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Abstract

In this paper, we propose a few-shot prompting
method called CREDIT-SQL for the context-
dependent text-to-SQL problem. CREDIT-
SQL converts each question in a multi-turn
dialogue into a self-contained question with
a fixed few-shot prompt. Once a self-contained
question is obtained, CREDIT-SQL converts
it into an SQL query using a prompt made of
in-context examples selected by diversity sam-
pling and subsequent example voting. After ex-
perimentations with multiple LLMs, CREDIT-
SQL achieves 58.6% in terms of the exact set
match without values on the dev set of CoSQL,
which is the performance comparable to the
state-of-the-art models for context-dependent
text-to-SQL. We also argue that the example
voting we introduced in CREDIT-SQL can
serve as an efficient and effective way to miti-
gate the instability of in-context example selec-
tion in general.

1 Introduction

Information retrieval from structured knowledge
sources is an NLP task widely applicable in many
areas. Text-to-SQL is a promising approach to
achieve this goal due to the popularity of SQL
as an interface between the user and the database.
Text-to-SQL systems have shown remarkable im-
provements (Wang et al., 2020a,b; Lin et al., 2020;
Cao et al., 2021; Scholak et al., 2021; Cai and
Wan, 2020) along with the rapid advancements of
sequence-to-sequence models including the infa-
mous transformer model (Vaswani et al., 2017).
The advantages of these advanced sequence-to-
sequence models have been often utilized by fine-
tuning pre-trained decoder-encoder models. How-
ever, these advanced models become so large that
they are called large language models (LLMs)
which typically have parameter size ranges from a
few tens of billion to a few hundreds of billion (Ye
etal., 2023; OpenAl, 2023; Touvron et al., 2023a,b;
Anil et al., 2023). Because of this large model size,

it takes too much resource to fine-tune these large
language models on custom datasets.

To utilize the advantages of advanced sequence-
to-sequence models without investing full re-
sources for fine-tuning, in-context learning with
zero-shot prompts or few-shot prompts has become
popular recently. In the case of few-shot in-context
learning, a few in-context examples are listed in the
prompt along with a brief instruction, and the LLM
outputs the desired sequence as the response to the
input prompt. Although the limited context size of
available LLMs only allows a handful of in-context
examples to be included in each prompt, it has been
shown that strategic designs of prompts can per-
form as well as fine-tuned models in the tasks of
text-to-SQL (Pourreza and Rafiei, 2023; Nan et al.,
2023; Dong et al., 2023; Gao et al., 2023).

Still, most in-context learning studies on text-to-
SQL tasks focus on the context-independent set-
ting where the system needs to answer a single
SQL query on the input of a single question. This
context-independent setting becomes particularly
inconvenient when one needs to develop conversa-
tional information retrieval systems where previous
questions or answers can implicitly appear in the
user’s later questions.

To address this problem, we propose a few-shot
prompting method called CREDIT-SQL! in this
paper (See Figure 1, 2, and 3). CREDIT-SQL does
context-dependent question rephrasing to convert a
multi-turn text-to-SQL task on each dialogue into
a series of question-query pair text-to-SQL tasks.
Once all the questions are rephrased, a diversity-
sampled prompt is used to address the text-to-SQL
tasks. This prompt is composed of examples ob-
tained via multiple trials of diversity sampling and
subsequent example voting. Each example in the
prompt is represented as a pair of the rephrased
question and the regularized SQL query along with

! Context-dependent Regularized Examples from Dlversity
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Input Dialogue

Q: Which dorm has the largest

Rephrased Questions

Give me the dorm id of the dorm

SQL Queries
SELECT dorm.id FROM dorm

. i . i Selected .
capacity? RS;:;';:Q with the largest capacity. E)faf:pfes ORDER BY dorm.capacity LIMIT 1
AL AR s 2 TG SR Prompt + Database | SELECT count (* ) FROM student
name or dorm id? Base Give me the number of students Schema WHERE student.dorm IN ( SELECT

Q: Dorm id, please.

Q: How many students live there? i *

who live in the dorm with the
largest capacity.

dorm.id FROM dorm ORDER BY
dorm.capacity LIMIT 1)

Response

Q: What is their average age? from LLM

Give me the average age of
students who live in the dorm with
the largest capacity,

SELECT avg ( student.age ) FROM
student WHERE student.dorm IN (
SELECT dorm.id FROM dorm
ORDER BY dorm.capacity LIMIT 1)

Response
from LLM

Figure 1: Illustration of overall question to SQL process of CREDIT-SQL. The details of the question rephrasing
process are illustrated in Figure 2, and the details of the example selection process are illustrated in Figure 3.

the database schema.

We claim that our approach makes the following
contributions. (1) To the best of our knowledge,
we propose the first few-shot prompting approach
to perform the dialogue state tracking task with
systematically selected in-context examples out of
the entire training data. (2) We experimented our
approach with multiple open and closed-sourced
LLMs, and we report the performance compara-
ble to the state-of-the-art models in the dialogue
state tracking task on the CoSQL dataset, which is
ranked 1st in the execution accuracy without values
and 4th in the exact set match without values on the
CoSQL dev set among the models reported on the
CoSQL leaderboard at the moment of writing. (3)
We suggest a new method to mitigate the instabil-
ity of in-context example selection in the few-shot
prompting with LLM by introducing voting on col-
lected examples.

2 Related works
2.1 Context-dependent text-to-SQL

Most studies on text-to-SQL tasks focused on
context-independent settings where a single ques-
tion is transcribed into a single SQL query. To
cope with the complicated scenarios where multi-
ple tables are involved, utilizing graph structures
to capture the relations between entities has been
the most popular and successful method in text-to-
SQL tasks recently (Bogin et al., 2019; Wang et al.,
2020a,b; Lin et al., 2020; Cao et al., 2021; Scholak
et al., 2021; Cai et al., 2021; Hui et al., 2022).
Unlike its context-independent counterpart,
context-dependent text-to-SQL tasks require encod-
ing the context within the dialogue and exploiting
this context in the SQL generation. Recently, nu-
merous different approaches have been suggested
to tackle this problem. Zhang et al. 2019 used turn
attention to edit the SQL query of the previous turn

to accommodate the question at the current turn.
Cai and Wan 2020 extends the graph structure for
the database schema to establish connections be-
tween neighboring turns in the dialogue. Wang et al.
2021 and Hui et al. 2021 suggested using a graph
structure state tracker to capture the context of the
dialogue at each turn, while Zheng et al. 2022 used
BERT to encode the history of the dialogue. Pan
et al. 2019, Chen et al. 2021, and Chai et al. 2023
rephrased the question at each turn reflecting the
context of the dialogue. Xiao et al. 2022 applied
question rephrasing recursively and introduced con-
sistency training to build one of the state-of-the-art
models at the time of writing. Other state-of-the-art
models used utterance dependency tracking with
weighted contrastive learning (Cai et al., 2022) or
integrating relational structure through the atten-
tion layer into the pre-trained models (Qi et al.,
2022).

2.2 Prompting with large language models for
text-to-SQL

As in its non-prompting counterpart, most of the
efforts to perform text-to-SQL tasks focused on
context-independent text-to-SQL tasks. Pourreza
and Rafiei 2023 used different in-context exam-
ples for each difficulty of the question. Dong et al.
2023 achieved one of the best performance among
zero-shot prompting efforts. Beyond the arbitrary
selection of in-context examples, there have been
trials to choose in-context examples in a system-
atic manner. Liu et al. 2022 introduced question-
similarity based example selection using k-NN al-
gorithm. Nan et al. 2023 noticed that the diversity
of the in-context examples in a prompt is indeed
important, and suggested methods to balance the
similarity and the diversity of in-context examples
based on their ground-truth SQL queries. Gao et al.
2023 achieved the best performance on the leader-



board of Spider (Yu et al., 2018) at the time of
writing, with systematic in-context example selec-
tion using both questions and SQL queries. Beyond
the context-independent setting, Hu et al. 2022 ad-
dressed context-dependent text-to-SQL tasks with
few-shot prompting and zero-shot prompting, but
systematic in-context example selection was still
lacking.

3 Methods

3.1 Context-dependent question rephrasing

Inspired by the success of question rephrasing ap-
proaches (Pan et al., 2019; Chen et al., 2021; Chai
et al., 2023; Xiao et al., 2022), we summarize the
context of each dialogue into a single question
with few-shot prompting at every turn. For the
few-shot prompts for this question rephrasing step,
we randomly sampled 20 examples out of train
set of CoSQL dataset (Yu et al., 2019a), and the
fixed prompt base we used for question rephras-
ing is in Appendix A. In each multi-turn interac-
tion, rephrased questions from previous turns are
appended in the prompt to rephrase questions in fur-
ther turns. The entire process of question rephras-
ing is illustrated in Figure 2.

Input Dialogue P

Question Rephrasing
Prompt Base

Q: Which dorm has ...
_l_> A: Hi, do you need ...
Q: Dorm id, please.

A: Okay. | rephrased
Q: How many students live there? your question as

Q: Which dorm has the largest
capacity?

A: Hi, do you need the dorm
name or dorm id?

Q: Dorm id, please.

RQ1: Give me the dorm id
of the dorm with the ...

Q: What is their average age? —

P1+RQ1

Question Rephrasing
Prompt Base
# (Instruction)

Q: How many ...
A: Okay. | rephrased
your question as

()
Q: What is (...
A: Okay. | rephrased

RQ2: Give me the number
of students who live in ...

your question as “Give
me .."

P3 I P2 +RQ2

- | Q: How many ...

A: Okay. | rephrased
your question as

Q: How many (...)

A: Okay. | rephrased
your question as “Give
me

(more example dialogues)

RQ3: Give me the average
age of students who .

Figure 2: Context-dependent question rephrasing pro-
cess. A prompt containing examples of multiple dia-
logues is used to rephrase each question into a rephrased
question starting with "Give me ...". Each rephrased
question is appended to the prompt for further question
rephrasing of later turns.

This question rephrasing process converts the
context-dependent text-to-SQL task into the sim-

ple text-to-SQL task which is better studied in the
literature than the context-dependent counterpart.
This process also regularizes the questions in a sim-
ilar format ("Give me ...") which can help to create
consistent in-context examples for the text-to-SQL
tasks. This helps LLM to focus more on transcrib-
ing relevant natural language expressions into SQL
expressions rather than on deciphering the meaning
of the questions written in different styles.

3.2 SQL query regularization

To increase the consistency of the in-context ex-
amples for the text-to-SQL tasks, we regularize
the SQL queries used in text-to-SQL prompts with
rule-based methods. This regularization includes
capitalization, spacing, unaliasing, table representa-
tion in each column reference, and so on. Examples
of affected SQL queries through this regularization
are shown in Table 1. For further details, we at-
tach the pseudocode implementation of the SQL
regularization in Appendix F.

Given SQL

select * from tb_1;
SELECT T1.C1
FROM tb_1 as T1
JOIN tb_2 as T2
on T1.C3=T2.C4

Regularized SQL
SELECT * FROM tb_1

SELECT tb_1.cl
FROM tb_1 JOIN tb_2
ONtb_1.c3 =tb_2.c4

select COUNT(*) | SELECT count ( *)
from tb_1 FROM tb_1
where c2=="A" WHERE tb_1.c2 =="A’

Table 1: Examples of affected SQL query expressions
through the rule-based SQL query regularization.

Similar to the question rephrasing, SQL query
regularization helps LLM to focus more on the
grammatical structure of SQL queries or links to
the database schema rather than on different expres-
sion styles of SQL queries.

3.3 Example selection for text-to-SQL

In the few-shot prompting with LLM, the perfor-
mance of the model is very sensitive to the choice
of in-context examples. In particular, strategic sam-
pling of examples out of the training data signif-
icantly outperforms the random choices of exam-
ples. A natural way to customize in-context ex-
amples for each question is to collect the closest
examples to the given question, often based on the
similarity in the embedding vector space (Liu et al.,
2022). In the meanwhile, Nan et al. 2023 pointed



out that keeping the diversity of the example pool
can be more important than a mere collection of
similar examples. As introduced in Nan et al. 2023,
we adopt diversity sampling through the k-means
clustering based on the vectorized SQL queries.
Specifically, we vectorized all SQL queries in the
CoSQL train set as presented in the pseudocode in
Appendix G. Then we perform the clustering with
k = N for the N-example prompt based on these
vectors. In each cluster, we choose the example
closest to the centroid in the SQL vector space. In
case the number of resulting clusters N is smaller
than N, we fill the rest of the examples based on
the distance with previous examples. To be specific,
among training data examples {ej,eo, - ,er}
with SQL vectors {x1, X2, -, X1}, nth selected

example s, is

Sn = €,
in, = argmin|x; — cy| forn < N,

(2

in = argmax < nin ‘xi — Xj ‘)
i@{i1, in—1} \I<P
for N. <n < N,

where {c1,c2, --cN,} are the SQL vectors of
cluster centroids.

Since the k-means clustering is a non-
deterministic algorithm that depends on the random
initial positions of centroids, the selection result of
examples varies depending on the choice of random
seed. To mitigate this inconsistency of example se-
lection, we adopt example voting. First, we collect
N-example prompt through the k-means cluster-
ing. We repeat this example collection M times,
with a different random seed each time. Then we
rank each example by its occurrence among these
M different sets of examples. The entire example
selection process is illustrated in Figure 3. With
some parameter search (see Figure 4 and Figure
5 for the search space), we obtained the best re-
sult with N = 18 and M = 20. For the rest of
the paper, CREDIT-SQL used in-context examples
selected by the voting process with NV = 18 and
M = 20 otherwise noted. We show these selected
in-context examples in Appendix B.

3.4 Example demonstration

In our few-shot prompt for text-to-SQL, we demon-
strate selected in-context examples along with the
database ID and the database schema including ta-
ble names, column names, and foreign keys. A
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Figure 3: Example selection process using diversity
sampling and subsequent example voting. Centroids
obtained through the k-means clustering (k = V) are
used to pick NV examples. After repeating this selection
M times, aggregated in-context examples are voted by
their counts to finally choose N examples.

sample text-to-SQL prompt for the CREDIT-SQL
approach including the example demonstration is
in Appendix C.

4 Experiments

4.1 Dataset

The most popular benchmark for the text-to-SQL
task is Spider dataset (Yu et al., 2018), which is
a large-scale, complex, and cross-domain dataset
with 10k+ questions with annotated SQL queries
and covers 200 different databases across 138 do-
mains. SParC (Yu et al., 2019b) is a multi-turn
version of the Spider dataset which covers the
same sets of databases as Spider. CoSQL (Yu
et al., 2019a) is a dialogue version of Spider and
SParC, which includes about 3k dialogues with
10k+ annotated SQL queries over the same sets of
databases. CoSQL is different from SParC for it
contains turns that does not require immediate SQL
query response, such as clarification of the ques-
tion. This makes CoSQL a more suitable dataset
for the development of conversational systems for
information retrieval from structured knowledge
sources. Since CoSQL is the latest and most com-
plex context-dependent text-to-SQL dataset avail-
able at the moment of writing, we benchmark our



approach with this dataset.

4.2 Models

Throughout the paper, we experimented with LLMs
of Open Al serviced through Microsoft Azure”. Be-
yond the Open Al models, we experimented with
gemini-pro (Team et al., 2023) serviced through
Google AI Python SDK?>. To test other open-
sourced models as well, we also experimented with
SQLCoder-7B-2* and CodelLlama-13B (Roziere
et al., 2023) using vLLM library (Kwon et al.,
2023)°.

In any experiment, we restricted the output size
to 600 tokens to accommodate with the context size
limitations. We also set the temperature to O for the
consistency of the result.

4.3 Evaluation metric

To evaluate the performance of our approach, we
use two following metrics as suggested for the SQL-
grounded dialogue state tracking task in CoSQL
challenge (Yu et al., 2019a):

¢ Exact set match without values (EM): Mea-
sures if the predicted SQL query and the
ground truth SQL query are equivalent to each
other, by comparing the equivalence of each
component of the queries. When multiple par-
allel items are compared, set equivalence is
measured so that it does not prefer a particular
ordering. It also masks literal/numeral values
when comparing each component.

¢ Execution accuracy with values (EX): Meca-
sures if the both outputs of the predicted SQL
query and the ground truth SQL query are
equal to each other. To generate actual out-
comes based on the database, it uses the values
in each query as they are.

The two accuracy metrics are evaluated at the ques-
tion level (question match, QM) and at the interac-
tion (dialogue) level (interaction match, IM).

Zhttps://learn.microsoft.com/en-us/azure/ai-
services/openai/concepts/models. We used OpenAl
Python API library (https://github.com/openai/openai-python)
for the experiments. This library is under Apache-2.0 license
and we complied to the license.

3https://github.com/google/generative-ai-python. This li-
brary is under Apache-2.0 license and we complied to the
license.

“https://huggingface.co/defog/sqlcoder-7b-2

Shttps://github.com/vlim-project/vllm. This library is un-
der Apache-2.0 license and we complied to the license.

4.4 Baseline approach: randomly sampled
dialogues

For comparison purposes, we establish a baseline
few-shot prompting method. It randomly samples
multiple dialogues and presents them along with
their database schema. The template of this base-
line prompt is in Appendix D.

4.5 Experiment results

We report the performances of our baseline ap-
proach and CREDIT-SQL on the CoSQL dataset
in Table 2, along with the performances of state-of-
the-art models. In the dev set, our CREDIT-SQL
method outperforms the baseline approach of few-
shot prompting using randomly sampled dialogues
by 8.7%p in EM for the question match while it out-
performs the baseline approach by 2.4%p in EX for
the question match. Our approach also shows com-
parable performance to the state-of-the-art models,
by the margin of 0.2%p ~ 1.1%p in EM for the
question match on the dev set, and shows the best
EX for the question match on the dev set. At the
time of writing, our approach ranks 4th in EM-QM
and 1st in EX-QM on the CoSQL dev set among
the models reported on the CoSQL leaderboard.

5 Discussion

5.1 Effectiveness of SQL regularization and
diversity sampling

We conducted an ablation study to find out the ef-
fectiveness of each module of our CREDIT-SQL
approach. The study result is reported in Table
3. This study indicates that subtracting SQL reg-
ularization from the prompt drops the EM (EX)
for the question match by 0.6%p (0.2%p). When
the prompt with examples collected by diversity
sampling is replaced with a prompt with randomly
sampled examples, the EM (EX) for the question
match drops by 5.5%p (2.7%p).

5.2 Effectiveness of example voting

To study the effectiveness of example voting in
CREDIT-SQL, we investigated the performance
of different methods to aggregate multiple sets of
diversity-sampled examples with distinct random
seeds. In particular, we plot EM and EX for the
question match on the CoSQL dev set of those dif-
ferent methods versus the number of aggregated
sets of diversity-sampled examples in Fig 4. These
aggregation methods include: (1) the average of
each set’s performance, (2) the maximum of each



EM (%) EX (%)
Model oM IM QM M
Dev Test Dev Test Dev Test Dev Test
STAR (Cai et al., 2022) 59.7 57.8 300 28.2 - - - -
CQR-SQL (Xiao et al., 2022) 58.5 583 31.1 274 - - - -
RASAT+PICARD (Qi et al., 2022) 58.8 557 270 265 670 663 39.6 374

Few-shot Prompting

49.9
58.6

Baseline, randomly sampled dialogues
CREDIT-SQL

- 21.6 -
- 25.8 -

65.0 -
68.6 -

33.2 -
36.5 -

Table 2: Results on the CoSQL dataset. Exact set match without values (EM) and execution accuracy with values
(EX) are presented for both the question match (QM) and the interaction match (IM). For the few-shot prompting
methods, we present the results of the baseline approach (randomly sampled dialogues) as well as the results of
CREDIT-SQL, both with the average performance of 5 repeated experiments on gpt-3.5-turbo-0301. Results for
other models are as reported in the literature for comparison.

Model Q%IV[ (?1\)/[ QIE/IX (‘7;13/[ Clustering Method QIBIVI (?1\)/[ Qllf/IX ((7;13/[
CREDIT-SQL 58.6 258 68.6 36.5 k-means 58.6 258 68.6 36.5
w/o SQL Reg. 580 249 684 362 Agglomerative 58.1 263 682 36.5
w/o Div. Prompt | 53.1 20.1 65.9 33.1 Spectral 563 235 677 345

Table 3: Ablation studies for CREDIT-SQL on the
CoSQL Dev set. We used gpt-3.5-turbo-0301 and
used 18 examples out of 20 votes for the text-to-SQL.
The results without SQL regularization and the results
without diversity prompt are presented. Each experi-
ment is repeated 5 times and the average performance
is reported.

set’s performance, (3) the performance of EM-
based consistency voting from each set’s SQL re-
sults, and (4) the performance of the prompt made
of voted examples among the all examples of the
given sets. The last method is adopted for our
CREDIT-SQL. As illustrated in Fig 4, the voted-
example prompt outperforms either the average or
the maximum of the individual results of distinct
diversity-sampled prompts for the number of sets
around 12 or more. Moreover, our proposed voted-
example prompt performs similar to or better than
the popular method of voting on SQL results, for
the number of sets around 12 or more. Further-
more, the voted-example prompt is more efficient
in the sense that it only uses a single inference
of text-to-SQL per each SQL query regardless of
the aggregation number M, while the consistency
voting requires M inferences to aggregate M sets
of examples. This may suggest a new possibility
for efficiently mitigating the instability of example
selection in the few-shot prompting with LLM in
general.

Table 4: Comparison of different clustering methods.
We used gpt-3.5-turbo-0301 and used 18 examples
out of 20 votes for the text-to-SQL. Agglomerative clus-
tering method here used Ward linkage, and spectral
method used k-means to cluster the spectrum.

5.3 Effects of number of examples in
text-to-SQL prompt

We investigated the effects of number of examples
in text-to-SQL prompt in the performance of the
model in Fig 5. Due to the limited context size, we
could not experiment number of examples beyond
21. Within the number of examples we investi-
gated, there was no clear correlation between the
performance of the model and the number of ex-
amples used. We opted best number of examples
within our hyperparameter search.

5.4 Effects of different clustering methods

We investigated the effects of different clustering
methods in text-to-SQL prompt in the performance
of the model in Table 4. While we opted k-means
for the CREDIT-SQL, agglomerative clustering
with Ward linkage (Ward Jr, 1963) also showed
similar performances on the CoSQL dev set. The
spectral clustering (Shi, 2003) was behind the other
two clustering methods in the performances on the
same dev set.



LLM Number of | Completion EM (%) EX (%)
examples method OM IM QM IM
gpt-3.5-turbo-0301 18 Text 58.6 258 68.6 36.5
gpt-3.5-turbo-0301 12 Text 573 246 674 352
gpt-3.5-turbo-instruct 12 Text 549 239 657 324
gpt-3.5-turbo-16k 18 Chat 517 19.8 63.3 29.7
gpt-3.5-turbo-16k 50 Chat 51.5 18.8 64.1 304
gpt-4-turbo 18 Chat 54.0 21.5 652 32.1
gemini-pro 18 Text 51.3 164 639 29.0
SQLCoder-7B-2 18 Text 331 6.8 46.1 154
CodelLlama-13B 18 Text 28.6 58 343 8.9

Table 5: Performances of CREDIT-SQL on the CoSQL dev set, with different LLMs. We present the number of
text-to-SQL examples as well as the completion method used for each experiment. For the chat completion method,

we input the entire few-shot prompt as a system message.

5.5 Performance analysis by question
difficulty

CoSQL provides the difficulty of each question
based on the components of the golden SQL query
for that question. Here we analyze the perfor-
mance of the best-performing CREDIT-SQL on
the CoSQL dev set by the question difficulty (Fig-
ure 6). As anticipated, both the execution accuracy
and the exact set match decreases as the question
difficulty increases.

5.6 Performances with different LLMs

To determine the LLM model to be used for
the CREDIT-SQL, we evaluated the CoSQL dev
set with different LLMs (Table 5). Within the
OpenAl models (gpt-...), gpt-3.5-turbo-0301
performed the best while we observed that the
text completion method outperforms the chat
completion method significantly. Other mod-
els beyond OpenAl models were not perform-
ing as well as other OpenAl models while
gemini-pro showed the best performance among
them. SQLCoder-7B-2, which is a fine-tuned
CodeLlama model to the text-to-SQL task, per-
formed better than the larger size CodeLlama
model, CodeL1ama-13B. Although we tested only
7B model for the resource limitation, the bench-
mark on the model card of SQLCoder-7B-2° indi-
cates that the performance gain of using a larger
model might be limited to a few percent points.

5.7 Error analysis

To understand the cases in which CREDIT-SQL
does not perform well, we performed an error anal-

®https://huggingface.co/defog/sqlcoder-7b-2

ysis on the results of the best-performing CREDIT-
SQL. In particular, we present questions with the
incorrect exact set match at the question match
level in Figure 7. To categorize the errors, we
used the keyword analysis provided by the official
evaluation code’ for the CoSQL dataset (Zhong
et al., 2020). To understand how much the exact
set match errors and the execution accuracy errors
are correlated, we also present the pie chart that
describes the correlation of those two metrics in
Figure 7. Further case studies of errors can be
found in Appendix E.

5.8 Limitations and future works

Since our work focused on the CoSQL dataset, the
prompts we suggest in this paper might have dif-
ficulty in generalizing to the databases and SQL
queries outside the CoSQL dataset. Indeed, test-
ing the generalizability of CREDIT-SQL to other
context-dependent SQL datasets would be an inter-
esting subject for future research. While we tested
several other LLMs beyond OpenAl models, one
may test the performance of CRDEIT-SQL on a fur-
ther variety of the latest LLMs for future research.
Our ablation study on the number of text-to-SQL
examples was rather inconclusive due to the limited
context size, so an investigation of the effects of
the number of examples on a LLM with far larger
context size can provide a good insight into our
approach.

6 Conclusion

In this paper, we propose a few-shot prompting
method called CREDIT-SQL which is the first few-

"https://github.com/taoyds/test-suite-sql-eval
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Figure 4: Comparison of different methods of aggregat-
ing multiple diversity-sampled sets of examples gener-
ated with distinct random seeds. We present EM-QM
and EX-QM on the CoSQL dev set for comparison.
For this study, We used gpt-3.5-turbo-0301 and used
18 examples out of 20 votes for the text-to-SQL. Blue
solid line: Average of the results generated by prompts
with distinct random seeds, up to the given number of
prompts. Blue shades: The minimum to the maximum
range for the results generated by prompts with distinct
random seeds, up to the given number of prompts. Or-
ange: The EM-based consistency voting results on the
SQL results of the given number of sets. Green: The
result of the prompt made of voted examples out of all
examples from the given number of prompts. Average
performance over 5 repetitions is reported along with
the error bar size of the standard deviation.

shot prompting approach to perform the dialogue
state tracking task with systematically selected in-
context examples out of the entire training data.
CREDIT-SQL splits each dialogue state tracking
task into multiple question-query pair text-to-SQL
tasks by question rephrasing and utilizes the di-
versity sampling and subsequent in-context exam-
ple voting to prepare the few-shot prompts for the
text-to-SQL tasks. Experiments demonstrate that
CREDIT-SQL achieves a performance comparable
to the state-of-the-art models. Also, the technique
of example voting used in CREDIT-SQL suggests a
new way to mitigate the instability of in-context ex-
ample selection in the generic few-shot prompting
setting.
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Figure 5: EM-QM and EX-QM on the CoSQL dev
set for the different number of examples. We used
gpt-3.5-turbo-0301 and used 18 examples out of 20
votes for the text-to-SQL.
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Figure 6: Performance of CREDIT-SQL on the CoSQL
dev set by the question difficulty. We present the EM-
QM and EX-QM along with 4 difficulty categories: easy,

medium, hard, and extra.
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Figure 7: Left: Error analysis of CREDIT-SQL on
the exact set match errors at the question match level.
Here we present the mismatch percentage for each cat-
egory of SQL query keywords. Here IUEN stands for
IN, UNION, EXCEPT, or NOT IN. Since each incor-
rect SQL query may contain multiple mismatches, mis-
match percentages for different categories are not dis-
joint. Right: Correlation of EM and EX, evaluated on
the CoSQL dev set at the question match level.
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A Question Rephrasing Prompt Base

For the question rephrasing prompt, we randomly
sampled 20 examples from the CoSQL training
data. Each question in the sampled examples is
manually rephrased so that the rephrased question
starts with "Give me ..." and the question is
self-contained without referring to any previous
context. Following is the question rephrasing
prompt base we used for CREDIT-SQL.:

### Make sure the rephrased questions do not need
any implicit information of the previous dialogue.

Database: department_store

Q1: List the name of all suppliers in alphabetical
order of their addresses.

A1l: Okay. I rephrased your question as "Give me
the names of all suppliers, ordered alphabetically
by their addresses."

Q2: And their phone numbers?

A2: Okay. I rephrased your question as "Give
me the phone numbers of all suppliers, ordered
alphabetically by their addresses."

Q3: What states is Tesco located in?

A3: do you mean the address id or the address
details?

Q4: The address details.

A4: Okay. I rephrased your question as "Give me
the address details of Tesco."

Q5: How about Lidl?

AS: Okay. I rephrased your question as "Give me
the address details of Lidl."

Database: theme_gallery

Q1: Show the average ticket prices for exhibitions
for all years before 2009?

Al: Okay. I rephrased your question as "Give me
the average ticket price of all exhibitions whose
year before 2009."

Q2: Show minimum ticket prices for exhibitions
for all years before 2009?

A2: Okay. I rephrased your question as "Give me
the minimum ticket price of all exhibitions whose
year before 2009."

Q3: Show maximum ticket prices for exhibitions
for all years before 2009?

A3: Okay. I rephrased your question as "Give me
the maximum ticket price of all exhibitions whose
year before 2009."

Q4: Show average ticket price for exhibitions for
year 2005?
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A4: Okay. I rephrased your question as "Give me
the average ticket price of all exhibitions whose
year is 2005."

Q5: Show average ticket price for exhibitions for
all years before 2006?

AS5: Okay. I rephrased your question as "Give me
the average ticket price of all exhibitions whose
year before 2006."

Database: apartment_rentals

Q1: How many bathroom count those building 809
has?

Al: The total number of bathrooms building 809
has is NULL.

Q2: How about building 808?

A2: Okay. I rephrased your question as "Give me
the total number of bathroom count of all building
809."

Q3: How about the total number of rooms it has?
A3: Okay. I rephrased your question as "Give me
the total number of rooms of all building 809."

Database: wine_1

Q1: Which wine has the highest price?

Al: Okay. I rephrased your question as "Give me
the wine with the highest price."

Q2: Which wine has the highest score?

A2: Okay. I rephrased your question as "Give me
the wine with the highest score."

Q3: Which wine has the most cases available?
A3: Okay. I rephrased your question as "Give me
the wine with the most cases available."

Q4: How about winery with the least cases?

A4: Okay. I rephrased your question as "Give me
the winery with the least cases."

Database: dorm_ 1

Q1: How many students live in each dorm?

Al: Okay. I rephrased your question as "Give me
the total number of students of each dorm."

Q2: What is the average age of the students living
in each dorm?

A2: Okay. I rephrased your question as "Give me
the average number of students of each dorm."

Database: roller_coaster

Q1: what is the highest length of coaster

Al: Okay. I rephrased your question as "Give me
the highest length of all costers."

Q2: which roller coaster are top speed



A2: Okay. I rephrased your question as "Give me
the roller coaster with highest speed."

Q3: what is the height of Boardwalk Bullet

A3: Okay. I rephrased your question as "Give me
the height of Boardwalk Bullet."

Database: entrepreneur

Q1: What is the largest weight that appears in the
people table?

A1l: Okay. I rephrased your question as "Give me
the maximum weight of all people.”

Q2: Can you add the people id associated with that
weight into the table?

A2: Okay. I rephrased your question as "Give me
the maximum weight of all people and the people
id of that person."

Q3: Can you also add the name associated with
that people id into the table?

A3: Okay. I rephrased your question as "Give me
the maximum weight of all people and the people
id, name of that person."

Database: customers_campaigns_ecommerce
Q1: Can you tell me the highest number of mail-
shots for the customers?

Al: Okay. I rephrased your question as "Give me
the highest number of mailshots for the customers."
Q2: What about the highest mailshot id number?
A2: Okay. I rephrased your question as "Give me
the mailshot id number of mailshot with the highest
number of mailshots."

Q3: What is the customer id for that mailshot id?
A3: Okay. I rephrased your question as "Give
me the customer id number of mailshot with the
highest number of mailshots."

Q4: How many mailshots does customer id 1 have?
A4: Okay. I rephrased your question as "Give me
the total number of mailshots of customer id 1."
Q5: What is the name of customer id 17?

AS5: Okay. I rephrased your question as "Give me
the name of customer id 1."

Q6: What is the amount of mailshots that Wendell
has?

A6: Okay. I rephrased your question as "Give me
the total number of mailshots of Wendell."

Database: solvency_ii

Q1: What is the most common type code of all the
products?

A1l: Okay. I rephrased your question as "Give me
the type code of all products with the maximum
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number of type code."

Q2: What are the product names of all products
with the type code "Food"?

A2: Okay. I rephrased your question as "Give me
the product names of all products with the type
code "Food"."

Q3: What are the prices of those?

A3: Okay. I rephrased your question as "Give
me the prices of all products with the type code
"Food"."

Q4: What are the names and prices of all products
with the type code books?

A4: Okay. I rephrased your question as "Give me
the names and prices of all products with the type
code books."

Q5: What are the name and type code of the prod-
uct with the highest price?

AS5: Okay. I rephrased your question as "Give me
the name and type code of product with the highest
price."

Q6: Can you list all product names and their cor-
responding type codes of the products with prices
below the average price?

A6: Okay. I rephrased your question as "Give
me the names and product codes of all products
with prices below the average price of all products."

Database: student_assessment

Q1: what is the course id of English course?

Al: Okay. I rephrased your question as "Give me
the course id of English course."

Q2: name the student ids who attend the statastic
course?in order of attendance date

A2: Okay. I rephrased your question as "Give
me the student ids of all students who attend the
statastic course, ordered by the attendence date."
Q3: what is the date of attendance of the student is
121?

A3: the date of attendance of the student with id
121is 2012-04-09 11:44:34.

Q4: which student id attend english and french
both course?

A4: Okay. I rephrased your question as "Give me
the student ids of all students who attend both
courses of English and French."

Database: chinook_1

Q1: what are the durations of the longest tracts?
Al: Okay. I rephrased your question as "Give me
the durations of the longest tracts."

Q2: what are the shortest tracks?



A2: Okay. I rephrased your question as "Give me
the durations of the shortest tracks."

Q3: How many composer are there?

A3: Okay. I rephrased your question as "Give me
the number of composers."

Database: activity_1

QI: Hello, what are the names of the faculty mem-
bers who don’t participate in any activity?

Al: Okay. I rephrased your question as "Give
me the names of all faculty members who do not
participate in any activity."

Q2: Which faculty members participate in activi-
ties?

A2: Okay. I rephrased your question as "Give me
the names of all faculty members.who participate
in any activity."

Q3: What activities do Michael Goodrich and Ger-
ald Masson participate in?

A3: Okay. I rephrased your question as "Give me
the activities that both of Michael Goodrich and
Gerald Masson participate in."

Q4: In total, how many faculty members are there?
A4: Okay. I rephrased your question as "Give me
the total numbe of faculty members."

Database: product_catalog

Q1: what are the names of all catalogs

Al: Okay. I rephrased your question as "Give me
the names of all catalogs."

Q2: list the publication dates for all catalogs

A2: Okay. I rephrased your question as "Give me
the publication dates of all catalogs."

Q3: list the catalogs that have level number greater
than 5

A3: Do you want catalog name or id?

Q4:1id

A4: Okay. I rephrased your question as "Give me
the catalog id of catalogs with level number greater
than 5."

Database: hr_1

Q1: Show me all the employees in the same depart-
ment as Clara.

Al: Here is all the information of all the employees
in the same department as the employee with a first
name Clara.

Q2: Can you show me their hire dates?

A2: Okay. I rephrased your question as "Give me
the hire dates of all employees with department
same as the department of Clara."
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Q3: What is their average salary?

A3: Okay. I rephrased your question as "Give
me the average salary of all employees with
department same as the department of Clara."

Database: store_product

QI1: Please list the headquarters of the store that is
called Blackville?

Al: Okay. I rephrased your question as "Give
me the headquarters of all stores with name
Blackville."

Q2: What is the population of that city?

A2: Okay. I rephrased your question as "Give me
the population of all cities where headquarters of
all stores with name Blackville are located."

Q3: What is the name of the store in the city with
the greatest population?

A3: Okay. I rephrased your question as "Give me
the name of the store in the city with the greatest
population."”

Database: school_bus

Q1: How many drivers are there?

Al: Okay. I rephrased your question as "Give me
the total number of all drivers."

Q2: What is the average age of your drivers?

A2: Okay. I rephrased your question as "Give me
the average age of all drivers."

Database: customers_and_addresses

QI1: Can you give me a list of all products?

Al: Okay. I rephrased your question as "Give me
the all products."

Q2: Could you order them by order quantity?

A2: From small to large?

Q3: large to small

A3: Okay. I rephrased your question as "Give
me the all products, ordered by order quantity in
descending order."

Database: game_1

Q1: Please show me the ids of the students who
play video games and play sports?

Al: Okay. I rephrased your question as "Give
me the ids of all students who play both of video
games and sports."

Database: protein_institute

Q1: show the institute type with lowest number of
institutions

Al: Okay. I rephrased your question as "Give



me the institute type with the lowest number of
institutions."

Q2: show the institute type with highest number of
institutions

A2: Okay. I rephrased your question as "Give
me the institute type with the highest number of
institutions."

Q3: which university is founded first

A3: Okay. I rephrased your question as "Give
me the university with the earliest foundation date."

Database: formula_1

Q1: list the forename of all races

A1l: Okay. I rephrased your question as "Give me
the forenames of all races."

Q2: what is the forename of the race that occurred
most recently?

A2: Okay. I rephrased your question as "Give me
the forename of the race with the latest occurance
date."

Q3: what is its code?

A3: Do you mean circuit id?

Q4: yes

A4: Okay. I rephrased your question as "Give me
the circuit id of the race with the latest occurance
date."

B In-context Examples Selected via
Voting for CREDIT-SQL Text-to-SQL
Prompt

We present the 18 voted examples we used for the
text-to-SQL prompt of our CREDIT-SQL approach
in Table 6. We performed k-means clustering with
k = 18 and voted examples collected from 20 trials
of clustering with distinct random seeds.

C Sample Text-to-SQL Prompt for
CREDIT-SQL

Following is a sample text-to-SQL prompt for
CREDIT-SQL in the case of N = 2:

# Generate the SQL query for each question about
the given database schema.

Database: party_host

Table host, columns = [*, host_id, name, national-
ity, age]

Table party, columns = [*, party_id, party_theme,
location, first_year, last_year, number_of_hosts]
Table party_host, columns [*, party_id,
host_id, is_main_in_charge]  Foreign_keys
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=  [party_host.party_id
party_host.host_id = host.host_id]

Q: Give me the names of all nations with hosts
younger than 35.

SQL: SELECT DISTINCT host.nationality FROM
host WHERE host.age < 35

party.party_id,

Database: company_1

Table department, columns = [*, name, number,
mgr_ssn, mgr_start_date]

Table dependent, columns = [*, essn, depen-
dent_name, sex, bdate, relationship]

Table dept_locations, columns = [*, number, loca-
tion]

Table employee, columns = [*, fname, minit, Iname,
ssn, bdate, address, sex, salary, super_ssn, dno]
Table project, columns = [*, pname, number, loca-
tion, dnum]

Table works_on, columns = [*, essn, pno, hours]
Foreign_keys =[]

Q: Give me the total number of employees with
salary lower than 50000.

SQL: SELECT count ( * ) FROM employee
WHERE employee.salary < 50000

D Sample Prompt for the Baseline
Approach

Following is a sample prompt for the baseline ap-
proach with 2 dialogues:

# Generate the SQL query for each question about
the given database schema.

Database: inn_1

Table reservations, columns = [*, code, room,
check-in, checkout, rate, lastname, firstname,
adults, kids]

Table rooms, columns = [*, roomid, roomname,
beds, bedtype, maxoccupancy, baseprice, decor]
Foreign_keys [reservations.room
rooms.roomid]

Q: which rooms have a king bed?

A: SQL query you requested is [SELECT * FROM
Rooms WHERE bedtype = "King’]

Q: what are the decor of those rooms?

A: SQL query you requested is [SELECT distinct
decor FROM Rooms WHERE bedtype = "King’]
Q: show me the names and the decor of the rooms
that have a king bed

A: SQL query you requested is [SELECT room-
Name, decor FROM Rooms WHERE bedtype =



’King’]

Q: show me the price of the rooms also

A: SQL query you requested is [SELECT room-
Name, decor, basePrice FROM Rooms WHERE
bedtype = "King’]

Q: now sort the list by price

A: SQL query you requested is [SELECT room-
Name, decor, basePrice FROM Rooms WHERE
bedtype = ’King’ order by basePrice]

Database: restaurant_1

Table restaurant, columns = [*, resid, resname, ad-
dress, rating]

Table restaurant_type, columns
restypename, restypedescription]
Table student, columns = [*, stupid, Iname, fname,
age, sex, major, advisor, city_code]
Table type_of_restaurant, columns
restypeid]

Table visits_restaurant, columns = [*, stupid, resid,
time, spent]

Foreign_keys [type_of_restaurant.resid
restaurant.resid, type_of_restaurant.restypeid =
restaurant_type.restypeid, visits_restaurant.stuid
student.stuid, visits_restaurant.resid = restau-
rant.resid]

Q: Which city code of Smith?

Q: Is Smith first name or last name?

Q: first name

A: SQL query you requested is [SELECT city_code
from Student where fname = "Smith"]

Q: What age of last name Kim?

A: SQL query you requested is [SELECT age from
Student where Iname = "Kim"]

Q: What are the student id of city code WAS?

A: SQL query you requested is [SELECT stuid
from Student where city_code = "WAS"]

Q: Which major has least number of students? List
the major and the number of students.

A: SQL query you requested is [SELECT Major
, count ( * ) FROM Student GROUP BY Major
ORDER BY count ( Major ) ASC LIMIT 1]

[*, restypeid,

[*, resid,

E Error analysis: case studies

To understand types of errors CREDIT-SQL is gen-
erating, we perform case studies on the errors from
the evaluation results on the CoSQL dev set. In par-
ticular, we focus on examples from hard difficulty
and extra difficulty which the model is most strug-
gling with (Figure 6). In the following examples,
’DB’ indicates the database id, ’'RQ’ indicates the
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rephrased question by CREDIT-SQL, *G’ indicates
the golden SQL query, P’ indicates the predicted
SQL query by CREDIT-SQL.

Example 1

DB: dog_kennel

RQ: Give me the first names of all
professionals or owners.

G: SELECT first_name FROM Professionals UNION
SELECT first_name FROM Owners

P: SELECT owners.first_name FROM owners UNION
SELECT professionals.first_name FROM
professionals

EM: False, EX: True

In Example 1, we can see a typical case where the
exact match fails while the execution results are
identical. In this particular case, this happens be-
cause the order of two tables (professionals and
owners) is not preserved in the predicted SQL
query, though there is no semantical difference.

Example 2

DB: battle_death

RQ: Give me the names of all battles with no
ships lost in the English Channel.

G: SELECT name FROM battle EXCEPT SELECT T1.
name FROM battle AS T1 JOIN ship AS T2 ON
T1.id = T2.lost_in_battle WHERE T2.location

= 'English Channel'

P: SELECT battle.name FROM battle JOIN ship ON
battle.id = ship.lost_in_battle WHERE ship.
id IS NULL AND ship.location 'English
Channel'’

EM: False, EX: False

As demonstrated in Example 2, CREDIT-SQL pre-
dictions on questions involving the exclusion of
certain groups of data often include IS NULL, but
many such attempts incorrectly lead to the empty
results.

Example 3

DB: dog_kennel

RQ: Give me the average age of all dogs that
have gone through any treatment.

G: SELECT avg ( age ) FROM Dogs WHERE dog_id IN

( SELECT dog_id FROM Treatments )

P: SELECT avg ( dogs.age ) FROM dogs JOIN
treatments ON dogs.dog_id = treatments.
dog_id

EM: False, EX: False

The prediction in Example 3 could generate the
correct execution result if the dog_id column was
unique in both of dogs and treatments tables.
However, this was not the case for the treatments
table, and therefore the average age evaluated from
the prediction in Example 3 counts dogs received
multiple treatments excessively.



Example 4

DB: student_transcripts_tracking

RQ: Give me the name of the course with the
least number of students of enrollments.

G: SELECT T1.course_name FROM Courses AS T1
JOIN Student_Enrolment_Courses AS T2 ON T1.
course_id = T2.course_id GROUP BY T1.
course_name ORDER BY count ( * ) LIMIT 1

P: SELECT courses.course_name FROM courses JOIN

student_enrolment_courses ON courses.
course_id = student_enrolment_courses.
course_id GROUP BY courses.course_id ORDER

BY count ( * ) ASC LIMIT 1

False, EX: False

EM:

The prediction in Example 4 indeed generates the
execution result that the question asked. The prob-
lem in this case is that there are multiple courses
with the least number of enrolled students, and
only one of them is chosen by the column used
for GROUP BY. Both course_id and course_name
are unique in the courses table and therefore they
are all acceptable columns, though they generate
different execution results in this example.

Example 5

DB: car_1

RQ: Give me the names of all countries in
Europe with at least 3 car manufacturers.

SELECT T1.CountryName FROM COUNTRIES AS T1
JOIN CONTINENTS AS T2 ON T1.Continent = T2.
ContId JOIN CAR_MAKERS AS T3 ON T1.
CountryIld = T3.Country WHERE T2.Continent =

"europe' GROUP BY T1.CountryName HAVING

count ( * ) > =3

P: SELECT countries.countryname FROM countries

JOIN car_makers ON countries.countryid =

car_makers.country JOIN car_names ON

car_makers.id = car_names.makeid GROUP BY

countries.countryname HAVING count ( * ) >=
3 AND countries.continent = 'Europe'

False, EX: False

G:

EM:

The prediction in Example 5 is semantically fine if
not looking into the actual contents of the database.
The problem in this case is that the continent
column in the countries table is not presented as
the actual continent name but as the continental
code. If one replaces the text field ’Europe’ with
numeral field 2, this prediction query generates
identical execution results with the golden query.

F Details of SQL regularization

To regularize SQL queries, we use a SQLObject
class. A Python pseudocode of this class is pre-
sented in Figure 8. To regularize a SQL query, we
instantiate a SQLObject object initialized with the
input SQL query, and then run get_sql_string
method to get a regularized SQL query.
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G Details of SQL vectorization

To vectorize SQL queries, we use a
SQLVectorizer class which inherits SQLObject
class in Figure 8. A Python pseudocode of this
class is presented in Figure 9. To regularize a SQL
query, we instantiate a SQLVectorizer object
initialized with the input SQL query, and then
run vectorize method to get a regularized SQL

query.



class SQLObject:
def __init__(self, schema_info, sql=None, words_and_texts=None):

self.schema_info = schema_info

self.components = {}

if sql is not None:
self.read_sql(sql)

elif words_and_text is not MNone:
words, texts = words_and_texts
self.parse_components(words, texts)

# parse SQL query into components

def read_sql(self, sql):
# replace text fields with quotation marks into [textl], [text2], etc., while storing original text fields
new_sql, texts = self.replace_text_fields(sql)
# parse words(column, table, operator, paratheses, texts) and locate the original text fields in the word sequence
words, texts = self.parse_words(new_sql, texts)
self.parse_componenets(words, texts)

# parse components(joint, select, where, group by, order by, limit etc.) from given words and text fields
def parse_components(self, words, texts):
if any of ('intersect', 'union', 'except') in words:
conj_op, conj_op_idx = (conjunction operator and its location)
obj_left = SQLObject(self.schema_info, (words[:conj_op_idx], texts))
obj_right = SQLObject(self.schema_info, (words[(conj_op_idx+1):], texts))
self.components['joint'] = (conjunction_operator, obj_left, obj_right)
else!
self.parse_nonnested_components(words, texts)

# parse the contents followed by each keyword in nonnested SQL query
def parse_nonnested_components(self, words, texts):
for keyword in ['from', 'select', 'where', 'group by', 'having', 'order by', 'limit']:
followed_words = (words followed by the keyword in the given word sequence)

if keyword == 'from':
self.table_alias = (table alias dictionary built from field under 'from')
field = (field under 'from' without alias; ex: from tbl as T1 —= from tbl)
else:
contents = (replace any reference on table alias to the table name;
ex: Tl.coll, col2 -> tbl.coll, tbl.col2)
self.components [keyword] = contents

# assemble components of SQL object inte a SQL query
def get_sql_string(self):
text = "'
for keyword in ['select', 'from', 'where', 'group by', 'having', 'order by', 'limit']:
if keyword in self.components:
expr = (lower case of self.components[keyword] except the text field.
all text field is surrounded by the guotation mark "''")
text += keyword + ' ' + expr + ' '
return text.strip()

Figure 8: Pseudocode for SQLObject class.
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Give me the invoice dates of all customers. [chinook_1]

SELECT customer.firstname , customer.lastname , invoice.invoicedate FROM customer JOIN invoice
ON customer.customerid = invoice.customerid

Give me the event id of all events that have a participant with the detail Kenyatta Kuhn. [lo-
cal_govt_in_alabamal]

SELECT events.event_id FROM events JOIN participants_in_events ON  partici-
pants_in_events.event_id = events.event_id JOIN participants ON participants_in_events.participant_id
= participants.participant_id WHERE participants.participant_details = ’Kenyatta Kuhn’

Give me the patient id of the appointment with the most recent start date. [hospital_1]

SELECT appointment.patient FROM appointment ORDER BY appointment.start DESC LIMIT 1

Give me the minimum and maximum number of bathrooms and bedrooms of all the apartments.
[apartment_rentals]

SELECT min ( apartments.bathroom_count ) , max ( apartments.bathroom_count ) , min ( apart-
ments.bedroom_count ) , max ( apartments.bedroom_count ) FROM apartments

Give me the total number of all professors. [college_1]

SELECT count ( * ) FROM professor

Give me the names of 5 products that are not in any event. [solvency_ii]

SELECT products.product_name FROM products WHERE products.product_id NOT IN ( SELECT
products_in_events.product_id FROM products_in_events )

Give me the total number of students who play football. [game_1]

SELECT count ( * ) FROM sportsinfo JOIN student ON sportsinfo.stuid = student.stuid WHERE
sportsinfo.sportname = *Football’

Give me the names of all instructors who are advising more than one student. [college_2]

SELECT instructor.name FROM instructor JOIN advisor ON instructor.id = advisor.i_id GROUP BY
advisor.i_id HAVING count ( * ) > 1

Give me the account types of all customers whose credit score is above 100. [loan_1]

SELECT customer.acc_type FROM customer
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Give me the total number of students who have behavior incident reports with recommendations.
[behavior_monitoring]

SELECT count ( * ) FROM ( SELECT * FROM behavior_incident JOIN students ON behav-
ior_incident.student_id = students.student_id GROUP BY behavior_incident.student_id )

11

Give me the total number of residents of each property, and the property id. [local_govt_and_lot]

SELECT properties.property_id , count ( * ) FROM properties JOIN residents ON proper-
ties.property_id = residents.property_id GROUP BY properties.property_id

12

Give me the claim id of the claim that incurred the most number of settlements. [insurance_policies]

SELECT claims.claim_id FROM claims JOIN settlements ON claims.claim_id = settlements.claim_id
GROUP BY claims.claim_id ORDER BY count ( * ) DESC LIMIT 1

13

Give me the date of ceremony of all music festivals with category ’best song’ and awarded’. [music_4]

SELECT music_festival.date_of_ceremony FROM music_festival WHERE music_festival.category =
’Best Song” AND music_festival.result = > Awarded’

14

Give me the ids of all employees with role Role_Code. [cre_Doc_Tracking_DB]

SELECT employees.employee_id , employees.role_code FROM employees

15

Give me the first names of all students who have a dorm id of 160. [dorm_1]

SELECT student.fname FROM student JOIN lives_in ON student.stuid = lives_in.stuid WHERE
lives_in.dormid = 160

16

Give me the college name of the employee with name Reggie Lewis. [company_employee]

SELECT people.graduation_college FROM people WHERE people.name = 'Reggie Lewis’

17

Give me the names of all nations with hosts younger than 35. [party_host]

SELECT DISTINCT host.nationality FROM host WHERE host.age < 35

18

Give me the total number of customers who pay by Credit card. [customers_campaigns_ecommerce]

SELECT count ( * ) FROM customers WHERE customers.payment_method = ’Credit Card’

Table 6: Voted examples used for CREDIT-SQL. The first row of each example: rephrased question [database ID],
the second row of each example: regulated SQL query. 19



class SQLVectorizer(SQLObject):
def __init_ (self, schema_info, sql):
super().__init__(schema_info, sql)

# Count the occurance of each component of SQL query
def vectorize(self):
keys = [
‘intersect', ‘'union', 'except', 'sel_col', ‘'sel_all', 'sel_count', 'sel_min', 'sel_max', 'sel_avg', 'sel_sum'
‘from ext', 'from_tb', 'wh_and', 'wh_or', 'wh_in', 'wh_like', 'wh_is', 'wh_eq', 'wh_gl', 'wh_subq',
'wh_between', 'wh_pm', 'groupby', 'hv_eq', 'hv_g', 'hv_1', 'hv_else', 'hv_count', 'hv_min', 'hv_max',
‘hv_avg', 'hv_sum', 'order_n', ‘'order_count', ‘order_min', 'order_max', 'order_avg', 'order_sum', 'order_asc',
‘order_desc', 'limit’
1
vec = {k: @ for k in keys}

if 'joint' in self.components:
joint, objl, obj2 = self.components['joint']
return (get vectors for objl and obj2, then average them)

for col in self.components|['select']:
vec['sel_col'] += 1 if (col is valid column) else @
vec['sel_all'] += 1 if (col is wildcard '*') else @
for op in ['count', 'min', 'max', 'avg', 'sum']
vec[f'sel_{op}'] += 1 if (col has op) else @

if 'where' in self.components:
vec['wh_gl'] += (number of occurances of '<', '>', '«=', or '>=' in self.components['where'])
vec['wh_eq'] += (number of occurances of '=' or '!=' in self.components['where'])
vec['wh_pm'] += (number of occurances of '+' or '-' in self.components|'where'])
vec['wh_like'] += (number of occurances of 'ilike' or 'like' in self.components['where'])
for op in ['and', 'or', 'in', 'is', 'between']:

vec[f'wh_{op}'] += (number of occurances of op in self.components['where'])

vec[f'wh_subq'] += (number of subqueries in self.components|['where'])

vec['groupby'] += (number of columns in self.components['where'])

if 'having' in self.components:
vec['hv_eq'] += (number of occurances of '=' in self.components|['having'])
vec['hv_g'] += (number of occurances of '>' or '>=' in self.components['where'])
vec["hv_1'] += (number of occurances of '<' or '==' in self.components['where'])
vec['hv_else'] += (number of occurances of all other binary operators in self.components|['where'])
for op in ['count', 'min', 'max', 'avg', 'sum']
vec[f'hv_{op}'] += (number of occurances of op in self.components['where'])

if 'orderby' in self.components:
vec['order_n'] += (number of columns in self.components['orderby'])
for op in ['count', 'min', 'max', 'avg', 'sum', 'asc', 'desc']:
vec[f'order_{op}'] += (number of op in self.components['orderby'l])

vec['limit'] += (@ if 'limit' in self.components 1)

return vec

Figure 9: Pseudocode for SQLVectorizer class.
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