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ABSTRACT

In this work, we combine STResnet (Zhang et al., 2017) with VAE Kingma &
Welling (2013) to generate crime distribution. The outputs can be used for down-
stream tasks such as patrol deployment planning Chase et al. (2021).

1 INTRODUCTION

Predicting crime is a critical aspect of public safety. However, the complexity and unpredictability
of crime patterns make this task challenging. This paper introduces a novel approach that incorpo-
rates stochasticity into spatio-temporal crime prediction. Our method, which combines a Variational
Autoencoder (VAE) with Spatio-Temporal Residual Networks (STResnet), generates a range of po-
tential crime scenarios. These scenarios can be utilized in downstream planning tasks, such as patrol
deployment planning, as outlined in Chase et al. (2021).

2 RELATED WORKS

Several deep learning methods have been proposed for crime prediction. Huang et al. (2018) used
a hierarchical GRU with attention to indicate binary pixels in images, where each pixel represents
a map region. Ye et al. (2021) employed an inception-residual CNN to predict crime probabilities
in discretized grids. Wang et al. (2019) utilized STResnet, as proposed by Zhang et al. (2017), for
crime prediction. However, a common limitation of above methods is the lack of stochastic outputs.
This restricts their utility in deployment planning tasks, such as those described in Chase et al.
(2021), which require multiple scenario inputs to generate robust plans. To address this limitation,
our paper presents a novel approach that integrates stochasticity into crime predictions.

3 GENERATIVE ST-RESNET ARCHITECTURE

Figure 1: Architecture Diagram of Generative ST-ResNet

Our Generative ST-ResNet architecture, as depicted in Figure 1, is designed to process a time se-
quence of images, where each image represents a crime intensity map. We first describe how maps
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are created, then we explain the roles of the architecture’s three primary components: the Predictor,
Encoder, and Decoder.

To construct the crime intensity maps, we first divide a specific region (the area where we aim to
predict crime timings and locations) into an M × N grid map. The size of each grid square is
determined by a parameter we refer to as resolution. We then aggregate crime incidents within a
given interval and use the count as the grid’s intensity.

From the sequence of these generated images, we create four distinct sequences or fragments: in-
stant, closeness, period, and trend. The lengths of these fragments are represented as le, lc, lp, and
lq , and they are created based on specific sampling rates, denoted by e, c, p, and q, respectively. We
use the following equations to segment the data in each window into these four sequences:

Se = [Xt−le.e, Xt−(le−1).c, ..., Xt−e]

Sc = [Xt−lc.c, Xt−(lc−1).c, ..., Xt−c]

Sp = [Xt−lp.p, Xt−(lp−1).p, ..., Xt−p]

Sq = [Xt−lq.c, Xt−(lq−1).q, ..., Xt−q]

The window length is determined by min{le.e, lc.c, lp.p, lq.q} plus 1 to include the target image Xt.

The Predictor block of the architecture processes the closeness, period, and trend sequences, which
model the temporal properties of the data. This block also receives cyclical data related to the timing
of incidents (e.g., whether they occurred on a weekend, weekday, or holiday).

The Encoder block takes as input the instant sequence, which represents the noise in the data, and
the target. The Encoder block outputs a random latent variable that captures both the noise in the
data and the uncertainty of the prediction.

Finally, the Decoder block receives inputs from both the Predictor and Encoder blocks. This block
contains a series of transposed convolutional networks designed to match the size of the output.

More details of three blocks are found in the Appendix.

4 EXPERIMENTS AND RESULTS

Our study utilized a year’s worth of crime incident data from Singapore in 2020 to train the neural
network, and subsequently predicted crimes for the first half of 2021. The data, which included start
time, latitude, and longitude for each incident, spanned geographically from 1.2101◦ to 1.4707◦ in
latitude and from 103.6056◦ to 104.0436◦ in longitude.

The network was trained using Mean Squared Error (MSE) Loss with the following parameters:
resolution = 0.015, interval = 60 minutes, le = 24, e = 1, lc = 12, c = 1 (hourly closeness and
instant), lp = 3, p = 24 (daily period), lt = 1, t = 168 (weekly trend).

To evaluate the performance, we compared our method (STResnetVAE) with STResnet Zhang et al.
(2017) and GAN Goodfellow et al. (2020) using the F1 score. The intensity output was converted
into latitude, longitude, and timestamp. In cases where more than one incident occurred at the same
pixel, a time within the timestamp duration was randomly selected. Predicted incidents were then
matched with ground-truth incidents using linear assignment under various distances and durations.

Table 1: F1 score
Parameters Results

DISTANCE DURATION GAN STResnet STResnetVAE (Ours)

1000 m 10 mins 0.15 0.167 0.150
2000 m 30 mins 0.40 0.598 0.596
2000 m 60 mins 0.43 0.749 0.755

From the Table 1, we see that STResnetVAE performed well in predicting incidents when the dis-
tance and duration were large. However, it was less effective for smaller instances. Despite this,
STResnetVAE demonstrated comparable performance to STResnet, with the added advantage of
being able to predict the distribution of outputs. This feature provides the downstream planning task
with the ability to optimize based on diverse predicted outcomes.
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A APPENDIX

A.1 STRUCTURES OF PREDICTOR BLOCK

Figure 2: Predictor Block of Generative ST-ResNet

The Predictor block processes three temporal sequences: closeness, period, and trend. Each se-
quence is transformed into a 3D Tensor by concatenating the intensity maps along the last axis
(channels). These tensors, along with external features, are propagated through the ST-ResNet ar-
chitecture to generate the output, denoted as X̂pred as in Figure 2
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A.2 STRUCTURES OF ENCODER BLOCK

(a) Training Phase (b) Testing Phase

Figure 3: Encoder Block. (a) Training Phase when we incorporate the target to learn the uncertainty;
(b) Testing phase when we sample a prior distribution

During the training phase Figure 3a, the Encoder block receives two types of inputs: sequences of
instant inputs and targets. These sequences are processed in the same way as in the Predictor block:
they are concatenated along the channels axis to form a single tensor. This tensor and the target are
then propagated through a separate network (with the same architecture) to produce two outputs that
are parametrically fused:

X = We ◦X(L)
e +Wtarget ◦X(L)

target (1)
where ◦ is Hadamard product, We, Wtarget are trainable parameters. The fused output is then passed
through two MLP layers to output mean µ and variance σ to use in KL Loss and sampling X̂enc.

In the Testing phase Figure 3b, only sequence of instant inputs are propagated through the network
for sampling X̂enc

A.3 STRUCTURES OF DECODER BLOCK

The input to the Decoder block is X̂fuse, which is the addition of X̂pred from the Predictor block
and X̂enc from the Encoder block through the Reshape module. Decoder consists of a series of
transposed convolutional neural network layers. We do not use skip connection. The output of
Decoder block is our final prediction.

Our Generative ST-ResNet can be trained to predict Xt from the sequences of previous inputs by
joinlty minimizing two losses. The first loss is the mean squared error (reconstruction loss) between
the predictied output and target output:

L(θ) = ||Xt − X̂t||22 (2)

where θ is all trainable parameters of all blocks.

The second loss is the KL Divergence loss between the output of Encoder and a prior distribution
(we choose normal distribution N (0, 1)):

L(ϕ, θ, x) = DKL(qϕ(z|x)||pθ(z)) (3)
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