and (T2') every transition
that leaves T either originates in a state that satisfies ¢, or
goes into one that does. It is straightforward to show that
these weaker conditions are still sufficient to ensure the in-
tended property:

Theorem 1. If T is a ¢-trap, then every state in T is ¢-
unsolvable.

As before, operationalizing on this notion necessitates a
compact representation on which the ¢-trap conditions can
be checked directly. We stick to the DNF representation ¥
from above, and extend the construction methods accord-
ingly. As central to these methods, one can still determine
on a per-element basis whether the overall set [¥] satisfies
(T1’) and (T2'):

Theorem 2. Let U be a DNF formula over facts without
negation. [¥] is a ¢-trap if it holds for all ¢ € WV that

(t1') (Y AN G)= ¢, and (12') it holds for all a € A that
Progress(¥ A ¢, a) = (T V).

(t1”) and (t2') are straightforward extensions of the corre-
sponding per U-element tests for the original trap definition.
Unfortunately, however, the appearance of ¢ in the adapted
conditions makes it a priori impossible to verify them via
pure syntactic comparisons. Consider for example (t1"). To
verify this condition we need to decide whether W AGA—¢ is
satisfiable. Without assumptions on ¢, this test is generally
NP-complete due to the complexity of propositional satisfi-
ability.

To avoid having to translate each individual test into an
(expensive) SAT query, we exploit a simple trick. Let ® be
the transformation of ¢ into a positive DNF formula. [®]
is a ¢-trap as it trivially satisfies (T1’) and (T2'). While
® in itself does not carry any new information, it however
greatly simplifies the verification of (t1’) and (t2'). It should
be noted that the transformation may come at the cost of
an exponential blow up of the formula size. But consider-
ing the worst-case complexity, this cost will have to be paid
at some point. Observe that when replacing ¢ by @, both
conditions decompose into efficiently computable trap im-
plication tests. This is apparent for (t1’), which becomes
(¢ A G) = ®. Regarding (t2), we note that the structure
of ® allows to move —~® out of the progression, resulting
in two separate conditions: (2a) (1) A pre,) = ® or (2'b)
Progress(i,a) =(¥ V ®). Details are provided in an ap-
pendix.

With these simplifications at hand it becomes straightfor-
ward to adapt the existing trap construction methods towards
generating ¢-traps instead. In particular, the trap learning al-
gorithm can be used almost as is. To take into account (t2'b),
it suffices to initialize ¥ to ®. This initialization is valid as
observed above. (t2’a) and (t1’) map directly into additional
loop conditions in lines 2 and 5 of Algorithm 1. The cor-
rectness of the construction follows via the same arguments
already provided by Steinmetz and Hoffmann (2017a):

Theorem 3. Trap learning with the mentioned modifications
terminates eventually, and V remains a ¢-trap at all time.

Abstraction for Avoid-Prediction

We recall Cartesian abstractions and show how to tailor them
to the identification of ¢-unsolvable states.

Background: Cartesian Abstractions

An abstraction for II is an equivalence relation ~ between
the states S. The abstract states S~ of ~ are given by its
equivalence classes. For state s, we denote by [s].. the equiv-
alence class that contains s, and omit ~ if it is clear from
the context. The abstract state space associated with ~ is
the transition system ©~ = (S~,7",s7,55) with ab-
stract initial state s7 = [I] and abstract goal states S5 =
{[s] | s € S,G C s}. The abstract transitions are given by
T~ ={{([s],a,[s][a]]) | s € S,a € Aapplicable in s}.

Let the variables of IT be V = {vy,...,vn}. Carte-
sian abstractions (Seipp and Helmert 2018) are abstractions
whose abstract states are of the form A; x Ay X --- X Ay,
where A; C D, for all 7.

This structure makes Cartesian abstractions particularly
suitable for a counter-example guided refinement loop (CE-
GAR): The construction starts with the trivial abstraction
that contains just a single abstract state. One then iteratively
splits an abstract state into two until the abstraction provides
enough information, or some size limit is reached. Each re-
finement step starts with the extraction of an abstract so-
lution, i.e., an abstract path [so], a1, [s1],...,an, [sy] from
the abstract initial state [sg] = s7 to some abstract goal
state [s,,] € Sg'. If no such path exists, then IT must be un-
solvable, and the refinement terminates. Otherwise, the cor-
responding concrete path sg, a1, $1,az, ... is computed by
applying the actions successively, starting from so = Z. The
computation is stopped when one of the following condi-
tions is satisfied:

(Cl) Concrete and abstract state do not match: [s;] # [s;].

(C2) Action a; is not applicable in s;_1.
(C3) sy, does not satisfy the goal.

If not stopped, we have found a plan for I and the refine-
ment terminates. Otherwise, the violated condition is used to
split an abstract state, guaranteeing that the same error can-
not occur in future iterations (& denotes disjoint set union):

(C1) [s;—1] is split into [t1] W [to] such that s;_;1 € [t2] and
to] no longer has an abstract transition to [s;] via a;.

[

[

(C2) [s;—1] is split into [t1] W [t2] such that s;_;1 € [t2] and
[to] has no abstract transition via a;.
|

(C3) [sy] is splitinto [t1] W [t2] such that s,, € [t2] and [t]
is no longer an abstract goal state.

The selection of [¢1] and [¢5] is done via simple syntactic
checks. During the entire construction, a full representation
of the abstract state space is maintained. After each split,
this representation can be updated efficiently by “rewiring”
transitions to [t1] and [¢5]. For full details, we refer to the
work by Seipp and Helmert (2018). Once the abstract state
space has been updated, a new abstract solution is extracted,
and the whole process starts anew.

Tailoring to Avoid Conditions

An abstract state [s] implies ¢, written [s] = ¢, if all repre-
sented concrete states s’ € [s] satisfy ¢. An analysis of the
abstract state space with respect to this property can yield
information about ¢-unsolvable states that do not satisfy ¢
themselves:

Theorem 4. Let [t| be any abstract state. If every path from
[t] to any abstract goal state visits some [8] s.t. [s] = ¢, then
every state represented by [t] is ¢-unsolvable.

We next show how to apply this observation to Carte-
sian abstractions. In particular, we detail how to implement
the implication test [s] = ¢ for Cartesian states [s]. More-
over, we adapt the CEGAR approach from above to specif-
ically construct abstractions for the purpose of identifying
¢-unsolvable states.

Algorithm 2 Recursive method to decide whether a Carte-
sian state [s] = Ay X - -+ x Ay contains a concrete state that
violates the positive DNF ®. Initially, ¢ = 0.

if ® = () then
return true
end if
if i = N + 1 then
return false
end if
if 3d; € N;: (v;,d;) & ¢ forall ¢ € O then
return Unsat(i + 1,{¢p € @ | v; € V(¥)})
else
foralld; € A; do
if Unsat(i + 1,{¢ € ® | ¥(v;) € {L,d;}} then
return true
end if
end for
return false
end if

Implication Test Unfortunately, deciding whether [s] = ¢
for Cartesian abstractions is NP-hard in general. This be-
comes apparent if all state variables are Boolean. For the
full Cartesian product [s], [s] = ¢ then holds exactly if ¢ is
a tautology. Deciding the latter is known to be NP-complete.
Yet despite the worst-case complexity, the implication check
was usually not the bottleneck in our experiments. Our im-
plementation runs a simple backtracking search for a state
t € [s] such that ¢ = —¢. Clearly, such state exists iff
[s] = & does not hold. Algorithm 2 shows the pseudo-code.
It assumes a positive DNF representation ¢ of ¢. Each recur-
sive call obtains the index of the variable to assign next, as
well as the conjunctions in ® that can still be satisfied given
what has been chosen so far. The method only tries multi-
ple values if no single value can be chosen that rules out all
remaining conjunctions in which the variable appears.

CEGAR To foster the creation of abstract states [t] as
in Theorem 4, we propose two separate extensions of the
CEGAR approach, differing in how exactly ¢ triggers re-
finements. Both variants start with an abstract goal path
[so],a1,[s1],- -, an, [$n] such that [s;]# ¢ holds at all
time. If such a path does not exist, then the abstraction al-
ready proves that Z is ¢-unsolvable. We stop immediately.
The first variant straightforwardly extends the original ab-
stract path analysis steps by the additional error condition:

(C4) The concrete state s; satisfies ¢.

Whenever (C4) is satisfied, then due to above’s restriction
of the abstract goal paths, [s;] must represent states that sat-
isfy ¢ as well as ones that do not. We split [s;] in a way that
allows to distinguish those states within the abstraction. In
particular, the refinement guarantees that s; will map into
[s;] = ¢, which for one ensures progress in the construction
(the same error cannot occur again in the future), and for an-
other contributes towards satisfying Theorem 4 by remov-
ing an abstract path violating the prerequisites. More con-
cretely, [s;] is split into abstract states [t1] W - - - W [tx] such

that [t;] = ¢, and s; € [ti]. Contrary to the previous refine-
ment steps, a split into exactly two abstract states (k = 2) is
not possible in general. To illustrate this, let and y be two
binary variables, and ¢ = (z = 1 Ay = 1), and consider
the abstract state [s;] = ({0,1} x {0, 1}). [tx] = ¢ can only
be satisfied for [t;] = ({1} x {1}). However, every possible
split of [s;] into this [t] requires k > 3 abstract states.

We use the following procedure to find [¢1]W- - - W[tx]. We
start with [t] = [s;] and j = 1. Let v be any variable whose
value set A in [t] is not a singleton. [¢] is split into two ab-
stract states [t;] and [¢'] by dividing A into (A\ {s;(v)}) and
{si(v)} respectively. If after the split [t'] = ¢ holds, then we
are done. Otherwise [t'] becomes the new [¢], and we repeat.
Since [t'] will become {s;} eventually, the method is guar-
anteed to terminate with the desired result. Moreover, since
abstract states are still iteratively split into pairs, the abstract
state space can be updated in the same fashion as before.

To prioritize refinements based on ¢, our second variant
attempts to check whether any abstract state [s;] on the path
contains some concrete state s |= ¢, prior to conducting the
original analysis steps. If such abstract state [s;] exists, then
[s;] is split as above, and skip the original analysis steps al-
together. Since this condition is checked before constructing
the concrete path, the state s € [s;] with s |= ¢ must be
searched for actively. This is computationally more expen-
sive than the simple check in (C4).

S o {0, 11 {0y < {03 [“f[s1]: {0, 13 x {0} x (1}]

|a I

[s2]: {0, 1< {13 x {0} 25 [sa]: {0, 11 x {1} x {1}

|
e e e Lo Le=s=s===========

,,,,,,,,,,,,,,,

Figure 1: Illustration of an abstract state space. Self loops
are omitted. The planning task consists of binary variables
z,Y, 2, initially all 0, goal z=1, and three actions with
preleff: (a1) y=0/y=1; (a2) y=1/z=1; and (a3) z=1/z=1.
The abstract states are depicted in terms of A, x A, x A..
The avoid condition is ¢ = (y=1). Abstract states with
dashed borders contain a state that satisfies ¢. Goal states
have double borders.

We close the discussion with the remark that the abstrac-
tion can in general not be refined based on ¢ exclusively, i.e.,
(C1)—(C3) remain necessary. Consider the example in Fig-
ure 1. As the (spurious) path [sg], as, [s1] shows, paths in the
abstraction can simply bypass ¢ even if the concrete paths
cannot. Note that this abstract path violates (C2). The corre-
sponding refinement will split [sg] by dividing the values of
x into {0} and {1}. This suffices to make all abstract goal
paths pass through [so] = ¢, proving that no ¢-compliant
plan exists.

Experiments

We implemented all described methods in Fast Downward
(FD) (Helmert 2006). The avoid condition is specified as
an additional input file in the full PDDL condition syntax.
The compilations are implemented as part of FD’s transla-
tor component. All DNF conversions are done as part of the

standard FD preprocessing. The experiments were run on
machines with an Intel Xeon E5-2650v3 processor, and cut-
offs of 30 minutes and 4 GB memory.

We conducted experiments in optimal and satisficing
planning, as well as proving unsolvability. For each cate-
gory, we chose a canonical base planner configuration: op-
timal planning via A* search with LM-cut (Helmert and
Domshlak 2009); satisficing planning via greedy best-first
search with two open lists and preferred operators using
hFF (Hoffmann and Nebel 2001); and proving unsolvability
via depth-first search with h™> (Haslum and Geffner 2000)
for dead-end detection. We extended these base configura-
tions by the following prediction methods: “~” no predic-
tion, only prune by ¢; “trap” ¢-trap learning; “A” Cartesian
abstraction constructed via the original CEGAR approach;
“PA” predicting abstraction with the additional (C4) check;
and “SPA” predicting abstraction with the more strict ¢ re-
finement check. We experimented with abstraction size lim-
its of N € {10k, 20k, 40k, 80k, 160k} abstract states. We
also tested trap learning and Cartesian abstractions for prun-
ing dead-ends in the II"¢ and IT*™ compilations (not IT*
because neither of them supports axioms). We next describe
our benchmarks, then discuss the results.

Benchmark Design

Benchmarks with avoid conditions already appeared in IPC
2006 (Dimopoulos et al. 2006), encoded via state con-
straints. But hard state constraints were only used in bench-
marks of the temporal track, and the constraints themselves
heavily relied on temporal operators, which makes them un-
suited for our experiments. Instead we created a new bench-
mark set, including solvable as well as unsolvable instances.
We designed three categories of benchmarks.

The “-®” benchmarks. Several well-known benchmarks
actually already use avoid conditions, not modeled explic-
itly but instead encoded into complex precondition and/or
effect-condition formulas. We have identified 6 such do-
mains, and manually separated the avoid condition from
the action descriptions in an equivalence-preserving manner.
The domains and avoid conditions are: CaveDiving (IPC14),
mutual exclusion relationship between some divers; Fridge,
constraints on fridge components; Miconic, complex rela-
tionship between passengers allowed to be in the elevator si-
multaneously, legal elevator moves are restricted by boarded
passengers; Nurikabe (IPC18), illegal groupings of board
cells; Openstacks (IPCOS), production and delivery must fol-
low a particular order; Trucks (IPC06), relationship between
the occupancy and location of truck storage areas. An ex-
plicit avoid condition is a natural model for all of these, and
partly actually more natural than the original PDDL.

The - (2)” benchmarks. These benchmarks add avoid
conditions systematically to some standard benchmarks.
The avoid conditions we added enforce an upper limit k& on
the number of occurences of n selected events in any plan.
Specifically, we considered “road avoidance” in Storage,
Transport, and Trucks, forcing each vehicle to not traverse

Coverage Search Reduction Factors (Left: Geometric Mean, Right: Maximum)
Compilations Pruning
A PA SPA A PA SPA
Domain # |||[m™¢ o' %] —|Trap|20k 160k|20k 160k|20k 160k Trap 20k 160k 20k 160k 20k 160k
Satisficing
CaveDiving-® 17 4 4 4] 4 0 4 4 4 4 4 4 1.0 1.0 1.1 1.1 1.0 1.0 1.1 1.1 1.1 1.1 1.2 1.3
Fridge-® 24 1 6 22| 21| 21| 21 21| 21 21| 21 21 1.0 1.0| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Miconic-® 150 0 25 82|132| 134 131 125|131 107| 124 58 1.8 521.9| 1.0 1.0 1.0 1.0 1.0 10.6 1.0 10.6 1.0 1.3 1.0 1.7
Nurikabe-® 20 0 2 13 12| 11] 11 9] 11 8| 11 6 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1
Openstacks-® 30 0 1 30| 30| 30| 21 18] 19 18 30 30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trucks-® 30 6 20 20| 22| 16| 22 18] 22 12| 22 9 1.1 1.3] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
@ 271 11 58 171(221] 212|210 195/208 170|212 128 14 5219| 1.0 1.0 1.0 1.1 1.0 10.6 1.0 10.6 1.0 1.3 1.0 1.7
Rovers- (Z) 25 5 10 17| 18| 17| 18 13| 18 13| 16 12 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Satellite- Z) 34 4 14 14| 18| 17| 17 9| 17 9| 17 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Storage- (;) 28 0 9 12| 12| 12| 12 10| 12 10 12 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Transport- (g) 103 10 32 59| 60| 60| 60 49| 60 49(60 54 1.0 1.0] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 623
Trucks-(z) 35 11 13 14| 16| 12| 15 15| 16 151 17 17 1.3 5.5 1.0 1.1 1.1 2.5 1.2 55 1.0 1.1 1.1 1.5 1.1 1.5
> (z) 225 30 78 116[124| 118 122 96| 123 96| 122 102 1.0 55 1.0 1.1 1.0 2.5 1.0 55 1.0 1.1 1.0 1.5 1.0 623
Optimal
CaveDiving-® 17 4 4 4 4 4 4 4 4 4 4 1.0 1.0| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.2
Fridge-® 24 1 6 10 10| 10 10(10 10| 10 10 1.0 1.0] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Miconic-® 150 0 25 85| 86| 83 79| 74 71| 75 51 1.1 2.1 1.0 1.0 1.0 1.0 1.0 22 1.0 22 1.0 1.3 1.0 1.3
Nurikabe-® 20 0 2 10 10| 10 9] 10 8| 10 6 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.3 1.0 1.3
Openstacks-® 30 0 1 15| 15| 15 15| 15 13| 15 15 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trucks-® 30 3 10 10| 10| 10 10| 10 10| 10 9 1.0 12| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
@ 271 8 48 134| 135|132 127|123 116|124 95 1.1 2.1 1.0 1.0 1.0 1.0 1.0 22 1.0 22 1.0 1.3 1.0 1.3
Rovers- (7 25 2 3 5 4 5 5 5 5 5 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
k
Satellite- (Z) 34 3 3 4 4 4 4 4 4 4 4 1.0 1.0] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Slorage-(;) 28 0 9 9 9 9 9 9 9 9 9 1.0 1.0| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Transpon»(z) 103 6 16 17\ 17| 17 17 17 17| 17 17 1.0 1.0] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trucks-(;: 35 7 8 9 8 9 9 9 8| 10 10 1.1 16| 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1
> (z) 225 18 39 44| 42| 44 44| 44 43| 45 45 1.0 1.6] 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1
Unsolvability

aners—(z) 28 5 5 5 5 7 5 5 6 8 7 8 13.9 2279| 1.0 1.0 1.0 1.0{ 570.9 9.3K| 128K 57M[12.8K 57M| 128K 5.7M
Satellile-(g) 36 4 4 4] 4 4 4 4 5 5 5 5 40 162 1.0 1.0 1.0 1.0 510.0 85.2M| 547.8 85.2M| 539.1 85.2M| 5.9K 85.2M
Storage- (;) 28 0 8 16| 16| 15| 16 10| 16 14| 16 11 1.0 1.1 1.0 1.0 1.0 1.0| 36.8 7.2K| 266.7 45.7K 50 102.0 42.1 72K
Transport-(z) 105 4 26 65| 66| 15| 66 47| 66 61| 68 63 1.0 1.1 1.0 1.0 1.0 1.0| 107.5 149M| 701.0 149M| 16.2 149M| 196.0 14.9M
Trucks-(:) 35 7 16 17| 17 7 17 15| 18 19| 19 19 12 20[1.0 1.1 1.0 1.0{49.1K 12.2M|192.2K 12.2M[49.2K 12.2M|192.2K 12.2M
> (Z) 232 20 59 107[108| 48| 108 81| 111 107(115 106 1.6 2279 1.0 1.1 1.0 1.0] 2769 852M| 1.8K 85.2M| 76.1 852M| 790.8 85.2M
R-NoMystery-T 150 0 4 52| 64| 136| 65 83| 67 84| 81 104(([310.9 7.2K| I.1K 83.2M|625.9K 94.4M| 1.1K 83.2M|627.4K 94.4M|96.6K 85.0M| 2.2M 94.4M
R-Rovers-T 150 0 4 71 8] 122 9 7 9 7 9 8(]1578.8 20.9K| 1.0 1.0| 101.7 43.4K 1.0 1.0| 485.8 227.4K 1.0 1.1] 54K 18.6M
R-TPP-T 25 0 0 8| 16| 20| 17 15| 17 14] 18 17(|[171.9 978.8| 2.7 59M 3.1 59M 27 59M 34 59M| 79.3 12.0M|111.1K 79.2M
T 325 0 8 67| 88| 278| 91 105| 93 105|108 129|(299.1 20.9K|197.1 83.2M| 40.8K 94.4M| 198.1 83.2M| 52.9K 94.4M| 9.4K 85.0M|811.3K 94.4M

Table 1: Coverage results are on the left, best in bold. Results for the compilations are shown for the base configurations only.
The configuration names are described in the text. The right hand side shows the ratio of visited states without ¢-prediction
(“~") by visited states with ¢-prediction. K stands for thousand, M for million. Larger values indicate more pruning. For each
method per-domain geometric mean and maximum values are shown. Values across different configurations are not directly

comparable due to a different instance basis.

> k of n selected connections in the road-map graph; and
“same-achiever avoidance” in Rovers and Satellite, forcing
each rover/satellite to not achieve > k of n selected goals.

We generated the benchmark instances as follows. The
size of the avoid conditions scales with (}), so to keep the
size under control we fixed k to 2 throughout. The n road-
map connections/goals are selected arbitrarily. For each base
instance, we determined the smallest value of n, denoted
Neo, for which no ¢-compliant plan exists. Where such an
noo Was found, we added the instance with avoid condition
for no, — 1 to the solvable benchmark set, and for n, to the
unsolvable benchmark set. If n., = 2, we only added the
instance for n = 2 to the unsolvable set.

Note that these avoid conditions are DNF formulas. We
acknowledge that this creates a bias in our benchmark set
to DNF avoid conditions. It appears natural though for an

avoid condition to take the form of a list of bad things that
should not happen, which is a DNF if each “bad thing” is
characterized conjunctively just like preconditions and the
goal.

The “-T” benchmarks. Finally, we designed a small set
of benchmarks using trap learning as an avoid-condition
generator. We considered unsolvable resource-constrained
benchmarks (Nakhost, Hoffmann, and Miiller 2012), where
trap learning empirically works best (Steinmetz and Hoff-
mann 2017a). For each benchmark instance, we use trap
learning to compute a complete trap, i.e., a DNF W, that
proves the instance unsolvable. For generating the avoid
condition, we then select the first 20% of the conjunctions
added to V..

The advantage of this scheme is that it allows systematic
benchmark generation; the disadvantage is that it is some-
what artificial, as the generated avoid conditions presumably
are quite different from what a human user would specify.
Our results on these benchmarks should thus be interpreted
with care, and are included merely as a showcase.

Results using Compilations

Consider Table 1. For the compilations, the results in the
different categories (satisficing, optimal, and unsolvability)
are qualitatively similar. Using additional dead-end detec-
tors (trap learning/abstraction) on top of the compilations
turned out to be detrimental in all cases, so we omit these
results.

Both I1™? and II'™ cause a significant overhead in
grounding for almost all domains. This was to be expected
for the (Z) and T part, as grounding in both compilations re-
quires the conversion of the CNF —¢ back into DNF, which
with the standard FD translator method is exponential in the
size of ¢. That said, the results are not much better on the
& benchmarks either. This is because, after the elimination
of existential quantifiers, the avoid conditions there turn into
big disjunctions too (reinforcing our view that DNF appears
to be a natural form of avoid condition). The results for II™¢
are significantly worse than for IT*™" because the former
needs to do the DNF conversion for every action, while the
automaton construction in II™% requires this only once.

The axiom compilation II? is designed to avoid these
problems (II¥ is missing in the optimal part since axioms
are not supported by the optimal planner configuration).
Nevertheless, planning performance does not benefit from
having the avoid condition encoded directly in the model.
II* is dominated almost universally by the simple ¢-pruning
baseline (pruning states that satisfy ¢).

Results using Prediction Methods

For the ¢-prediction methods, Table 1 also shows search
space size reduction statistics. We selected abstraction size
limits of 20k and 160k whose results are representative.

The trade-off between overhead and benefit generally be-
comes better the more the solution space is constrained.
In satisficing planning, coverage could be improved over
the base configuration in two domains. While search effort
could be reduced in other domains as well, this reduction
does not outweigh the incurred overhead. Hence our predic-
tion methods lag behind in terms of total coverage here. In
optimal planning, coverage improvements are still limited to
the same domains. However, as the overall search becomes
more expensive, investing time into the predictor computa-
tion becomes (relatively) less of an issue. The impact of the
prediction methods becomes clearest in proving unsolvabil-
ity, where pruning is most important. Here coverage results
are in favor of the prediction configurations in all but one
domain.

For both satisficing and optimal planning, the impact of
¢-prediction in terms of search reduction highly varies be-
tween domains. In the & and (Z) benchmarks, there are
many domains where the additional pruning has (almost) no
effect. The reason lies in the structure of these domains. In

Openstacks-®, avoiding ¢ is always possible if it is not sat-
isfied already. In the Nurikabe-® instances, it is almost not
possible to make an illegal group assignment. Similarly, in
most of the (Z) domains, there usually exist enough alterna-

tives to get around the avoid condition. In Rovers-(}) and

Satellite-(}.), all goals can usually be achieved by all the
agents so that restrictions on which agent is used for which
goal are not important. In the other (2) domains, the road
network is often highly connected, always leaving open an
alternative route.

The positive examples are CaveDiving-®, Miconic-®,
and Trucks in both variations. In these domains, wrong de-
cisions early on can make ¢ unavoidable. For example, in
CaveDiving-®, different divers must assist each other at dif-
ferent stages. Starting with a wrong diver can make this is
impossible. In Miconic-®, boarding passengers in the wrong
order can make it impossible to move the elevator later on
without violating some of the constraints.

In the unsolvable benchmarks, reasoning over ¢ is most
important, and the potential of ¢-prediction can be best seen.
Comparing ¢-trap learning vs. the abstractions, each ap-
proach shows good results in some domains. In the (Z) do-
mains, ¢-trap learning causes the larger overhead, while the
abstractions provide better predictions. The superior results
of ¢-trap learning in the T benchmarks must be treated with
caution due to the benchmark design, as the avoid conditions
are generated by a trap-learning process in the first place.

The results for unsolvable benchmarks also clearly show
that our modifications of CEGAR have the intended effect.
Both PA and SPA were often able to prove the initial state
unsolvable directly (no search needed). The ¢ implication
checks can slow down the abstraction construction though.
This is visible in the cases where ¢-prediction was not that
useful. Between the two CEGAR variants PA and SPA, there
is no clear winner. Prioritizing refinements based on ¢ works
better in some domains, focusing on abstract-transition flaws
in others. Overall SPA provides slightly better pruning capa-
bilities, but is also often more expensive in the construction.

Conclusion

State constraints are a natural modeling construct in plan-
ning, and has so far been considered mostly in temporal
form. Here we consider the non-temporal special case of
avoid conditions ¢ that must be false throughout the plan.
We have designed advanced methods predicting states un-
solvable due to ¢, and our experiments show that they can
pay off.

While our benchmarks are mostly designed having in
mind a human modeller who specifies the avoid condition
¢, an interesting avenue for future research is to instead
leverage this modeling construct to connect to offline do-
main analyses. Under-approximations of unsafe or danger-
ous regions of states naturally form avoid conditions. It may
then make sense to consider non-deterministic or probabilis-
tic planning, and to directly handle BDD representations of

o.

References

Bacchus, F.; and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2): 123-191.

Backstrom, C.; and Nebel, B. 1995. Complexity Results for
SAST Planning. Computational Intelligence 11(4): 625—
655.

Baier, J. A.; Bacchus, F.; and Mcllraith, S. A. 2007. A
Heuristic Search Approach to Planning with Temporally Ex-
tended Preferences. In Veloso, M. M., ed., Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI'07), 1808-1815. Hyderabad, India: Morgan
Kaufmann.

Baier, J. A.; Bacchus, F.; and Mcllraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6): 593—
618.

Baier, J. A.; and Mcllraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
Gil, Y.; and Mooney, R. J., eds., Proceedings of the 21st Na-
tional Conference of the American Association for Artificial
Intelligence (AAAI’06), 788-795. Boston, Massachusetts,
USA: AAAI Press.

De Giacomo, G.; De Masellis, R.; and Montali, M. 2014.
Reasoning on LTL on finite traces: Insensitivity to infinite-
ness. In Brodley, C. E.; and Stone, P., eds., Proceed-
ings of the 28th AAAI Conference on Artificial Intelligence
(AAAI’14), 1027-1033. Austin, Texas, USA: AAAI Press.

Dimopoulos, Y.; Gerevini, A.; Haslum, P.; and Saetti, A.
2006. The benchmark domains of the deterministic part of
IPC-5. In IPC 2006 planner abstracts, 14—19.

Dobherty, P.; and Kvarnstrom, J. 2001. TALplanner: A Tem-
poral Logic Based Planner. The Al Magazine 22(3): 95-102.

Edelkamp, S. 2001. Planning with Pattern Databases. In
Cesta, A.; and Borrajo, D., eds., Proceedings of the 6th Eu-
ropean Conference on Planning (ECP’01), 13-24. Springer-
Verlag.

Edelkamp, S. 2006. On the Compilation of Plan Constraints
and Preferences. In Long, D.; and Smith, S., eds., Pro-
ceedings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS’06), 374-377. Ambleside,
UK: AAAI Press.

Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence 173(5-6):
619-668.

Haslum, P.; and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS’00), 140-149. Breckenridge, CO: AAAI Press,
Menlo Park.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191-246.

Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, 1.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162—169.
AAALI Press.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & Shrink Abstraction: A Method for Generat-
ing Lower Bounds in Factored State Spaces. Journal of the
Association for Computing Machinery 61(3): 16:1-16:63.

Hoffmann, J.; and Edelkamp, S. 2005. The Deterministic
Part of IPC-4: An Overview. Journal of Artificial Intelli-
gence Research 24: 519-579.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253-302.

Lipovetzky, N.; Muise, C. J.; and Geffner, H. 2016. Traps,
Invariants, and Dead-Ends. In Coles, A.; Coles, A.;
Edelkamp, S.; Magazzeni, D.; and Sanner, S., eds., Pro-
ceedings of the 26th International Conference on Automated
Planning and Scheduling (ICAPS’16), 211-215. AAAI
Press.

Nakhost, H.; Hoffmann, J.; and Miiller, M. 2012. Resource-
Constrained Planning: A Monte Carlo Random Walk Ap-
proach. In Bonet, B.; McCluskey, L.; Silva, J. R
and Williams, B., eds., Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12), 181-189. AAAI Press.

Rintanen, J. 2008. Regression for Classical and Nonde-
terministic Planning. In Ghallab, M., ed., Proceedings
of the 18th European Conference on Artificial Intelligence
(ECAI'08), 568-572. Patras, Greece: Wiley.

Seipp, J.; and Helmert, M. 2013. Counterexample-guided
Cartesian Abstraction Refinement. In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of the
23rd International Conference on Automated Planning and
Scheduling (ICAPS’13),347-351. Rome, Italy: AAAI Press.

Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research 62: 535-5717.

Steinmetz, M.; and Hoffmann, J. 2017a. Search and Learn:
On Dead-End Detectors, the Traps they Set, and Trap Learn-
ing. In Sierra, C., ed., Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’'17),
4398-4404. AAAI Press/1IJCAL

Steinmetz, M.; and Hoffmann, J. 2017b. State Space
Search Nogood Learning: Online Refinement of Critical-
Path Dead-End Detectors in Planning. Artificial Intelligence
245: 1-37.

Steinmetz, M.; and Hoffmann, J. 2018. LP Heuristics over
Conjunctions: Compilation, Convergence, Nogood Learn-
ing. In Lang, J., ed., Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’18),
4837-4843.

Torres, J.; and Baier, J. A. 2015. Polynomial-time refor-
mulations of LTL temporally extended goals into final-state
goals. In Yang, Q., ed., Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’15),
1696-1703. AAAI Press/IJCAL

Proofs

Theorem 2. Let ¥ be a DNF formula over facts without
negation. (V] is a ¢-trap if it holds for all 1) € U that
(tl') (Y A G)= ¢, and (12') it holds for all a € A that
Progress() A\ —p,a) = (T V).

Proof. Let ¢» € W be arbitrary. If ¢ satisfies (t1’), then
clearly every goal state that satisfies 1) must satisfy ¢ as well.
In other words, the set of states [¢] satisfies (T1’). Given that
[¥] is simply the union over [¢)] of all its elements, it there-
fore follows that [¥] satisfies (T1).

The detailed definition of a general progression operator
is not required for showing that (t2’) implies (T2"). We refer
the reader to e.g. (Rintanen 2008). Just recall that Progress
guarantees for all states s, all actions a applicable in s, and
all ¢ that:

s E ¢1 = s[a] = Progress(¢1,a) (1)

Let s be any state that satisfies ¢ A —¢. Let a any action ap-
plicable in s. Then, s[a] = Progress(i) A —¢, a), and hence
if ¢ satisfies (t2'), then s[a] E (¥ V ¢). In other words,
every state that satisfies 1) either satisfies ¢ as well, or every
transition from this state must make true ¥ V ¢. It follows
that the set of states [¢)] satisfies (T2). Again, [¥] being the
union of all these [¢], we conclude that [¥] satisfies (T2').
O

Theorem 5. Let and U be DNF formulae over facts with-
out negation. Let a € A be any action. For every i) € U, it
holds that (12') Progress(Y A—=®, a) = (¥ V ®) is satisfied iff
one of (12'a) (Y Apre,) = @ or (12'b) Progress(¢, a) =(¥V
D) is satisfied.

Proof. That (t2’a) and (t2’b) imply (t2’) is obvious: if (t2'a)
is satisfied, then Progress(iy) A =®,a) becomes false, and
hence (t2’) holds trivially. Since ¢ A =® implies), it also
follows that Progress(y» A =®,a) implies Progress(,a).
Hence via transitivity of implication, (t2') is satisfied if (t2'b)
is satisfied.

To show the other direction, assume for contradiction that
(t2’) is satisfied but (t2’a) and (t2’b) are not. Let vg =
¥ A pre,, and note that Progress(v, a) = Progress(iyg, a).
Consider the following truth assignment to facts:

X(<v,d>) _ {T if <’U,d> € Yy

1 otherwise

Since (t2’a) is violated, there can be no conjunction in @
that is satisfied in . Let x’ be the truth assignment to facts
obtained by applying a on 1, i.e.,
T if (v,d) € eff,
X ((v,d)) =< L if (v,d) € eff ,and d # d’
x({v,d)) otherwise

Note that for every conjunction of facts ¢/, it holds that x’ |=
4" if and only if Progress(1, a) implies ¢’. Since x = 1 and
X | ¥ A—® as per our previous observation, it follows from
the definition of progression (see Equation 1) that (1) x' =
Progress(¢,a) and (2) X' | Progress(¢) A =®, a). Due to
(2) and the assumption that (t2”) is satisfied, there must exist
a conjunction 1’ in ¥ or ® that is satisfied in x’. Due to
(1), and according to our previous observation,)’ must then
be implied by Progress(1), a). This is in contradiction to the
assumption that (t2'b) is violated. We conclude that one of
(t2'a) or (t2'b) must be satisfied if (t2') is.

O

Theorem 3. Trap learning with the mentioned modifications
terminates eventually, and V remains a ¢-trap at all time.

Proof. The modified algorithm is depicted in Algorithm 3.

Algorithm 3 Computation of v, for a ®-trap update ¥’. 2 —
4 ensure that U’ satisfies (T2'); 5 — 7 take care of (T1’).

DY — Tforalls e S
while there are o5 and a s.t. (5 A pre,)# ® and
Progress(1)s,a) # U’ do
s < s A (U, s(v")) for some v’ & V(1))
end while
: forall ¢, s.t. (¥s AG) %A @ do
s < s A (v, s(v)) for some v € V(G) s.t. s(v) #
G(v)

end for

o =

A A

~

We first show that whenever a refinement of W is started,
it holds for the corresponding states S that ([¥] U S) is a
¢-trap. The refinement condition was left unchanged, i.e., a
refinement is initiated whenever search visited states S such
that (R1) (S N [¥]) = O, and (R2) all transitions leaving
S go into [¥]. We show below that ¥ always remains a ¢-
trap, provided that every refinement is seeded with a ¢-trap
as input. Given that [U] is a ¢-trap, (R2) immediately im-
plies that (S' U [¥]) satisfies (T2'). To show that (T1) is also

satisfied, note that S must be disjoint from [G] as well as
from [®]. The latter is guaranteed by (R1) and the initializa-
tion of ¥. S must be goal-disjoint because every goal state
encountered in search until the point of the refinement must
satisfy ® (which are not in 5’). Since S does not contain a
goal state, and [¥] must satisfy (T1’), it follows that their
union still satisfies (T1"). In summary, ([¥] U S) is a ¢-trap.

We finally show that Algorithm 3 terminates and correctly
returns a ¢-trap U’. As we have shown above, S never con-
tains a goal state. Therefore a variable as required in line 6
exists for every state in S. Moreover, adding the correspond-
ing fact to 15 makes the conjunction of ¢)5 and G to become
false, at which point (s A G) = ® holds trivially. Therefore
the overall loop must terminate eventually. Once terminated,
(t1") obviously holds for all 1.

If no variable requested in line 3 exists, then ¢ = s.
However, such 14 can never satisfy the loop condition. For

s = s, the progression operation just enumerates the tran-
sitions leaving s. As per (R2), every such transition must go
into [¥] or back into S, both are covered by [¥’]. The same
argument also explains why the overall while loop must ter-
minate eventually. Once terminated, Theorem 5 guarantees
that (t2") holds for all v,.

The bottom line is: if [¥] was a ¢-trap before the refine-
ment, S is such that (R1) and (R2) are satisfied, then [P] is
a ¢-trap after the refinement. Since W is initialized to ®, ¥
represents a ¢-trap initially. That S satisfies (R1) and (R2)
is guaranteed by the refinement caller. We conclude that ¥

remains a ¢-trap throughout the entire search period.
O

