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Abstract

In this paper, we propose a few-shot prompting001
method called CREDIT-SQL for the context-002
dependent text-to-SQL problem. CREDIT-003
SQL converts each question in a multi-turn004
dialogue into a self-contained question with005
a fixed few-shot prompt. Once a self-contained006
question is obtained, CREDIT-SQL converts007
it into an SQL query using a prompt made of008
in-context examples selected by diversity sam-009
pling and subsequent example voting. After ex-010
perimentations with multiple LLMs, CREDIT-011
SQL achieves 58.6% in terms of the exact set012
match without values on the dev set of CoSQL,013
which is the performance comparable to the014
state-of-the-art models for context-dependent015
text-to-SQL. We also argue that the example016
voting we introduced in CREDIT-SQL can017
serve as an efficient and effective way to miti-018
gate the instability of in-context example selec-019
tion in general.020

1 Introduction021

Information retrieval from structured knowledge022

sources is an NLP task widely applicable in many023

areas. Text-to-SQL is a promising approach to024

achieve this goal due to the popularity of SQL025

as an interface between the user and the database.026

Text-to-SQL systems have shown remarkable im-027

provements (Wang et al., 2020a,b; Lin et al., 2020;028

Cao et al., 2021; Scholak et al., 2021; Cai and029

Wan, 2020) along with the rapid advancements of030

sequence-to-sequence models including the infa-031

mous transformer model (Vaswani et al., 2017).032

The advantages of these advanced sequence-to-033

sequence models have been often utilized by fine-034

tuning pre-trained decoder-encoder models. How-035

ever, these advanced models become so large that036

they are called large language models (LLMs)037

which typically have parameter size ranges from a038

few tens of billion to a few hundreds of billion (Ye039

et al., 2023; OpenAI, 2023; Touvron et al., 2023a,b;040

Anil et al., 2023). Because of this large model size,041

it takes too much resource to fine-tune these large 042

language models on custom datasets. 043

To utilize the advantages of advanced sequence- 044

to-sequence models without investing full re- 045

sources for fine-tuning, in-context learning with 046

zero-shot prompts or few-shot prompts has become 047

popular recently. In the case of few-shot in-context 048

learning, a few in-context examples are listed in the 049

prompt along with a brief instruction, and the LLM 050

outputs the desired sequence as the response to the 051

input prompt. Although the limited context size of 052

available LLMs only allows a handful of in-context 053

examples to be included in each prompt, it has been 054

shown that strategic designs of prompts can per- 055

form as well as fine-tuned models in the tasks of 056

text-to-SQL (Pourreza and Rafiei, 2023; Nan et al., 057

2023; Dong et al., 2023; Gao et al., 2023). 058

Still, most in-context learning studies on text-to- 059

SQL tasks focus on the context-independent set- 060

ting where the system needs to answer a single 061

SQL query on the input of a single question. This 062

context-independent setting becomes particularly 063

inconvenient when one needs to develop conversa- 064

tional information retrieval systems where previous 065

questions or answers can implicitly appear in the 066

user’s later questions. 067

To address this problem, we propose a few-shot 068

prompting method called CREDIT-SQL1 in this 069

paper (See Figure 1, 2, and 3). CREDIT-SQL does 070

context-dependent question rephrasing to convert a 071

multi-turn text-to-SQL task on each dialogue into 072

a series of question-query pair text-to-SQL tasks. 073

Once all the questions are rephrased, a diversity- 074

sampled prompt is used to address the text-to-SQL 075

tasks. This prompt is composed of examples ob- 076

tained via multiple trials of diversity sampling and 077

subsequent example voting. Each example in the 078

prompt is represented as a pair of the rephrased 079

question and the regularized SQL query along with 080

1Context-dependent Regularized Examples from DIversity
sampling for Text-to-SQL.
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Figure 1: Illustration of overall question to SQL process of CREDIT-SQL. The details of the question rephrasing
process are illustrated in Figure 2, and the details of the example selection process are illustrated in Figure 3.

the database schema.081

We claim that our approach makes the following082

contributions. (1) To the best of our knowledge,083

we propose the first few-shot prompting approach084

to perform the dialogue state tracking task with085

systematically selected in-context examples out of086

the entire training data. (2) We experimented our087

approach with multiple open and closed-sourced088

LLMs, and we report the performance compara-089

ble to the state-of-the-art models in the dialogue090

state tracking task on the CoSQL dataset, which is091

ranked 1st in the execution accuracy without values092

and 4th in the exact set match without values on the093

CoSQL dev set among the models reported on the094

CoSQL leaderboard at the moment of writing. (3)095

We suggest a new method to mitigate the instabil-096

ity of in-context example selection in the few-shot097

prompting with LLM by introducing voting on col-098

lected examples.099

2 Related works100

2.1 Context-dependent text-to-SQL101

Most studies on text-to-SQL tasks focused on102

context-independent settings where a single ques-103

tion is transcribed into a single SQL query. To104

cope with the complicated scenarios where multi-105

ple tables are involved, utilizing graph structures106

to capture the relations between entities has been107

the most popular and successful method in text-to-108

SQL tasks recently (Bogin et al., 2019; Wang et al.,109

2020a,b; Lin et al., 2020; Cao et al., 2021; Scholak110

et al., 2021; Cai et al., 2021; Hui et al., 2022).111

Unlike its context-independent counterpart,112

context-dependent text-to-SQL tasks require encod-113

ing the context within the dialogue and exploiting114

this context in the SQL generation. Recently, nu-115

merous different approaches have been suggested116

to tackle this problem. Zhang et al. 2019 used turn117

attention to edit the SQL query of the previous turn118

to accommodate the question at the current turn. 119

Cai and Wan 2020 extends the graph structure for 120

the database schema to establish connections be- 121

tween neighboring turns in the dialogue. Wang et al. 122

2021 and Hui et al. 2021 suggested using a graph 123

structure state tracker to capture the context of the 124

dialogue at each turn, while Zheng et al. 2022 used 125

BERT to encode the history of the dialogue. Pan 126

et al. 2019, Chen et al. 2021, and Chai et al. 2023 127

rephrased the question at each turn reflecting the 128

context of the dialogue. Xiao et al. 2022 applied 129

question rephrasing recursively and introduced con- 130

sistency training to build one of the state-of-the-art 131

models at the time of writing. Other state-of-the-art 132

models used utterance dependency tracking with 133

weighted contrastive learning (Cai et al., 2022) or 134

integrating relational structure through the atten- 135

tion layer into the pre-trained models (Qi et al., 136

2022). 137

2.2 Prompting with large language models for 138

text-to-SQL 139

As in its non-prompting counterpart, most of the 140

efforts to perform text-to-SQL tasks focused on 141

context-independent text-to-SQL tasks. Pourreza 142

and Rafiei 2023 used different in-context exam- 143

ples for each difficulty of the question. Dong et al. 144

2023 achieved one of the best performance among 145

zero-shot prompting efforts. Beyond the arbitrary 146

selection of in-context examples, there have been 147

trials to choose in-context examples in a system- 148

atic manner. Liu et al. 2022 introduced question- 149

similarity based example selection using k-NN al- 150

gorithm. Nan et al. 2023 noticed that the diversity 151

of the in-context examples in a prompt is indeed 152

important, and suggested methods to balance the 153

similarity and the diversity of in-context examples 154

based on their ground-truth SQL queries. Gao et al. 155

2023 achieved the best performance on the leader- 156
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board of Spider (Yu et al., 2018) at the time of157

writing, with systematic in-context example selec-158

tion using both questions and SQL queries. Beyond159

the context-independent setting, Hu et al. 2022 ad-160

dressed context-dependent text-to-SQL tasks with161

few-shot prompting and zero-shot prompting, but162

systematic in-context example selection was still163

lacking.164

3 Methods165

3.1 Context-dependent question rephrasing166

Inspired by the success of question rephrasing ap-167

proaches (Pan et al., 2019; Chen et al., 2021; Chai168

et al., 2023; Xiao et al., 2022), we summarize the169

context of each dialogue into a single question170

with few-shot prompting at every turn. For the171

few-shot prompts for this question rephrasing step,172

we randomly sampled 20 examples out of train173

set of CoSQL dataset (Yu et al., 2019a), and the174

fixed prompt base we used for question rephras-175

ing is in Appendix A. In each multi-turn interac-176

tion, rephrased questions from previous turns are177

appended in the prompt to rephrase questions in fur-178

ther turns. The entire process of question rephras-179

ing is illustrated in Figure 2.180

Figure 2: Context-dependent question rephrasing pro-
cess. A prompt containing examples of multiple dia-
logues is used to rephrase each question into a rephrased
question starting with "Give me ...". Each rephrased
question is appended to the prompt for further question
rephrasing of later turns.

This question rephrasing process converts the181

context-dependent text-to-SQL task into the sim-182

ple text-to-SQL task which is better studied in the 183

literature than the context-dependent counterpart. 184

This process also regularizes the questions in a sim- 185

ilar format ("Give me ...") which can help to create 186

consistent in-context examples for the text-to-SQL 187

tasks. This helps LLM to focus more on transcrib- 188

ing relevant natural language expressions into SQL 189

expressions rather than on deciphering the meaning 190

of the questions written in different styles. 191

3.2 SQL query regularization 192

To increase the consistency of the in-context ex- 193

amples for the text-to-SQL tasks, we regularize 194

the SQL queries used in text-to-SQL prompts with 195

rule-based methods. This regularization includes 196

capitalization, spacing, unaliasing, table representa- 197

tion in each column reference, and so on. Examples 198

of affected SQL queries through this regularization 199

are shown in Table 1. For further details, we at- 200

tach the pseudocode implementation of the SQL 201

regularization in Appendix F. 202

Given SQL Regularized SQL
select * from tb_1; SELECT * FROM tb_1
SELECT T1.C1
FROM tb_1 as T1
JOIN tb_2 as T2
on T1.C3=T2.C4

SELECT tb_1.c1
FROM tb_1 JOIN tb_2
ON tb_1.c3 = tb_2.c4

select COUNT(*)
from tb_1
where c2=="A"

SELECT count ( * )
FROM tb_1
WHERE tb_1.c2 == ’A’

Table 1: Examples of affected SQL query expressions
through the rule-based SQL query regularization.

Similar to the question rephrasing, SQL query 203

regularization helps LLM to focus more on the 204

grammatical structure of SQL queries or links to 205

the database schema rather than on different expres- 206

sion styles of SQL queries. 207

3.3 Example selection for text-to-SQL 208

In the few-shot prompting with LLM, the perfor- 209

mance of the model is very sensitive to the choice 210

of in-context examples. In particular, strategic sam- 211

pling of examples out of the training data signif- 212

icantly outperforms the random choices of exam- 213

ples. A natural way to customize in-context ex- 214

amples for each question is to collect the closest 215

examples to the given question, often based on the 216

similarity in the embedding vector space (Liu et al., 217

2022). In the meanwhile, Nan et al. 2023 pointed 218
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out that keeping the diversity of the example pool219

can be more important than a mere collection of220

similar examples. As introduced in Nan et al. 2023,221

we adopt diversity sampling through the k-means222

clustering based on the vectorized SQL queries.223

Specifically, we vectorized all SQL queries in the224

CoSQL train set as presented in the pseudocode in225

Appendix G. Then we perform the clustering with226

k = N for the N-example prompt based on these227

vectors. In each cluster, we choose the example228

closest to the centroid in the SQL vector space. In229

case the number of resulting clusters Nc is smaller230

than N , we fill the rest of the examples based on231

the distance with previous examples. To be specific,232

among training data examples {e1, e2, · · · , eT }233

with SQL vectors {x1,x2, · · · ,xT}, nth selected234

example sn is235

sn = ein ,236

in = argmin
i

|xi − cn| for n ≤ Nc,237

in = argmax
i ̸∈{i1,··· ,in−1}

(
min
j<n

∣∣xi − xij

∣∣)238

for Nc < n ≤ N,239

where {c1, c2, · · · cNc} are the SQL vectors of240

cluster centroids.241

Since the k-means clustering is a non-242

deterministic algorithm that depends on the random243

initial positions of centroids, the selection result of244

examples varies depending on the choice of random245

seed. To mitigate this inconsistency of example se-246

lection, we adopt example voting. First, we collect247

N -example prompt through the k-means cluster-248

ing. We repeat this example collection M times,249

with a different random seed each time. Then we250

rank each example by its occurrence among these251

M different sets of examples. The entire example252

selection process is illustrated in Figure 3. With253

some parameter search (see Figure 4 and Figure254

5 for the search space), we obtained the best re-255

sult with N = 18 and M = 20. For the rest of256

the paper, CREDIT-SQL used in-context examples257

selected by the voting process with N = 18 and258

M = 20 otherwise noted. We show these selected259

in-context examples in Appendix B.260

3.4 Example demonstration261

In our few-shot prompt for text-to-SQL, we demon-262

strate selected in-context examples along with the263

database ID and the database schema including ta-264

ble names, column names, and foreign keys. A265

Figure 3: Example selection process using diversity
sampling and subsequent example voting. Centroids
obtained through the k-means clustering (k = N ) are
used to pick N examples. After repeating this selection
M times, aggregated in-context examples are voted by
their counts to finally choose N examples.

sample text-to-SQL prompt for the CREDIT-SQL 266

approach including the example demonstration is 267

in Appendix C. 268

4 Experiments 269

4.1 Dataset 270

The most popular benchmark for the text-to-SQL 271

task is Spider dataset (Yu et al., 2018), which is 272

a large-scale, complex, and cross-domain dataset 273

with 10k+ questions with annotated SQL queries 274

and covers 200 different databases across 138 do- 275

mains. SParC (Yu et al., 2019b) is a multi-turn 276

version of the Spider dataset which covers the 277

same sets of databases as Spider. CoSQL (Yu 278

et al., 2019a) is a dialogue version of Spider and 279

SParC, which includes about 3k dialogues with 280

10k+ annotated SQL queries over the same sets of 281

databases. CoSQL is different from SParC for it 282

contains turns that does not require immediate SQL 283

query response, such as clarification of the ques- 284

tion. This makes CoSQL a more suitable dataset 285

for the development of conversational systems for 286

information retrieval from structured knowledge 287

sources. Since CoSQL is the latest and most com- 288

plex context-dependent text-to-SQL dataset avail- 289

able at the moment of writing, we benchmark our 290
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approach with this dataset.291

4.2 Models292

Throughout the paper, we experimented with LLMs293

of Open AI serviced through Microsoft Azure2. Be-294

yond the Open AI models, we experimented with295

gemini-pro (Team et al., 2023) serviced through296

Google AI Python SDK3. To test other open-297

sourced models as well, we also experimented with298

SQLCoder-7B-24 and CodeLlama-13B (Roziere299

et al., 2023) using vLLM library (Kwon et al.,300

2023)5.301

In any experiment, we restricted the output size302

to 600 tokens to accommodate with the context size303

limitations. We also set the temperature to 0 for the304

consistency of the result.305

4.3 Evaluation metric306

To evaluate the performance of our approach, we307

use two following metrics as suggested for the SQL-308

grounded dialogue state tracking task in CoSQL309

challenge (Yu et al., 2019a):310

• Exact set match without values (EM): Mea-311

sures if the predicted SQL query and the312

ground truth SQL query are equivalent to each313

other, by comparing the equivalence of each314

component of the queries. When multiple par-315

allel items are compared, set equivalence is316

measured so that it does not prefer a particular317

ordering. It also masks literal/numeral values318

when comparing each component.319

• Execution accuracy with values (EX): Mea-320

sures if the both outputs of the predicted SQL321

query and the ground truth SQL query are322

equal to each other. To generate actual out-323

comes based on the database, it uses the values324

in each query as they are.325

The two accuracy metrics are evaluated at the ques-326

tion level (question match, QM) and at the interac-327

tion (dialogue) level (interaction match, IM).328

2https://learn.microsoft.com/en-us/azure/ai-
services/openai/concepts/models. We used OpenAI
Python API library (https://github.com/openai/openai-python)
for the experiments. This library is under Apache-2.0 license
and we complied to the license.

3https://github.com/google/generative-ai-python. This li-
brary is under Apache-2.0 license and we complied to the
license.

4https://huggingface.co/defog/sqlcoder-7b-2
5https://github.com/vllm-project/vllm. This library is un-

der Apache-2.0 license and we complied to the license.

4.4 Baseline approach: randomly sampled 329

dialogues 330

For comparison purposes, we establish a baseline 331

few-shot prompting method. It randomly samples 332

multiple dialogues and presents them along with 333

their database schema. The template of this base- 334

line prompt is in Appendix D. 335

4.5 Experiment results 336

We report the performances of our baseline ap- 337

proach and CREDIT-SQL on the CoSQL dataset 338

in Table 2, along with the performances of state-of- 339

the-art models. In the dev set, our CREDIT-SQL 340

method outperforms the baseline approach of few- 341

shot prompting using randomly sampled dialogues 342

by 8.7%p in EM for the question match while it out- 343

performs the baseline approach by 2.4%p in EX for 344

the question match. Our approach also shows com- 345

parable performance to the state-of-the-art models, 346

by the margin of 0.2%p ∼ 1.1%p in EM for the 347

question match on the dev set, and shows the best 348

EX for the question match on the dev set. At the 349

time of writing, our approach ranks 4th in EM-QM 350

and 1st in EX-QM on the CoSQL dev set among 351

the models reported on the CoSQL leaderboard. 352

5 Discussion 353

5.1 Effectiveness of SQL regularization and 354

diversity sampling 355

We conducted an ablation study to find out the ef- 356

fectiveness of each module of our CREDIT-SQL 357

approach. The study result is reported in Table 358

3. This study indicates that subtracting SQL reg- 359

ularization from the prompt drops the EM (EX) 360

for the question match by 0.6%p (0.2%p). When 361

the prompt with examples collected by diversity 362

sampling is replaced with a prompt with randomly 363

sampled examples, the EM (EX) for the question 364

match drops by 5.5%p (2.7%p). 365

5.2 Effectiveness of example voting 366

To study the effectiveness of example voting in 367

CREDIT-SQL, we investigated the performance 368

of different methods to aggregate multiple sets of 369

diversity-sampled examples with distinct random 370

seeds. In particular, we plot EM and EX for the 371

question match on the CoSQL dev set of those dif- 372

ferent methods versus the number of aggregated 373

sets of diversity-sampled examples in Fig 4. These 374

aggregation methods include: (1) the average of 375

each set’s performance, (2) the maximum of each 376
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Model
EM (%) EX (%)

QM IM QM IM
Dev Test Dev Test Dev Test Dev Test

STAR (Cai et al., 2022) 59.7 57.8 30.0 28.2 - - - -
CQR-SQL (Xiao et al., 2022) 58.5 58.3 31.1 27.4 - - - -
RASAT+PICARD (Qi et al., 2022) 58.8 55.7 27.0 26.5 67.0 66.3 39.6 37.4

Few-shot Prompting
Baseline, randomly sampled dialogues 49.9 - 21.6 - 65.0 - 33.2 -
CREDIT-SQL 58.6 - 25.8 - 68.6 - 36.5 -

Table 2: Results on the CoSQL dataset. Exact set match without values (EM) and execution accuracy with values
(EX) are presented for both the question match (QM) and the interaction match (IM). For the few-shot prompting
methods, we present the results of the baseline approach (randomly sampled dialogues) as well as the results of
CREDIT-SQL, both with the average performance of 5 repeated experiments on gpt-3.5-turbo-0301. Results for
other models are as reported in the literature for comparison.

Model EM (%) EX (%)
QM IM QM IM

CREDIT-SQL 58.6 25.8 68.6 36.5
w/o SQL Reg. 58.0 24.9 68.4 36.2
w/o Div. Prompt 53.1 20.1 65.9 33.1

Table 3: Ablation studies for CREDIT-SQL on the
CoSQL Dev set. We used gpt-3.5-turbo-0301 and
used 18 examples out of 20 votes for the text-to-SQL.
The results without SQL regularization and the results
without diversity prompt are presented. Each experi-
ment is repeated 5 times and the average performance
is reported.

set’s performance, (3) the performance of EM-377

based consistency voting from each set’s SQL re-378

sults, and (4) the performance of the prompt made379

of voted examples among the all examples of the380

given sets. The last method is adopted for our381

CREDIT-SQL. As illustrated in Fig 4, the voted-382

example prompt outperforms either the average or383

the maximum of the individual results of distinct384

diversity-sampled prompts for the number of sets385

around 12 or more. Moreover, our proposed voted-386

example prompt performs similar to or better than387

the popular method of voting on SQL results, for388

the number of sets around 12 or more. Further-389

more, the voted-example prompt is more efficient390

in the sense that it only uses a single inference391

of text-to-SQL per each SQL query regardless of392

the aggregation number M , while the consistency393

voting requires M inferences to aggregate M sets394

of examples. This may suggest a new possibility395

for efficiently mitigating the instability of example396

selection in the few-shot prompting with LLM in397

general.398

Clustering Method EM (%) EX (%)
QM IM QM IM

k-means 58.6 25.8 68.6 36.5
Agglomerative 58.1 26.3 68.2 36.5
Spectral 56.3 23.5 67.7 34.5

Table 4: Comparison of different clustering methods.
We used gpt-3.5-turbo-0301 and used 18 examples
out of 20 votes for the text-to-SQL. Agglomerative clus-
tering method here used Ward linkage, and spectral
method used k-means to cluster the spectrum.

5.3 Effects of number of examples in 399

text-to-SQL prompt 400

We investigated the effects of number of examples 401

in text-to-SQL prompt in the performance of the 402

model in Fig 5. Due to the limited context size, we 403

could not experiment number of examples beyond 404

21. Within the number of examples we investi- 405

gated, there was no clear correlation between the 406

performance of the model and the number of ex- 407

amples used. We opted best number of examples 408

within our hyperparameter search. 409

5.4 Effects of different clustering methods 410

We investigated the effects of different clustering 411

methods in text-to-SQL prompt in the performance 412

of the model in Table 4. While we opted k-means 413

for the CREDIT-SQL, agglomerative clustering 414

with Ward linkage (Ward Jr, 1963) also showed 415

similar performances on the CoSQL dev set. The 416

spectral clustering (Shi, 2003) was behind the other 417

two clustering methods in the performances on the 418

same dev set. 419
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LLM Number of
examples

Completion
method

EM (%) EX (%)
QM IM QM IM

gpt-3.5-turbo-0301 18 Text 58.6 25.8 68.6 36.5
gpt-3.5-turbo-0301 12 Text 57.3 24.6 67.4 35.2
gpt-3.5-turbo-instruct 12 Text 54.9 23.9 65.7 32.4
gpt-3.5-turbo-16k 18 Chat 51.7 19.8 63.3 29.7
gpt-3.5-turbo-16k 50 Chat 51.5 18.8 64.1 30.4
gpt-4-turbo 18 Chat 54.0 21.5 65.2 32.1
gemini-pro 18 Text 51.3 16.4 63.9 29.0
SQLCoder-7B-2 18 Text 33.1 6.8 46.1 15.4
CodeLlama-13B 18 Text 28.6 5.8 34.3 8.9

Table 5: Performances of CREDIT-SQL on the CoSQL dev set, with different LLMs. We present the number of
text-to-SQL examples as well as the completion method used for each experiment. For the chat completion method,
we input the entire few-shot prompt as a system message.

5.5 Performance analysis by question420

difficulty421

CoSQL provides the difficulty of each question422

based on the components of the golden SQL query423

for that question. Here we analyze the perfor-424

mance of the best-performing CREDIT-SQL on425

the CoSQL dev set by the question difficulty (Fig-426

ure 6). As anticipated, both the execution accuracy427

and the exact set match decreases as the question428

difficulty increases.429

5.6 Performances with different LLMs430

To determine the LLM model to be used for431

the CREDIT-SQL, we evaluated the CoSQL dev432

set with different LLMs (Table 5). Within the433

OpenAI models (gpt-...), gpt-3.5-turbo-0301434

performed the best while we observed that the435

text completion method outperforms the chat436

completion method significantly. Other mod-437

els beyond OpenAI models were not perform-438

ing as well as other OpenAI models while439

gemini-pro showed the best performance among440

them. SQLCoder-7B-2, which is a fine-tuned441

CodeLlama model to the text-to-SQL task, per-442

formed better than the larger size CodeLlama443

model, CodeLlama-13B. Although we tested only444

7B model for the resource limitation, the bench-445

mark on the model card of SQLCoder-7B-26 indi-446

cates that the performance gain of using a larger447

model might be limited to a few percent points.448

5.7 Error analysis449

To understand the cases in which CREDIT-SQL450

does not perform well, we performed an error anal-451

6https://huggingface.co/defog/sqlcoder-7b-2

ysis on the results of the best-performing CREDIT- 452

SQL. In particular, we present questions with the 453

incorrect exact set match at the question match 454

level in Figure 7. To categorize the errors, we 455

used the keyword analysis provided by the official 456

evaluation code7 for the CoSQL dataset (Zhong 457

et al., 2020). To understand how much the exact 458

set match errors and the execution accuracy errors 459

are correlated, we also present the pie chart that 460

describes the correlation of those two metrics in 461

Figure 7. Further case studies of errors can be 462

found in Appendix E. 463

5.8 Limitations and future works 464

Since our work focused on the CoSQL dataset, the 465

prompts we suggest in this paper might have dif- 466

ficulty in generalizing to the databases and SQL 467

queries outside the CoSQL dataset. Indeed, test- 468

ing the generalizability of CREDIT-SQL to other 469

context-dependent SQL datasets would be an inter- 470

esting subject for future research. While we tested 471

several other LLMs beyond OpenAI models, one 472

may test the performance of CRDEIT-SQL on a fur- 473

ther variety of the latest LLMs for future research. 474

Our ablation study on the number of text-to-SQL 475

examples was rather inconclusive due to the limited 476

context size, so an investigation of the effects of 477

the number of examples on a LLM with far larger 478

context size can provide a good insight into our 479

approach. 480

6 Conclusion 481

In this paper, we propose a few-shot prompting 482

method called CREDIT-SQL which is the first few- 483

7https://github.com/taoyds/test-suite-sql-eval
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Figure 4: Comparison of different methods of aggregat-
ing multiple diversity-sampled sets of examples gener-
ated with distinct random seeds. We present EM-QM
and EX-QM on the CoSQL dev set for comparison.
For this study, We used gpt-3.5-turbo-0301 and used
18 examples out of 20 votes for the text-to-SQL. Blue
solid line: Average of the results generated by prompts
with distinct random seeds, up to the given number of
prompts. Blue shades: The minimum to the maximum
range for the results generated by prompts with distinct
random seeds, up to the given number of prompts. Or-
ange: The EM-based consistency voting results on the
SQL results of the given number of sets. Green: The
result of the prompt made of voted examples out of all
examples from the given number of prompts. Average
performance over 5 repetitions is reported along with
the error bar size of the standard deviation.

shot prompting approach to perform the dialogue484

state tracking task with systematically selected in-485

context examples out of the entire training data.486

CREDIT-SQL splits each dialogue state tracking487

task into multiple question-query pair text-to-SQL488

tasks by question rephrasing and utilizes the di-489

versity sampling and subsequent in-context exam-490

ple voting to prepare the few-shot prompts for the491

text-to-SQL tasks. Experiments demonstrate that492

CREDIT-SQL achieves a performance comparable493

to the state-of-the-art models. Also, the technique494

of example voting used in CREDIT-SQL suggests a495

new way to mitigate the instability of in-context ex-496

ample selection in the generic few-shot prompting497

setting.498

Figure 5: EM-QM and EX-QM on the CoSQL dev
set for the different number of examples. We used
gpt-3.5-turbo-0301 and used 18 examples out of 20
votes for the text-to-SQL.

Figure 6: Performance of CREDIT-SQL on the CoSQL
dev set by the question difficulty. We present the EM-
QM and EX-QM along with 4 difficulty categories: easy,
medium, hard, and extra.

Figure 7: Left: Error analysis of CREDIT-SQL on
the exact set match errors at the question match level.
Here we present the mismatch percentage for each cat-
egory of SQL query keywords. Here IUEN stands for
IN, UNION, EXCEPT, or NOT IN. Since each incor-
rect SQL query may contain multiple mismatches, mis-
match percentages for different categories are not dis-
joint. Right: Correlation of EM and EX, evaluated on
the CoSQL dev set at the question match level.
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A Question Rephrasing Prompt Base813

For the question rephrasing prompt, we randomly814

sampled 20 examples from the CoSQL training815

data. Each question in the sampled examples is816

manually rephrased so that the rephrased question817

starts with "Give me ..." and the question is818

self-contained without referring to any previous819

context. Following is the question rephrasing820

prompt base we used for CREDIT-SQL:821

————————————————————822

### Make sure the rephrased questions do not need823

any implicit information of the previous dialogue.824

825

Database: department_store826

Q1: List the name of all suppliers in alphabetical827

order of their addresses.828

A1: Okay. I rephrased your question as "Give me829

the names of all suppliers, ordered alphabetically830

by their addresses."831

Q2: And their phone numbers?832

A2: Okay. I rephrased your question as "Give833

me the phone numbers of all suppliers, ordered834

alphabetically by their addresses."835

Q3: What states is Tesco located in?836

A3: do you mean the address id or the address837

details?838

Q4: The address details.839

A4: Okay. I rephrased your question as "Give me840

the address details of Tesco."841

Q5: How about Lidl?842

A5: Okay. I rephrased your question as "Give me843

the address details of Lidl."844

845

Database: theme_gallery846

Q1: Show the average ticket prices for exhibitions847

for all years before 2009?848

A1: Okay. I rephrased your question as "Give me849

the average ticket price of all exhibitions whose850

year before 2009."851

Q2: Show minimum ticket prices for exhibitions852

for all years before 2009?853

A2: Okay. I rephrased your question as "Give me854

the minimum ticket price of all exhibitions whose855

year before 2009."856

Q3: Show maximum ticket prices for exhibitions857

for all years before 2009?858

A3: Okay. I rephrased your question as "Give me859

the maximum ticket price of all exhibitions whose860

year before 2009."861

Q4: Show average ticket price for exhibitions for862

year 2005?863

A4: Okay. I rephrased your question as "Give me 864

the average ticket price of all exhibitions whose 865

year is 2005." 866

Q5: Show average ticket price for exhibitions for 867

all years before 2006? 868

A5: Okay. I rephrased your question as "Give me 869

the average ticket price of all exhibitions whose 870

year before 2006." 871

872

Database: apartment_rentals 873

Q1: How many bathroom count those building 809 874

has? 875

A1: The total number of bathrooms building 809 876

has is NULL. 877

Q2: How about building 808? 878

A2: Okay. I rephrased your question as "Give me 879

the total number of bathroom count of all building 880

809." 881

Q3: How about the total number of rooms it has? 882

A3: Okay. I rephrased your question as "Give me 883

the total number of rooms of all building 809." 884

885

Database: wine_1 886

Q1: Which wine has the highest price? 887

A1: Okay. I rephrased your question as "Give me 888

the wine with the highest price." 889

Q2: Which wine has the highest score? 890

A2: Okay. I rephrased your question as "Give me 891

the wine with the highest score." 892

Q3: Which wine has the most cases available? 893

A3: Okay. I rephrased your question as "Give me 894

the wine with the most cases available." 895

Q4: How about winery with the least cases? 896

A4: Okay. I rephrased your question as "Give me 897

the winery with the least cases." 898

899

Database: dorm_1 900

Q1: How many students live in each dorm? 901

A1: Okay. I rephrased your question as "Give me 902

the total number of students of each dorm." 903

Q2: What is the average age of the students living 904

in each dorm? 905

A2: Okay. I rephrased your question as "Give me 906

the average number of students of each dorm." 907

908

Database: roller_coaster 909

Q1: what is the highest length of coaster 910

A1: Okay. I rephrased your question as "Give me 911

the highest length of all costers." 912

Q2: which roller coaster are top speed 913

12



A2: Okay. I rephrased your question as "Give me914

the roller coaster with highest speed."915

Q3: what is the height of Boardwalk Bullet916

A3: Okay. I rephrased your question as "Give me917

the height of Boardwalk Bullet."918

919

Database: entrepreneur920

Q1: What is the largest weight that appears in the921

people table?922

A1: Okay. I rephrased your question as "Give me923

the maximum weight of all people."924

Q2: Can you add the people id associated with that925

weight into the table?926

A2: Okay. I rephrased your question as "Give me927

the maximum weight of all people and the people928

id of that person."929

Q3: Can you also add the name associated with930

that people id into the table?931

A3: Okay. I rephrased your question as "Give me932

the maximum weight of all people and the people933

id, name of that person."934

935

Database: customers_campaigns_ecommerce936

Q1: Can you tell me the highest number of mail-937

shots for the customers?938

A1: Okay. I rephrased your question as "Give me939

the highest number of mailshots for the customers."940

Q2: What about the highest mailshot id number?941

A2: Okay. I rephrased your question as "Give me942

the mailshot id number of mailshot with the highest943

number of mailshots."944

Q3: What is the customer id for that mailshot id?945

A3: Okay. I rephrased your question as "Give946

me the customer id number of mailshot with the947

highest number of mailshots."948

Q4: How many mailshots does customer id 1 have?949

A4: Okay. I rephrased your question as "Give me950

the total number of mailshots of customer id 1."951

Q5: What is the name of customer id 1?952

A5: Okay. I rephrased your question as "Give me953

the name of customer id 1."954

Q6: What is the amount of mailshots that Wendell955

has?956

A6: Okay. I rephrased your question as "Give me957

the total number of mailshots of Wendell."958

959

Database: solvency_ii960

Q1: What is the most common type code of all the961

products?962

A1: Okay. I rephrased your question as "Give me963

the type code of all products with the maximum964

number of type code." 965

Q2: What are the product names of all products 966

with the type code "Food"? 967

A2: Okay. I rephrased your question as "Give me 968

the product names of all products with the type 969

code "Food"." 970

Q3: What are the prices of those? 971

A3: Okay. I rephrased your question as "Give 972

me the prices of all products with the type code 973

"Food"." 974

Q4: What are the names and prices of all products 975

with the type code books? 976

A4: Okay. I rephrased your question as "Give me 977

the names and prices of all products with the type 978

code books." 979

Q5: What are the name and type code of the prod- 980

uct with the highest price? 981

A5: Okay. I rephrased your question as "Give me 982

the name and type code of product with the highest 983

price." 984

Q6: Can you list all product names and their cor- 985

responding type codes of the products with prices 986

below the average price? 987

A6: Okay. I rephrased your question as "Give 988

me the names and product codes of all products 989

with prices below the average price of all products." 990

991

Database: student_assessment 992

Q1: what is the course id of English course? 993

A1: Okay. I rephrased your question as "Give me 994

the course id of English course." 995

Q2: name the student ids who attend the statastic 996

course?in order of attendance date 997

A2: Okay. I rephrased your question as "Give 998

me the student ids of all students who attend the 999

statastic course, ordered by the attendence date." 1000

Q3: what is the date of attendance of the student is 1001

121? 1002

A3: the date of attendance of the student with id 1003

121 is 2012-04-09 11:44:34. 1004

Q4: which student id attend english and french 1005

both course? 1006

A4: Okay. I rephrased your question as "Give me 1007

the student ids of all students who attend both 1008

courses of English and French." 1009

1010

Database: chinook_1 1011

Q1: what are the durations of the longest tracts? 1012

A1: Okay. I rephrased your question as "Give me 1013

the durations of the longest tracts." 1014

Q2: what are the shortest tracks? 1015
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A2: Okay. I rephrased your question as "Give me1016

the durations of the shortest tracks."1017

Q3: How many composer are there?1018

A3: Okay. I rephrased your question as "Give me1019

the number of composers."1020

1021

Database: activity_11022

Q1: Hello, what are the names of the faculty mem-1023

bers who don’t participate in any activity?1024

A1: Okay. I rephrased your question as "Give1025

me the names of all faculty members who do not1026

participate in any activity."1027

Q2: Which faculty members participate in activi-1028

ties?1029

A2: Okay. I rephrased your question as "Give me1030

the names of all faculty members.who participate1031

in any activity."1032

Q3: What activities do Michael Goodrich and Ger-1033

ald Masson participate in?1034

A3: Okay. I rephrased your question as "Give me1035

the activities that both of Michael Goodrich and1036

Gerald Masson participate in."1037

Q4: In total, how many faculty members are there?1038

A4: Okay. I rephrased your question as "Give me1039

the total numbe of faculty members."1040

1041

Database: product_catalog1042

Q1: what are the names of all catalogs1043

A1: Okay. I rephrased your question as "Give me1044

the names of all catalogs."1045

Q2: list the publication dates for all catalogs1046

A2: Okay. I rephrased your question as "Give me1047

the publication dates of all catalogs."1048

Q3: list the catalogs that have level number greater1049

than 51050

A3: Do you want catalog name or id?1051

Q4: id1052

A4: Okay. I rephrased your question as "Give me1053

the catalog id of catalogs with level number greater1054

than 5."1055

1056

Database: hr_11057

Q1: Show me all the employees in the same depart-1058

ment as Clara.1059

A1: Here is all the information of all the employees1060

in the same department as the employee with a first1061

name Clara.1062

Q2: Can you show me their hire dates?1063

A2: Okay. I rephrased your question as "Give me1064

the hire dates of all employees with department1065

same as the department of Clara."1066

Q3: What is their average salary? 1067

A3: Okay. I rephrased your question as "Give 1068

me the average salary of all employees with 1069

department same as the department of Clara." 1070

1071

Database: store_product 1072

Q1: Please list the headquarters of the store that is 1073

called Blackville? 1074

A1: Okay. I rephrased your question as "Give 1075

me the headquarters of all stores with name 1076

Blackville." 1077

Q2: What is the population of that city? 1078

A2: Okay. I rephrased your question as "Give me 1079

the population of all cities where headquarters of 1080

all stores with name Blackville are located." 1081

Q3: What is the name of the store in the city with 1082

the greatest population? 1083

A3: Okay. I rephrased your question as "Give me 1084

the name of the store in the city with the greatest 1085

population." 1086

1087

Database: school_bus 1088

Q1: How many drivers are there? 1089

A1: Okay. I rephrased your question as "Give me 1090

the total number of all drivers." 1091

Q2: What is the average age of your drivers? 1092

A2: Okay. I rephrased your question as "Give me 1093

the average age of all drivers." 1094

1095

Database: customers_and_addresses 1096

Q1: Can you give me a list of all products? 1097

A1: Okay. I rephrased your question as "Give me 1098

the all products." 1099

Q2: Could you order them by order quantity? 1100

A2: From small to large? 1101

Q3: large to small 1102

A3: Okay. I rephrased your question as "Give 1103

me the all products, ordered by order quantity in 1104

descending order." 1105

1106

Database: game_1 1107

Q1: Please show me the ids of the students who 1108

play video games and play sports? 1109

A1: Okay. I rephrased your question as "Give 1110

me the ids of all students who play both of video 1111

games and sports." 1112

1113

Database: protein_institute 1114

Q1: show the institute type with lowest number of 1115

institutions 1116

A1: Okay. I rephrased your question as "Give 1117
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me the institute type with the lowest number of1118

institutions."1119

Q2: show the institute type with highest number of1120

institutions1121

A2: Okay. I rephrased your question as "Give1122

me the institute type with the highest number of1123

institutions."1124

Q3: which university is founded first1125

A3: Okay. I rephrased your question as "Give1126

me the university with the earliest foundation date."1127

1128

Database: formula_11129

Q1: list the forename of all races1130

A1: Okay. I rephrased your question as "Give me1131

the forenames of all races."1132

Q2: what is the forename of the race that occurred1133

most recently?1134

A2: Okay. I rephrased your question as "Give me1135

the forename of the race with the latest occurance1136

date."1137

Q3: what is its code?1138

A3: Do you mean circuit id?1139

Q4: yes1140

A4: Okay. I rephrased your question as "Give me1141

the circuit id of the race with the latest occurance1142

date."1143

B In-context Examples Selected via1144

Voting for CREDIT-SQL Text-to-SQL1145

Prompt1146

We present the 18 voted examples we used for the1147

text-to-SQL prompt of our CREDIT-SQL approach1148

in Table 6. We performed k-means clustering with1149

k = 18 and voted examples collected from 20 trials1150

of clustering with distinct random seeds.1151

C Sample Text-to-SQL Prompt for1152

CREDIT-SQL1153

Following is a sample text-to-SQL prompt for1154

CREDIT-SQL in the case of N = 2:1155

————————————————————1156

# Generate the SQL query for each question about1157

the given database schema.1158

1159

Database: party_host1160

Table host, columns = [*, host_id, name, national-1161

ity, age]1162

Table party, columns = [*, party_id, party_theme,1163

location, first_year, last_year, number_of_hosts]1164

Table party_host, columns = [*, party_id,1165

host_id, is_main_in_charge] Foreign_keys1166

= [party_host.party_id = party.party_id, 1167

party_host.host_id = host.host_id] 1168

Q: Give me the names of all nations with hosts 1169

younger than 35. 1170

SQL: SELECT DISTINCT host.nationality FROM 1171

host WHERE host.age < 35 1172

1173

Database: company_1 1174

Table department, columns = [*, name, number, 1175

mgr_ssn, mgr_start_date] 1176

Table dependent, columns = [*, essn, depen- 1177

dent_name, sex, bdate, relationship] 1178

Table dept_locations, columns = [*, number, loca- 1179

tion] 1180

Table employee, columns = [*, fname, minit, lname, 1181

ssn, bdate, address, sex, salary, super_ssn, dno] 1182

Table project, columns = [*, pname, number, loca- 1183

tion, dnum] 1184

Table works_on, columns = [*, essn, pno, hours] 1185

Foreign_keys = [] 1186

Q: Give me the total number of employees with 1187

salary lower than 50000. 1188

SQL: SELECT count ( * ) FROM employee 1189

WHERE employee.salary < 50000 1190

D Sample Prompt for the Baseline 1191

Approach 1192

Following is a sample prompt for the baseline ap- 1193

proach with 2 dialogues: 1194

———————————————————— 1195

# Generate the SQL query for each question about 1196

the given database schema. 1197

1198

Database: inn_1 1199

Table reservations, columns = [*, code, room, 1200

check-in, checkout, rate, lastname, firstname, 1201

adults, kids] 1202

Table rooms, columns = [*, roomid, roomname, 1203

beds, bedtype, maxoccupancy, baseprice, decor] 1204

Foreign_keys = [reservations.room = 1205

rooms.roomid] 1206

Q: which rooms have a king bed? 1207

A: SQL query you requested is [SELECT * FROM 1208

Rooms WHERE bedtype = ’King’] 1209

Q: what are the decor of those rooms? 1210

A: SQL query you requested is [SELECT distinct 1211

decor FROM Rooms WHERE bedtype = ’King’] 1212

Q: show me the names and the decor of the rooms 1213

that have a king bed 1214

A: SQL query you requested is [SELECT room- 1215

Name, decor FROM Rooms WHERE bedtype = 1216
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’King’]1217

Q: show me the price of the rooms also1218

A: SQL query you requested is [SELECT room-1219

Name, decor, basePrice FROM Rooms WHERE1220

bedtype = ’King’]1221

Q: now sort the list by price1222

A: SQL query you requested is [SELECT room-1223

Name, decor, basePrice FROM Rooms WHERE1224

bedtype = ’King’ order by basePrice]1225

1226

Database: restaurant_11227

Table restaurant, columns = [*, resid, resname, ad-1228

dress, rating]1229

Table restaurant_type, columns = [*, restypeid,1230

restypename, restypedescription]1231

Table student, columns = [*, stupid, lname, fname,1232

age, sex, major, advisor, city_code]1233

Table type_of_restaurant, columns = [*, resid,1234

restypeid]1235

Table visits_restaurant, columns = [*, stupid, resid,1236

time, spent]1237

Foreign_keys = [type_of_restaurant.resid =1238

restaurant.resid, type_of_restaurant.restypeid =1239

restaurant_type.restypeid, visits_restaurant.stuid1240

= student.stuid, visits_restaurant.resid = restau-1241

rant.resid]1242

Q: Which city code of Smith?1243

Q: Is Smith first name or last name?1244

Q: first name1245

A: SQL query you requested is [SELECT city_code1246

from Student where fname = "Smith"]1247

Q: What age of last name Kim?1248

A: SQL query you requested is [SELECT age from1249

Student where lname = "Kim"]1250

Q: What are the student id of city code WAS?1251

A: SQL query you requested is [SELECT stuid1252

from Student where city_code = "WAS"]1253

Q: Which major has least number of students? List1254

the major and the number of students.1255

A: SQL query you requested is [SELECT Major1256

, count ( * ) FROM Student GROUP BY Major1257

ORDER BY count ( Major ) ASC LIMIT 1]1258

E Error analysis: case studies1259

To understand types of errors CREDIT-SQL is gen-1260

erating, we perform case studies on the errors from1261

the evaluation results on the CoSQL dev set. In par-1262

ticular, we focus on examples from hard difficulty1263

and extra difficulty which the model is most strug-1264

gling with (Figure 6). In the following examples,1265

’DB’ indicates the database id, ’RQ’ indicates the1266

rephrased question by CREDIT-SQL, ’G’ indicates 1267

the golden SQL query, ’P’ indicates the predicted 1268

SQL query by CREDIT-SQL. 1269

Example 1
DB: dog_kennel
RQ: Give me the first names of all

professionals or owners.
G: SELECT first_name FROM Professionals UNION

SELECT first_name FROM Owners
P: SELECT owners.first_name FROM owners UNION

SELECT professionals.first_name FROM
professionals

EM: False, EX: True

In Example 1, we can see a typical case where the 1270

exact match fails while the execution results are 1271

identical. In this particular case, this happens be- 1272

cause the order of two tables (professionals and 1273

owners) is not preserved in the predicted SQL 1274

query, though there is no semantical difference. 1275

Example 2
DB: battle_death
RQ: Give me the names of all battles with no

ships lost in the English Channel.
G: SELECT name FROM battle EXCEPT SELECT T1.

name FROM battle AS T1 JOIN ship AS T2 ON
T1.id = T2.lost_in_battle WHERE T2.location
= 'English Channel'

P: SELECT battle.name FROM battle JOIN ship ON
battle.id = ship.lost_in_battle WHERE ship.
id IS NULL AND ship.location = 'English
Channel'

EM: False, EX: False

As demonstrated in Example 2, CREDIT-SQL pre- 1276

dictions on questions involving the exclusion of 1277

certain groups of data often include IS NULL, but 1278

many such attempts incorrectly lead to the empty 1279

results. 1280

Example 3
DB: dog_kennel
RQ: Give me the average age of all dogs that

have gone through any treatment.
G: SELECT avg ( age ) FROM Dogs WHERE dog_id IN

( SELECT dog_id FROM Treatments )
P: SELECT avg ( dogs.age ) FROM dogs JOIN

treatments ON dogs.dog_id = treatments.
dog_id

EM: False, EX: False

The prediction in Example 3 could generate the 1281

correct execution result if the dog_id column was 1282

unique in both of dogs and treatments tables. 1283

However, this was not the case for the treatments 1284

table, and therefore the average age evaluated from 1285

the prediction in Example 3 counts dogs received 1286

multiple treatments excessively. 1287
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Example 4
DB: student_transcripts_tracking
RQ: Give me the name of the course with the

least number of students of enrollments.
G: SELECT T1.course_name FROM Courses AS T1

JOIN Student_Enrolment_Courses AS T2 ON T1.
course_id = T2.course_id GROUP BY T1.
course_name ORDER BY count ( * ) LIMIT 1

P: SELECT courses.course_name FROM courses JOIN
student_enrolment_courses ON courses.

course_id = student_enrolment_courses.
course_id GROUP BY courses.course_id ORDER
BY count ( * ) ASC LIMIT 1

EM: False, EX: False

The prediction in Example 4 indeed generates the1288

execution result that the question asked. The prob-1289

lem in this case is that there are multiple courses1290

with the least number of enrolled students, and1291

only one of them is chosen by the column used1292

for GROUP BY. Both course_id and course_name1293

are unique in the courses table and therefore they1294

are all acceptable columns, though they generate1295

different execution results in this example.1296

Example 5
DB: car_1
RQ: Give me the names of all countries in

Europe with at least 3 car manufacturers.
G: SELECT T1.CountryName FROM COUNTRIES AS T1

JOIN CONTINENTS AS T2 ON T1.Continent = T2.
ContId JOIN CAR_MAKERS AS T3 ON T1.
CountryId = T3.Country WHERE T2.Continent =
'europe' GROUP BY T1.CountryName HAVING

count ( * ) > = 3
P: SELECT countries.countryname FROM countries

JOIN car_makers ON countries.countryid =
car_makers.country JOIN car_names ON
car_makers.id = car_names.makeid GROUP BY
countries.countryname HAVING count ( * ) >=
3 AND countries.continent = 'Europe'

EM: False, EX: False

The prediction in Example 5 is semantically fine if1297

not looking into the actual contents of the database.1298

The problem in this case is that the continent1299

column in the countries table is not presented as1300

the actual continent name but as the continental1301

code. If one replaces the text field ’Europe’ with1302

numeral field 2, this prediction query generates1303

identical execution results with the golden query.1304

F Details of SQL regularization1305

To regularize SQL queries, we use a SQLObject1306

class. A Python pseudocode of this class is pre-1307

sented in Figure 8. To regularize a SQL query, we1308

instantiate a SQLObject object initialized with the1309

input SQL query, and then run get_sql_string1310

method to get a regularized SQL query.1311

G Details of SQL vectorization 1312

To vectorize SQL queries, we use a 1313

SQLVectorizer class which inherits SQLObject 1314

class in Figure 8. A Python pseudocode of this 1315

class is presented in Figure 9. To regularize a SQL 1316

query, we instantiate a SQLVectorizer object 1317

initialized with the input SQL query, and then 1318

run vectorize method to get a regularized SQL 1319

query. 1320
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Figure 8: Pseudocode for SQLObject class.

18



1
Give me the invoice dates of all customers. [chinook_1]
SELECT customer.firstname , customer.lastname , invoice.invoicedate FROM customer JOIN invoice
ON customer.customerid = invoice.customerid

2
Give me the event id of all events that have a participant with the detail Kenyatta Kuhn. [lo-
cal_govt_in_alabama]
SELECT events.event_id FROM events JOIN participants_in_events ON partici-
pants_in_events.event_id = events.event_id JOIN participants ON participants_in_events.participant_id
= participants.participant_id WHERE participants.participant_details = ’Kenyatta Kuhn’

3
Give me the patient id of the appointment with the most recent start date. [hospital_1]
SELECT appointment.patient FROM appointment ORDER BY appointment.start DESC LIMIT 1

4
Give me the minimum and maximum number of bathrooms and bedrooms of all the apartments.
[apartment_rentals]
SELECT min ( apartments.bathroom_count ) , max ( apartments.bathroom_count ) , min ( apart-
ments.bedroom_count ) , max ( apartments.bedroom_count ) FROM apartments

5
Give me the total number of all professors. [college_1]
SELECT count ( * ) FROM professor

6
Give me the names of 5 products that are not in any event. [solvency_ii]
SELECT products.product_name FROM products WHERE products.product_id NOT IN ( SELECT
products_in_events.product_id FROM products_in_events )

7
Give me the total number of students who play football. [game_1]
SELECT count ( * ) FROM sportsinfo JOIN student ON sportsinfo.stuid = student.stuid WHERE
sportsinfo.sportname = ’Football’

8
Give me the names of all instructors who are advising more than one student. [college_2]
SELECT instructor.name FROM instructor JOIN advisor ON instructor.id = advisor.i_id GROUP BY
advisor.i_id HAVING count ( * ) > 1

9
Give me the account types of all customers whose credit score is above 100. [loan_1]
SELECT customer.acc_type FROM customer

10
Give me the total number of students who have behavior incident reports with recommendations.
[behavior_monitoring]
SELECT count ( * ) FROM ( SELECT * FROM behavior_incident JOIN students ON behav-
ior_incident.student_id = students.student_id GROUP BY behavior_incident.student_id )

11
Give me the total number of residents of each property, and the property id. [local_govt_and_lot]
SELECT properties.property_id , count ( * ) FROM properties JOIN residents ON proper-
ties.property_id = residents.property_id GROUP BY properties.property_id

12
Give me the claim id of the claim that incurred the most number of settlements. [insurance_policies]
SELECT claims.claim_id FROM claims JOIN settlements ON claims.claim_id = settlements.claim_id
GROUP BY claims.claim_id ORDER BY count ( * ) DESC LIMIT 1

13
Give me the date of ceremony of all music festivals with category ’best song’ and ’awarded’. [music_4]
SELECT music_festival.date_of_ceremony FROM music_festival WHERE music_festival.category =
’Best Song’ AND music_festival.result = ’Awarded’

14
Give me the ids of all employees with role Role_Code. [cre_Doc_Tracking_DB]
SELECT employees.employee_id , employees.role_code FROM employees

15
Give me the first names of all students who have a dorm id of 160. [dorm_1]
SELECT student.fname FROM student JOIN lives_in ON student.stuid = lives_in.stuid WHERE
lives_in.dormid = 160

16
Give me the college name of the employee with name Reggie Lewis. [company_employee]
SELECT people.graduation_college FROM people WHERE people.name = ’Reggie Lewis’

17
Give me the names of all nations with hosts younger than 35. [party_host]
SELECT DISTINCT host.nationality FROM host WHERE host.age < 35

18
Give me the total number of customers who pay by Credit card. [customers_campaigns_ecommerce]
SELECT count ( * ) FROM customers WHERE customers.payment_method = ’Credit Card’

Table 6: Voted examples used for CREDIT-SQL. The first row of each example: rephrased question [database ID],
the second row of each example: regulated SQL query. 19



Figure 9: Pseudocode for SQLVectorizer class.
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