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Abstract

This work concerns the development of deep networks that are certifiably robust to
adversarial attacks. Joint robust classification-detection was recently introduced
as a certified defense mechanism, where adversarial examples are either correctly
classified or assigned to the “abstain” class. In this work, we show that such a
provable framework can be extended to networks with multiple explicit abstain
classes, where the adversarial examples are adaptively assigned to those. While
naïvely adding multiple abstain classes can lead to “model degeneracy”, we propose
a regularization approach and a training method to counter this degeneracy by
promoting full use of the multiple abstain classes. Our experiments demonstrate
that the proposed approach consistently achieves favorable standard vs. robust
verified accuracy tradeoffs, outperforming state-of-the-art algorithms for various
choices of number of abstain classes.

1 Introduction

Deep Neural Networks (DNNs) have revolutionized many machine learning tasks such as image
processing [Krizhevsky et al., 2012, Zhu et al., 2021] and speech recognition [Graves et al., 2013,
Nassif et al., 2019]. However, despite their superior performance, DNNs are highly vulnerable to
adversarial attacks and perform poorly on out-of-distributions samples [Goodfellow et al., 2014,
Liang et al., 2017, Yuan et al., 2019].

To address the vulnerability of DNNs to adversarial attacks, the community have designed various
defense mechanisms that are robust against adversarial attacks [Papernot et al., 2016, Jang et al.,
2019, Goldblum et al., 2020, Madry et al., 2017, Huang et al., 2021]. These mechanisms provide
robustness against certain types of attacks such as the Fast Gradient Sign Method (FGSM) [Szegedy
et al., 2013, Goodfellow et al., 2014]. However, the overwhelming majority of these defense
mechanisms are highly ineffective against more complex attacks such as adaptive and brute-force
methods [Tramer et al., 2020, Carlini and Wagner, 2017]. This ineffectiveness necessitates: 1) the
design of rigorous verification approaches that can measure the robustness of a given network; 2) the
development of defense mechanisms that are verifiably robust against any attack strategy within the
class of permissible attack strategies. To verify robustness of a given network against any attack in a
reasonable set of permissible attacks (e.g. `p-norm ball around the given input data), one needs to
solve a hard non-convex optimization problem (see, e.g., Problem (1) in this paper). Consequently,
exact verifiers, such as [Tjeng et al., 2017, Xiao et al., 2018], are not scalable to large networks. To
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develop scalable verifiers, the community turn to “inexact" verifiers. Such methods can only verify
a subset of perturbations to the input data that the network can defend against successfully. This is
typically achieved by finding tractable lower-bounds for the verification optimization problem. Gowal
et al. [2018] finds such a lower-bound by interval bound propagation (IBP) which is essentially an
efficient convex relaxation of the constraint sets in the verification problem. Despite its simplicity, this
approach demonstrates a relatively superior performance compared to prior works. Another line of
work for enhancing the performance of certifiably robust neural networks relies on the idea of learning
a detector alongside the classifier to capture adversarial and out-of-distribution samples. Instead of
trying to classify adversarial images correctly, these works design a detector to determine whether a
given sample is natural/in-distribution or it is a crafted attack/out-of-distribution. A more resilient
approach is to jointly learn the detector and the classifier [Laidlaw and Feizi, 2019, Sheikholeslami
et al., 2021, Chen et al., 2021] by adding an auxiliary abstain output class capturing adversarial
samples.

Building on these prior works, this paper extends the idea of using a single abstain class to using
multiple abstain classes. We observe that naïvely adding multiple abstain classes results in a model
degeneracy phenomenon where all adversarial examples are assigned to a small fraction of abstain
classes (while other abstain classes are not utilized). To resolve this issue, we propose a regularizer
that balances the assignment of adversarial examples to abstain classes. Our experiments demonstrate
that utilizing multiple abstain classes in conjunction with the proper regularization enhances the
robust verified accuracy of joint detectors/classifiers on adversarial examples while maintaining the
standard accuracy of the classifier.

2 Background
Consider an L-layer feedforward neural network with Wi denoting the weight associated with layer i,
and bi denoting the bias parameter of layer i. Let σi(·) denote the activation function applied at
layer i. Throughout the paper, we assume the activation function is the same for all hidden layers,
i.e., σi(·) = ReLU(·), ∀i = 1, . . . , L− 1. Thus, our neural network can be described as

zi = σ(Wizi−1 + bi), i = 1, 2, . . . , L− 1,

zL = WLzL−1 + bL,

where z0 = x is the input to the neural network and zi is the output of layer i. To explicitly show the
dependence of zL on the input data, we use the notation zL(x) to denote logit values when x is used
as the input data point.

Given an input x0 with the ground-truth label y, and a perturbation set C(x0, ε) (e.g. C(x0, ε) =
{x | ‖x− x0‖∞ ≤ ε}), the network is provably robust against adversarial attacks on x0 if

0 ≤ min
x∈C(x0,ε)

cTykzL(x), ∀k 6= y, (1)

where cyk = ey − ek with ek (resp. ey) being the standard unit vector whose k-th row (resp. y-th
row) is 1 and the other entries are zero. Condition (1) implies that the logit score of the network
for the true label y is always greater than that of any other label k for all x ∈ C(x0, ε). Thus, the
network will classify all the points inside C(x0, ε) correctly. The objective function in Eq. (1) is
non-convex when L ≥ 2. It is customary in many works to move the non-convexity of the problem to
the constraint set and reformulate Eq. (1) as

0 ≤ min
z∈Z(x0,ε)

cTykz, ∀k 6= y, (2)

where Z(x0, ε) = {z | z = zL(x) for some x ∈ C(x0, ε)}. Since both problems (1) and (2) are
non-convex, existing works proposed efficiently computable lower-bounds for the optimal objective
value of them. The dominant approach for estimating Problem (2) is to convexify the constraint set
by Interval Bound Propagation (IBP) [Gowal et al., 2018]. After this relaxation, problem (2) can be
lower-bounded by the convex problem:

min
z(x0)≤z≤z̄(x0)

cTykz (3)

The upper and lower bounds z(x0) and z̄(x0) are obtained by recursively finding the convex relaxation
of the image of the set C(x0, ε) at each layer of the network.
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3 Verification of neural networks with multiple abstain classes

Motivation: The robust verified accuracy of an L-layer joint classifier and detector can be enhanced
by introducing multiple abstain classes instead of a single abstain class for detecting adversarial
examples. The set of all adversarial images that can be generated within the ε-neighborhood of
clean images might not be a connected set that can be detected only by one detection class. This
observation is illustrated in a simple example in Appendix K where 2 detection classes can drastically
increase the performance of the detector compared to 1 detection class.

Figure 1: The IBP verification for 400 input data points of 2-
layer and 3-layer neural networks. Part (a) shows the assigned
label to each data point. Part (b) demonstrates that IBP can
verify 14 points using one of two detection classes (black trian-
gles), while it cannot verify 13 data points (red marks). c) On
the other hand shows that when IBP applied to a network with
one more layer and one detection class, 8 points are verified
by the detection class, while it fails to verify 21 points. That
means for this simple neural networks, the one with smaller
number of layers can be verified more accurately with via IBP.

Note that a network with multi-
ple detection classes can be equiva-
lently modeled by another network
with one more layer and a single ab-
stain class. This added layer can
merge all abstain classes and reduce
them to a single class. Thus, any
L-layer neural network with mul-
tiple abstain classes can be equiv-
alently modeled by an L+ 1-layer
neural network with a single abstain
class. However, the performance
of verifiers such as IBP reduces as
we increase the number of layers.
This is due to the fact that increasing
the number of layers leads to looser
bounds in Equation 3. As we can
observe in Figure 1, the number of
verified points by a 2−layer neural
network is higher than the number
of points verified by an equivalent
network with 3 layers. The descrip-
tion of both networks can be found
in Appendix L.

Thus, it is beneficial to train/verify
the original L-layer neural network
with multiple abstain classes instead
of L+1-layer network with a single
abstain class. This fact will be illustrated further in the experiments on MNIST and CIFAR-10
datasets depicted in Figure 2. Next, we present how one can verify a network with multiple abstain
classes. Let a1, a2, . . . , aM be M abstain classes detecting adversarial samples. A sample is
considered adversarial if the output of the network is any of the M abstain classes. A neural
network with K regular classes and M abstain classes outputs the label of a given sample as
ŷ(x) = argmaxi∈{1,...,K,a1,...,aM}[zL(x)]i. An input is verified if the network either correctly
classifies it or assigns it to any of the explicit M abstain classes. More formally and following
equation (7), the neural network is verified for input x0 against a target class k if

0 ≤ min
zL∈Z(x0,ε)

max
{
cTykzL, c

T
a1kzL, . . . , c

T
aMkzL

}
, (4)

Since the set Z(x0, ε) is highly nonconvex, verifying (4) is computationally expensive.

Following the IBP approach to relax the nonconvex set Z(x0, ε) leads to the following result:

Theorem 1 Condition (4) is satisfied if for all k 6= y:
0 ≥ min

η∈P
max

zL−1≤zL−1≤z̄L−1

−ck(η)T (WLzL−1 + bL), (5)

where P = {(η0, . . . , ηM )|
∑M
i=0 ηi = 1, ηi ≥ 0,∀i = 0, 1, . . . ,M}, and ck(η) = η0cyk +

η1ca1k · · ·+ ηMcaMk. Here, the bounds zL−1 and z̄L−1 are obtained by IBP.

Unlike (4), the condition in (5) is easy to verify computationally. To understand this, let us define
Jk(η) = max

z≤zL−1≤z̄
−ck(η)T (WLzL−1 + bL). (6)

3



Then, our aim in (5) is to minimize Jk(η) over P .

First notice that the maximization problem (6) can be solved in closed form as described in Step 4
of Algorithm 1. Consequently, one can rely on Danskin’s Theorem [Danskin, 2012] to compute
the subgradient of the function Jk(·). Thus, to minimize Jk(·) in (5), we can rely on the Bregman
proximal (sub)gradient method (see [Gutman and Pena, 2018] and the references therein). This
algorithm is guaranteed to find ε− accurate solution to (5) in T = O(1/

√
ε) iterations–see [Gutman

and Pena, 2018, Corollary 2].

Algorithm 1 IBP verification of networks with multiple abstain classes
1: Parameters: Stepsize ν > 0, number of iterations T .
2: Initialize η0 = 1 and η1 = . . . = ηM = 0.
3: for t = 0, 1, . . . , T do

4: Set [z∗tL−1]j =

{
[zL−1]j if [WT

Lc(η)]j ≥ 0

[z̄L−1]j otherwise.
, for every j.

5: Set ηt+1
m =

ηtm exp(−2ν(z∗tL−1)TWT
Lcamk)∑M

j=0 η
t
j exp(−2ν(z∗tL−1)TWT

Lcajk)
, ∀m ∈ {0, . . . ,M}, where a0 is defined as y.

Based on the verifier developed above, we can train provably robust neural networks with multiple
detection classes against adversarial attacks (see Appendix B).

4 Numerical Results

Figure 2: Performance of Multiple-abstain shallow net-
works on MNIST and CIFAR-10 datasets. We compared
multiple abstain neural networks (both regularized and non-
regularized version) with the single abstain networks and
networks with one more layer. The above and below rows
demonstrate the trade-off between standard and robust ver-
ified accuracy on MNIST and CIFAR-10 datasets.

We devise a diverse set of experiments
on shallow and deep networks to inves-
tigate the effectiveness of our proposed
joint classifier and detector with mul-
tiple abstain classes. To train the neu-
ral networks on MNIST and CIFAR-10
datasets, we use Algorithm 2 as a part
of an optimizer scheduler. In the first
phase, we set λ1 = λ2 = 0. Thus,
the network is trained without consid-
ering any abstain classes initially. In
the second phase we optimize the ob-
jective function (12), where we linearly
increase ε from 0 to εtrain. In the last
phase, we further tune the network on
the fixed ε = εtrain (see Appendix F for
further details).

In the first set of experiments depicted in
Figure 2, we compare the performance
of the shallow networks with the opti-
mal number of abstain classes to the sin-
gle abstain network, the network with
an additional layer, and the network reg-
ularized to have balance between dif-
ferent abstain classes (see Appendix C).
The shallow networks have one convo-
lutional layer with size 256 and 1024 for training on MNIST and CIFAR-10 datasets respectively.
This convolutional layer is connected to the second (last) layer consisting of K +M nodes where K
is the number of regular classes (10 for both MNIST and CIFAR-10 datasets) and M is the number
of abstain classes. The optimal number of abstain classes is obtained by changing the number of
them from M = 1 to M = 20 on both CIFAR-10 and MNIST datasets. The optimal value for the
network trained on MNIST is M = 3 and M = 4 for CIFAR-10 dataset. Moreover, we compare the
optimal multi-abstain shallow network to two other baselines: One is the network with the number of
abstain classes equal to the number of regular classes (M = K) and is trained via the regularizer
described in (13). The other baseline is a network with one more layer compared to the shallow
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network. Instead of the last layer in the shallow network, this network has K +M nodes in the layer
one to the last, and K + 1 nodes in the last layer. Ideally the set of models can be supported by such a
network is a super-set of the original shallow network. However, due to the training procedure (IBP)
which is sensitive to higher number of layers (the higher the number of layers, the looser the lower
and upper bounds), we obtain better results with the original network with multiple abstain classes.

Figure 3 shows the percentage of adversarial examples captured by each abstain class (M = 10)
on CIFAR-10 dataset for both regularized and non-regularized networks. The hyper-parameter γ
is set to 1

K+M = 1
20 in (13). For further experiments on deep networks and comparison with other

state-of-the-art approaches see Appendix E.

Figure 3: Distribution of natural and adversarial images over different abstain classes on CIFAR-10
dataset. When there are 10 abstain classes, model degeneracy leads to lower performance compared
to the baseline. Adding the regularization term (right most column) will utilize all abstain classes and
enhance both standard and robust verified accuracy. standard accuracy is the proportion of correctly
classified natural images, while robust verified accuracy is the proportion of images that are robust
against all adversarial attacks within the ε-neighborhood.

Beside the shallow networks, networks with multiple abstain classes show a better trade-off between
standard and verified robust accuracy on the deep networks (See Table 1). The structure of the trained
deep network is exactly as same as the one described in Sheikholeslami et al. [2021].

ε Method Standard Error (%) Robust Verified Error (%)
Interval Bound Propagation [Gowal et al., 2018] 50.51 68.44

IBP-CROWN [Zhang et al., 2019] 54.02 66.94
εtrain = 8.8/255 [Balunovic and Vechev, 2019] 48.3 72.5

Single Abstain [Sheikholeslami et al., 2021] 55.60 63.63
εtest = 8/255 Multiple Abstain Classes (Current Work) 56.72 61.45

Multiple Abstain Classes (Verified by Beta-crown) 56.72 57.55
Interval Bound Propagation [Gowal et al., 2018] 68.97 78.12

εtrain = 17.8/255 IBP-CROWN [Zhang et al., 2019] 66.06 76.80
Single Abstain [Sheikholeslami et al., 2021] 66.37 67.92

εtest = 16/255 Multiple Abstain Classes (verified by IBP) 66.25 64.57
Multiple Abstain Classes (Verified by Beta-crown) 66.25 62.81

Table 1: Standard and Robust Verified error of state-of-the-art approaches on CIFAR-10 dataset.
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A Training a Joint Robust Classifier and Detector

Sheikholeslami et al. [2021] improves the performance tradeoff on natural and adversarial examples
by introducing an auxiliary class for detecting adversarial examples. If this auxiliary class is selected
as the output, the networks “abstains" from declaring any of the original K classes for the given input.
Let a be the abstain class. The network classifies performs correctly on an adversarial image if it
is classified correctly (similar to robust networks without detectors) or it is classified as the abstain
class (detected as an adversarial example). Hence, the network is verified against a certain class k if

0 ≤ min
z∈Z(x0,ε)

max(cTykz, c
T
akz), (7)

i.e., if the score of the true label y or the score of the abstain class a is larger than the score of class k.
To train a neural network that can jointly detect and classify a dataset of images, Sheikholeslami et al.
[2021] relies on the loss function of the form:

LTotal = LRobust + λ1L
Abstain
Robust + λ2LNatural, (8)

where the term LNatural denotes the natural loss when no adversarial examples are considered. More
precisely, LNatural = 1

n

∑n
i=1 `xent

(
zL(xi), yi

)
, where `xent is the standard cross-entropy loss. The

term LRobust in (8) represents the worst-case adversarial loss used in [Madry et al., 2017], without
considering the abstain class. Precisely,

LRobust = max
δ1,...,δn

1

n

n∑
i=1

`xent
(
zL(xi + δi), yi

)
s.t. ‖δi‖∞ ≤ ε, ∀i = 1, . . . , n.

Finally, the Robust-Abstain loss LAbstain
Robust is the minimum of the detector and the classifier losses:

LAbstain
Robust = max

δ1,...,δn

1

n

n∑
i=1

min
(
`xent
(
zL(xi + δi), yi

)
,

`xent
(
zL(xi + δi), a

))
s.t. ‖δi‖∞ ≤ ε, ∀i (9)

In (8), tuning λ1 and λ2 controls the trade-off between standard and robust accuracy. Furthermore, to
obtain non-trivial results, IBP-relaxation should be incorporated during training for the minimization
sub-problems in Lrobust and Labstain

robust [Sheikholeslami et al., 2021, Gowal et al., 2018].

B Training of Neural Networks with Multiple Abstain Classes
To train a neural network consisting of multiple abstain classes, we follow a similar combination of
loss functions as in (8). While the last term (LNatural) can be computed efficiently, the first and second
terms cannot be computed efficiently because even evaluating the functions LRobust and LAbstain

Robust
requires maximizing nonconcave functions. Thus, instead of minimizing these two terms, we will
minimize their upper-bounds. Particularly, following [Sheikholeslami et al., 2020, Equation (17)],
we use L̄Robust as an upper-bound to LRobust. This upper-bound is obtained by the IBP relaxation
procedure described in Gowal et al. [2018]. To obtain an upper-bound for the Robust-Abstain loss
term LAbstain

Robust in (8), let us first start by clarifying its definition in the multi-abstain class scenario:

LAbstain
Robust = max

δ1,...,δn

1

n

n∑
i=1

min
{
`xent

(
zL(xi + δi), yi

)
,

min
m=1,...,M

`xent
(
zL(xi + δi), am

)}
. (10)

This definition implies that the classification is considered “correct” for a given input if the predicted
label is the ground-truth label or if it is assigned to one of the abstain classes. Since the maximization
problem w.r.t. {δi} is nonconcave, it is hard to even evaluate LAbstain

Robust . Thus, we minimize an efficiently
computable upper-bound of this loss function as described in Theorem 2.
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Theorem 2 Let

`Abstain
Robust (x, y) = max

‖δ‖≤ε
min

{
`xent

(
zL(x + δ), y

)
, min
m=1,...,M

`xent
(
zL(xi + δi), am

)}
Then,

`Abstain
Robust (x, y) ≤ ¯̀Abstain

Robust (x, y) = `xent\A0
(J(x), y), (11)

where J(x) is a vector whose k-th component equals Jk(x) as defined in (6) and `xent\A0
(x0, y) :=

− log

(
exp(eTy zL(x0))∑

i∈I\A0
exp(eTi zL(x0))

)
. Here, I = {1, . . . ,K, a1, . . . , aM} is the set of all classes (true

labels and abstain classes) and A0 = {a1, . . . , aM} is the set of abstain classes.

Notice that the definition of `xent\A0
(x0, y) removes the terms corresponding to the abstain classes

in the denominator. This definition is less restrictive toward abstain classes compared to incorrect
classes. Thus, for a given sample, it is more advantageous for the network to classify it as an abstain
class instead of incorrect classification. This mechanism enhances the performance of the network
on detecting adversarial examples by abstain classes, while it does not have an adverse effect on the
performance of the network on natural samples.Note that during the evaluation/test phase, this loss
function does not change the final prediction of the network for a given input, since the winner (the
entry with the highest score) remains the same.

Overall, we upper-bound the loss in (8) by replacing LRobust with the IBP relaxation approach
utilized in Gowal et al. [2018], Sheikholeslami et al. [2021] and replacing LAbstain

Robust with L̄Abstain
Robust =

1
n

∑n
i=1

¯̀Abstain
Robust (xi, yi) presented in Theorem 2. Thus our total training loss can be presented as:

LTotal = L̄Robust + λ1L̄
Abstain
Robust + λ2LNatural (12)

Algorithm 2 describes the procedure of optimizing (12) on a joint classifier and detector with multiple
abstain classes.

Algorithm 2 Train a robust neural network on a training data
1: Input: Batches of data D1, . . . ,DR, step-size ν, θ(L): optimization parameters for loss L.
2: for t = 1, . . . , R do
3: Let (x1, y1), . . . , (xN , yN ) ∈ Dt
4: Compute Jo(x) ∀ x ∈ Dt, ∀o ∈ {1, . . . ,K} by Algorithm 1.
5: Compute LRobust as described in Gowal et al. [2018] on Batch Dt.
6: Compute L̄abstain

Robust on Batch Dt using Theorem 2.
7: θ(L) = θ(L)− ν∇

(
θ(L̄Robust) + λ1θ(L̄abstain

Robust) + λ2θ(LNatural)
)

C Balance Between Abstain Classes and Model Degeneracy
Having multiple abstain classes can potentially increase the capacity of our classifier to detect
adversarial examples. However, as we will see in Figure 3 (10 abstains, unregularized), several
abstain classes collapse together and capture similar adversarial patterns. Such a phenomenon, which
we referred to as “model degeneracy” and is illustrated with an example in Appendix K, will prevent
us from utilizing all abstain classes fully.

To address this issue, we impose a regularization term to the loss function such that the network
utilizes all abstain classes in balance. We aim to make sure the η values are distributed nearly
uniformly and there are no idle abstain classes. Let ηik, zL−1(xi), and yi be the abstain vector
corresponding to the sample xi verifying against the target class k, the output of the layer L− 1, and
the assigned label to the data point xi respectively. Therefore, the regularized verification problem
over n given samples takes the following form:

min
η1,...,ηn∈P

n∑
i=1

∑
k 6=yi

max
z(xi)≤zL−1≤z̄(xi)

−ck(ηik)

(WLzL−1 + bL) + µ‖[ γ1

M + 1
−
∑n
j=1

∑
o 6=yi η

jo]+

n(K − 1)
‖2, (13)
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The above regularizer penalizes the objective function if the average value of η coefficient correspond-
ing to a given abstain class over all samples of the batch is smaller than a threshold (the threshold is
determined by the hyper-parameter γ). In other words, if an abstain class is not contributing enough
to the detection of adversarial samples, it will be penalized accordingly. Note that if γ is larger, we
penalize an idle abstain class more.

Note that in the unregularized case, the optimization of parameters ηik are independent of each
other. In contrast, by adding the regularizer described in (13) we require to optimize ηik parameters
of different samples and target classes jointly (they are coupled in the regularization term). Since
optimizing (13) over the set of all n samples is infeasible for datasets with large number of samples,
we solve the problem over smaller batches of the data to reduce the complexity of problem in each
iteration. We utilize the same Bregman divergence procedure used in Algorithm 1, while the gradient
with respect to ηik takes the regularization term into account as well.

D Verification with β-Crown

Despite its simplicity, IBP-based verification comes with a certain limitation, namely the looseness of
its layer-by-layer bounds of the input. To overcome this limitation, tighter verification methods have
been proposed in the literature [Singh et al., 2018, Zhang et al., 2019, Dathathri et al., 2020, Wang
et al., 2021]. Among these, β-crown [Wang et al., 2021] utilizes the branch-and-bound technique
to generalize and improve the IBP-CROWN proposed in Zhang et al. [2019]. Let zi and z̄i be
the estimated element-wise lower-bound and upper-bounds for the pre-activation value of zi, i.e.,
zi ≤ zi ≤ z̄i, where these lower and upper bounds are obtained by the method in Zhang et al. [2019].
Let ẑi be the value we obtain by applying ReLU function to zi. We say a neuron is unstable if its sign
after applying ReLU activation cannot be determined based on only knowing the corresponding lower
and upper bounds. That is, a neuron is unstable if zi < 0 < z̄i. For stable neurons, no relaxation
is needed to enforce convexity of σ(z) (since the neuron operates in a linear regime). On the other
hand, given an unstable neuron, they use branch-and-bound (BAB) approach to split the input range
of the neuron into two sub-domains Cil = {x ∈ C(x0, ε)| ẑi ≤ 0} and Ciu = {x ∈ C(x0, ε)| ẑi > 0}.
Within each subdomain, the neuron operates linearly and hence verification is easy. Thus we can
verify for each of these subdomains separately. If we have N unstable nodes, BAB algorithm requires
the investigation of 2N sub-domains in the worst-case. β-Crown proposes a heuristic for traversing
all these subdomains: The higher the absolute value of the corresponding lower-bound of a node is,
the sooner it is visited by the verifier. For verifying each sub-problem, Wang et al. [2021] proposed a
lower-bounded which requires solving a maximization problem over two parameters α and β:

min
z∈Z(x0,ε)

cTykz ≥ max
α,β

g(x,α,β)

where g(x,α,β) = (a + Pαβ)Tx + qTαβ + dα. (14)

Here, the matrix P and the vectors q,a and d are functions of Wi,bi, zi, z̄i,α, and β parameters.
See Wang et al. [2021] for the precise definition of g. Notice that any choice of (α,β) provides a
valid lower bound for verification. However, optimizing α and β in (14) leads to a tighter bound.

Now, we focus on β–Crown verification of networks with multiple abstain classes. To this end,
we will find a sufficient condition for (4) using the lower-bound technique of (14) in β–Crown. In
particular, by switching the minimization and maximization in (4) and using the β–Crown lower
bound (14), we can find a lower-bound of the form

min
zL∈Z(x0,ε)

max{cTykzL, cTa1kzL, . . . , c
T
aMkzL} ≥

max
η∈P,α,β≥0

G(x0,α,β,η). (15)

The details of this inequality and the exact definition of function G(·) is provided in Appendix J.
Note that any feasible solution to the right hand side of (15) is a valid lower-bound to the original
verification problem (left-hand-side). Thus, in order for (4) to be satisfied, it suffices to find a feasible
(α,β,η) such that G(x0,α,β,η) ≥ 0. To optimize the RHS of (15) in Algorithm 3, we utilize
AutoLirpa library of [Zhang et al., 2019] for updating α, and use Bregman proximal subgradient
method to update β and η – See appendix G. We use Euclidean norm Bregman divergence for
updating β, and Shannon entropy Bregman divergence for η to obtain closed-form updates.
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Algorithm 3 β–Crown verification of networks with multiple abstain classes
1: Input: number of iterations T , number of iterations in the inner-loop T0, Step-size γ.
2: for t = 0, 1, . . . , T do
3: Update α using AutoLirpa library [Zhang et al., 2019]
4: for k = 0, 1, . . . , T0 do
5: β = [β + γ ∂G(x0,α,β,η

∂β ]+, where [w]+ = max{0, w} is projection to non-negative orthant

6: ηnew
m =

ηold
m exp(2γ

∂G(x0,α,β,η)
∂ηm

)∑M
j=0 η

old
j exp(2γ

∂G(x0,α,β,η)
∂ηj

)
, ∀m ∈ {0, . . . ,M}

Figure 4: Performance of β-crown on verification of Neural Networks with single abstain, 4 abstain
classes, 10 abstain classes with regularized, and a network with one more layer (single abstain) on
CIFAR-10 dataset. M = 1 coincides with Sheikholeslami et al. [2021] approach.

E Further Experiments

In Figure 5, we investigate the effect of changing the number of abstain classes of the shallow network
described above. As we observe, the unregularized network and the network with one more layer
is much more sensitive to the change of M than the regularized version. This means, we can use
the regularized network with the same performance while it does not require to be tuned for the
optimal M . In the unregularized version, by increasing the number of abstain classes from M = 1 to
M = 5 we see improvement. However, after this threshold, the network performance drops gradually
such that for M = 10 where the number of labels and abstain classes are equal (M = K = 10) the
performance of the network in this case is even worse than the single-abstain network due to the
model degeneracy of the multi-abstain network. However, the network trained on the regularized loss
maintains the its performance when M changes from the optimal value to larger values.

Moreover, we illustrate the performance of networks trained in the first set of experiments by β-
crown in Figure 4 . The networks whose robust accuracy are verified by Beta-crown has 1% to 2%
improvement compared to the same networks verified by IBP on average.

F Implementation Details

In table F, we demonstrate the structure of the deep networks used in experiments of Table 1. The
scheduler used for the experiments is the one utilized by Sheikholeslami et al. [2021]. On both
MNIST and CIFAR-10 datasets, we have used an Adam optimizer with learning rate 5× 10−4. κ
is scheduled by a linear ramp-down process, starting at 1, which after a warm-up period is ramped
down to value κend = 0.5. Value of ε during the training is also simultaneously scheduled by a
linear ramp-up, starting at 0 and εTrain as the final value. The networks are trained with four NVIDIA
V100 GPUs. The trade-off between standard accuracy on clean images, and robust verified accuracy
can be tuned by changing λ2 from 0 to +∞ where the larger values correspond to more robust
networks. For the networks with the regularizer addressing the model degeneracy issue, we choose
γ by tuning it in the [ 0.1

K+M , 1.5
K+M ]. Our observations on both MNIST and CIFAR-10 datasets for

different ε values show that the optimal value for γ is consistently close to 1
K+M . Thus, we suggest

to choose hyper-parameter γ = 1
K+M where K is the number of labels and M is the number of

11



Figure 5: Performance of Multiple-abstain shallow networks on CIFAR-10 datasets.

detection classes. The optimal value for M is 4 for the CIFAR-10 and M = 3 for MNIST dataset. By
adding the "model degeneracy" regularizer, the obtained network has nearly the same performance
for M ∈ [4, 2K]. Overall, we suggest to choose M = K and γ = 1

K+M as the default values for
hyper-parameters M and γ.

Network Layers
Conv 64 3×3
Conv 64 3×3

Conv 128 3×3
Conv 128 3×3

Fully Connected 512
Linear 10

Table 2: Standard and Robust Verified error of state-of-the-art approaches on CIFAR-10 dataset.

1. For MNIST, we train on a single Nvidia V100 GPU for 100 epochs with batch sizes of
100. The total number of training steps is 60K. We decay the learning rate by 10× at steps
15K and 25K. We use warm-up and ramp-up duration of 2K and 10K steps, respectively.
We do not use any data augmentation techniques and use full 28× 28 images without any
normalization.

2. CIFAR-10, we train for 3200 epochs with batch sizes of 1600. The total number of training
steps is 100K. We decay the learning rate by 10× at steps 60K and 90K. We use warm-up
and ramp-up duration of 5K and 50K steps, respectively. During training, we add random
translations and flips, and normalize each image channel (using the channel statistics from
the train set).
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G Bregman-Divergence Method for Optimizing a Convex Function Over a
Probability Simplex

In this section, we show how to optimize a convex optimization problem over a probability simplex
by using the Bregman divergence method. Let η be a vector of n elements. We aim to minimize the
following constrained optimization problem where J is a convex function with respect to η:

min
η1,...,ηn

J(η1, . . . , ηn) subject to
n∑
i=1

ηi = 1, ηi ≥ 0 ∀i = 1, . . . , n. (16)

To solve the above problem, we define the Bregman distance function as:

B(x,y) = γ(x)− γ(y)− 〈∇γ(x),x− y〉
where γ is a strictly convex function. For this specific problem where the constrain is over a probability
simplex, we choose γ(x) =

∑n
i=1 xi log(xi). Thus:

B(x,y) =
n∑
i=1

xi log(
xi
yi

)

One can rewrite problem 16 as:

min
η1,...,ηn

J(η1, . . . , ηn) + IP(η) (17)

where P =. Applying proximal gradient descent method on the above problem, we have:

ηr+1 = argmin
η
IP(η) + 〈∇J(η),η − ηi〉+

1

2ν
B(η,ηi) (18)

= argmin
η

n∑
i=1

∂J(ηr)

∂ηi
(ηi − ηri ) +

1

2ν

( n∑
i=1

ηi log(ηi)−
n∑
i=1

∂γ(ηri )

∂ηi
(ηi − ηri )

)
(19)

By simplifying the above problem, it turns to:

ηr+1 = argmin
η

n∑
i=1

ηi(
∂J(ηr)

∂ηi
− 1

2ν
log(ηri )−

1

2ν
) +

1

2ν

n∑
i=1

ηi log(ηi) (20)

subject to
n∑
i=1

ηi = 1, ηi ≥ 0 ∀i = 1, . . . , n. (21)

Writing the Lagrangian function of the above problem, we have:

ηr+1 = argmin
η

n∑
i=1

ηi(
∂J(ηr)

∂ηi
− 1

2ν
log(ηri )−

1

2ν
) +

1

2ν

n∑
i=1

ηi log(ηi) + λ∗(

n∑
i=1

ηi − 1) (22)

subject to ηi ≥ 0 ∀i = 1, . . . , n.

By taking the derivative with respect to ηi and using the constraint
∑n
i=1 ηi = 1, it can be shown

that:

ηr+1
i =

ηri exp(−2ν∇J(η)i)∑n
j=1 η

r
j exp(−2ν∇J(η)j)

(23)

We use the update rule (23) in Algorithm 1 and Algorithm 3 to obtain the optimal η at each iteration.
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H Proof of Theorems

In this section, we prove Theorem 1 and Theorem 2.

Proof of Theorem 1: Starting from Equation 4, we can equivalently formulate it as:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) = min

z∈Z(x0,ε)
max

{η0,...,ηM}∈P
ck(η)T z. (24)

Note that the maximum element of the left hand side can be obtained by setting its corresponding η
coefficient to 1 on the right hand side. Conversely, any optimal solution to the right hand is exactly
equal to the maximum element of the left hand side. According to the min-max equality (duality),
when the minimum and the maximum problems are interchanged, the following inequality holds:

min
z∈Z(x0,ε)

max
{η0,...,ηM}∈P

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz ≥

max
{η0,...,ηM}∈P

min
z∈Z(x0,ε)

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz. (25)

Moreover, by the definition of upper-bounds and lower-bounds presented in Gowal et al. [2018],
Z(x0, ε) is a subset of zL ≤ z ≤ z̄L. Thus:

max
{η0,...,ηM}∈P

min
z∈Z(x0,ε)

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz ≥

max
{η0,...,ηM}∈P

min
zL≤z≤z̄L

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz. (26)

Combining Equality (24) with (25) and (26), we have:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) ≥ max

{η0,...,ηM}∈P
min

zL≤z≤z̄L
ck(η)T z. (27)

Since zL = WLzL−1 + bL, the right-hand-side of the above inequality can be rewritten as:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) ≥ max

η∈P
min

zL−1≤z≤z̄L−1

c(η)T (WLz + bL),

which is exactly the claim of Theorem 1.

Proof of Theorem 2: For the simplicity of the presentation, assume that a0 = y. Partition the set of
possible values of zL in the following sets:

Ẑai = {zL|[zL]ai ≥ [zL]aj ∀j 6= i}

If zL ∈ Ẑai , then:

[zL]ai − [zL]k ≥ [zL]aj − [zL]k ∀j 6= i⇒ [zL]ai − [zL]k

= max
i=0,...,M

{[zL]ai − [zL]k} = max
i∈{0,...,M}

{cTai,kzL}

Thus:

[zL]ai − [zL]k = max
i=0,...,M

{cTai,kzL} ≥ min
zL∈Z(x0,ε)

max
i=0,...,M

{cTai,kzL}

= min
zL−1∈ZL−1(x0,ε)

max
i=0,...,M

{cTai,k(WLzL−1 + bL)}

≥ min
z≤zL−1≤z̄

max
i=0,...,M

{cTai,k(WLzL−1 + bL)}

= min
z≤zL−1≤z̄

max
η∈P

c(η)T (WLzL−1 + bL) (28)
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Note that the second inequality holds since the minimum is taken over a larger set in the right hand
side of the inequality. Using the min-max inequality:

min
z≤zL−1≤z̄

max
η∈P

c(η)T (WLzL−1 + bL) ≥ max
η∈P

min
z≤zL−1≤z̄

c(η)T (WLzL−1 + bL) = −Jk(η)

(29)

Combining (28) and (29), and multiplying both sides by −1, we obtain:

[zL]k − [zL]ai ≤ Jk(η) (30)

On the other hand:

max
‖δ‖∞≤ε

min
m=0,...,M

`xent\Am

(
zL(x + δ), am

)
≤ max
‖δ‖∞≤ε

`xent\Ai

(
zL(x + δ), ai

)
≤ max

zL−1≤z≤z̄L−1

`xent\Ai(zL) s.t. zL = WLzL−1 + bL. (31)

Moreover, by the property of the cross-entropy loss, we have:

`xent\Ai(zL) = `xent\Ai(zL − [zL]ai1) (32)

Combining (30), (31) and (32), we have:

max
‖δ‖∞≤ε

min
m=0,...,M

`xent\Am

(
zL(x + δ), am

)
≤ max

zL−1≤zL−1≤z̄L−1

`xent\Ai(zL) s.t. zL = WLzL−1 + bL.

= max
zL−1≤zL−1≤z̄L−1

`xent\Ai(zL − [zL]ai1) s.t. zL = WLzL−1

≤ max
zL−1≤zL−1≤z̄L−1

`xent\Ai(Jk(η), ai)

= max
zL−1≤zL−1≤z̄L−1

`xent\A0
(Jk(η), a0)

Summing up over all data points, the desired result is proven.

I Details of β-Crown

In this section, we show how β-crown sub-problems can be obtained for neural networks without
abstain classes and with multiple abstain classes respectively. Before proceeding, let us have a few
definitions and lemmas.

Lemma 3 [Zhang et al., 2019, Theorem 15] Given two vectors u and v, the following inequality
holds:

v>ReLU(u) ≥ v>Dαu + b′,

where b′ is a constant vector and Dα is a diagonal matrix containing αj’s as free parameters:

Dj,j(α) =


1, if zj ≥ 0

0, if z̄j ≤ 0

αj , if z̄j > 0 > zj and vj ≥ 0
z̄j

z̄j−zj
, if z̄j > 0 > zj and vj < 0,

(33)

Definition 4 The recursive function Ω(i, j) is defined as follows [Wang et al., 2021]:

Ω(i, i) = I, Ω(i, j) = WiDi−1(αi−1)Ω(i− 1, j)
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β-crown defines a matrix S for handling splits through the branch-and-bound process. The multi-
plier(s) β determines the branching rule.

Si[j][j] =


−1, if split zi[j] ≥ 0

1, if split zi[j] < 0

0, if no split z̄j ,
(34)

Thus, the verification problem of β-crown is formulated as:

min
zinZ

cT
(
WLReLU(zL−1) + bL−1

)
≥ min

zinZ
max
βL−1

cT
(
WLDL−1zL−1 + bL−1

)
+ β>L−1SL−1

(35)

Having these definitions, we can write P,q,a, and d explicitly as functions of α and β. P ∈
Rd0×(

∑L−1
i=1 di) is a block matrix P :=

[
P>1 P>2 · · · P>L−1

]
, q ∈ R

∑L−1
i=1 di is a vector q :=[

q>1 · · · q>L−1

]>
. Moreover:

a = [Ω(L, 1)W1]
> ∈ Rd0×1,

Pi = SiΩ(i, 1)W1 ∈ Rdi×d0 , ∀ 1 ≤ i ≤ L− 1

qi =

i∑
k=1

SiΩ(i, k)bk +

i∑
k=2

SiΩ(i, k)Wkbk−1 ∈ Rdi , ∀ 1 ≤ i ≤ L− 1

d =

L∑
i=1

Ω(L, i)bi +

L∑
i=2

Ω(L, i)Wibi−1

bi =


1, if zj ≥ 0

0, if z̄j ≤ 0

αj , if z̄j > 0 > zj and vj ≥ 0
z̄j

z̄j−zj
, if z̄j > 0 > zj and vj < 0,

Now we extend the definition of g for the network consisting of multiple abstain classes. Let z̄ be
the pre-activation value of vector z before applying ReLU function. We aim to solve the following
verification problem:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T (WLzL−1 + bL).

Applying Lemma 3 to the above problem, we have:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T
(
WLzL−1 + bL

)
≤ min

zL−1∈ZL−1(x0,ε)
max
η∈P

ck(η)T
(
WLDL−1

(
αL−1

)
ẑL−1 + bL

)
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Adding the β-crown Lagrangian multiplier to the above problem, it turns to:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T
(
WLDL−1

(
αL−1

)
ẑL−1 + bL

)
≤

min
zL−1∈ZL−1(x0,ε)

max
η∈P,αL−1,βL−1

ck(η)T
(
WLDL−1(αL−1)zL−1 + bL

)
+ β>L−1SL−1zL−1

≤ max
αL−1,βL−1

min
zL−1∈ZL−1(x0,ε)

max
η∈P

(
ck(η)TWLDL−1(αL−1) + β>L−1SL−1

)
ẑL−1

+ ck(η)TbL = max
αL−1,βL−1

min
zL−1∈ZL−1(x0,ε)

max
η∈P

(
ck(η)TWLDL−1(αL−1)

+ β>L−1SL−1

)(
WL−1zL−2 + bL−1

)
+ ck(η)TbL

Replace the definition of A(i) in [Wang et al., 2021, Theorem 3.1] with the following matrix and
repeat the proof.

A(i) =

{
ck(η)TWL, if i = L− 1(
A(i+1)Di+1(αi+1) + β>i+1Si+1

)
Wi+1, if 0 ≤ i ≤ L− 2

(36)

Note that the definition of d will be changed in the following way:

d = ck(η)TbL +

L∑
i=1

Ω(L, i)bi +

L∑
i=2

Ω(L, i)Wibi−1

Moreover, Ω(L, j) = ck(η)TWLDL−1(αL−1)Ω(L− 1, j). The rest of the definitions remain the
same.

J Derivation of equation (15)

In this section, we show how to derive Equation J.

min
zL∈Z(x,ε)

max{cTykzL, cTa1kzL, . . . , c
T
aMkzL}

= min
zL∈Z(x,ε)

max
η∈P

M∑
i=0

ηic
T
aikzL

≥ max
η∈P

min
zL∈Z(x,ε)

M∑
i=0

ηic
T
aikzL

≥ max
η∈P

max
α,β≥0

ηic
T
aikzL

= max
α,β≥0,η∈P

( M∑
i=0

ηigi(x0,α,β) , G(x0,α,β,η)
)

K A simple example on the benefits and pitfalls of having multiple abstain
classes

In this example, we provide a simple toy example illustrating:

1. How adding multiple abstain classes can improve the detection of adversarial examples.

2. How detection with multiple abstain classes may suffer from a “model degeneracy" phe-
nomenon.
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Figure 6: Distribution of adversarial and real data described in the example. While one linear classifier
cannot separate the adversarial (red section) and real (green section) data points, two detection classes
are capable of detecting adversarial examples.

Example: Consider a simple one dimensional data distributed where the read data is coming
from the Laplacian distribution with probability density function Pr(X = x) = 1

2 exp(−|x|).
Assume that the adversary samples are distributed according to the probability density function
Pa(X = x) = 1

4 (exp(−|x− 10|) + exp(−|x+ 10|). Assume that 1
3 data is real, and 2

3 is coming
from adversary. The adversary and the real data is illustrated in Fig 6.

Consider a binary neural network classifier with no hidden layer for detecting adversaries. More
specifically, the neural network has two weight vectors wr and wa, and the bias values br and ba. The
network classifies a sample x as "real" if wrx+ br > wax+ ba; otherwise, it classifies the sample
as out-of-distribution/abstain. The misclassification rate of this classifier is given by:

P (error) =
1

3
Px∼Pr (w

ax+ ba > wrx+ br) +
2

3
Px∼Pa(wax+ ba < wrx+ br)

=
1

3
Px∼Pr (x >

br − ba

wa − wr
) +

2

3
Px∼Pa(x <

br − ba

wa − wr
),

where due to symmetry and scaling invariant, without loss of generality we assumed thatwa−wr > 0.
Let t = br−ba

wa−wr . Therefore,

P (error) =
1

3

∫ +∞

t

1

2
exp(−|x|)dx+

2

3

∫ t

−∞

1

4
(exp(−|x− 10|) + exp(−|x+ 10|)dx (37)

Thus, to find the optimal classifier, we require to determine the optimal t minimizing the above
equation. One can numerically verify that the optimal t is given by t∗ = 5 leading to the minimum
misclassification rate of ≈ 0.34. This value is the optimal misclassification rate that can be achieved
by our single abstain class neural network.

Now consider a neural network with two abstain classes. Assume that the weights and biases
corresponding to the abstain classes are wa1 , w

a
2 , b

a
1 , b

a
2 , and the weight and bias for the real class is

given by wr and br. A sample x is classified as a real example if and only if both of the following
conditions hold:

wrx+ br > wa1x+ ba1 (38)
wrx+ br > wa2x+ ba2 , (39)

otherwise, it is classified as an adversarial (out of distribution) sample. The misclassification rate of
such classifier is given by:

P (error) =
1

3
Px∼Pc(Conditions (38) hold) +

2

3
Px∼Pa(Conditions (38) do not hold) (40)
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Claim 1: The point wa1 = −1, wa2 = 1, ba1 = ba2 = 0, br = 5, wr = 0 is a global minimum of (40)
with the optimum misclassification rate less than 0.1.

Proof: Define t1 = − ba1−br
wa1−wr

, t2 = − ba2−br
wa2−wr

. Considering all possible sign cases, it is not hard to
see that at the optimal point, wa1 − wr and wa2 − wr have different signs. Without loss of generality,
assume that wa1 − wr < 0 and wa2 − wr > 0. Then:

P (error) =
1

3
Px∼Pc(x ≤ t1 ∨ x ≥ t2) +

2

3
Px∼Pa(x ≥ t1 ∧ x ≤ t2) (41)

It is not hard to see that the optimal solution is given by t∗1 = −5, t∗2 = 5. Plugging these values in
above equation, we can check that the optimal loss is less than 0.1. �

Claim 1 shows that by adding an abstain class, the misclassification rate of the classifier goes down
from 0.34 to below 0.1. This simple example illustrates the benefit of having multiple abstain classes.
Next, we show that by having multiple abstain classes, we are prone to the “model degeneracy"
phenomenon.

Claim 2: Let w̄a1 = w̄a2 = 1, b̄a1 = b̄a2 = 0, w̄r = 0, b̄r = 5. Then, there exists a point (w̃, b̃) =

(w̃a1 , w̃
a
2 , b̃

a
1 , b̃

a
2 , w̃

r, b̃r) such that (w̃, b̃) is a local minimum of the loss function in (40) and ‖(w̃, b̃)−
(w̄, b̄)‖2 ≤ 0.1.

Proof: Let t1 = − ba1−br
wa1−wr

, t2 = − ba2−br
wa2−wr

. Notice that in a neighborhood of point (w̄, b̄), we have
wa1 − wr > 0 and wa2 − wr > 0. Thus, after the loss function in (40) can be written as:

`(t1, t2) =
1

3
Px∼Pc(x ≤ t1 ∨ x ≥ t2) +

2

3
Px∼Pa(x ≥ t1 ∧ x ≤ t2)

=
1

3
Px∼Pr (x ≥ min(t1, t2)) +

2

3
Px∼Pr (x ≤ min(t1, t2))

=
1

3
Px∼Pr (x ≥ z) +

2

3
Px∼Pr (x ≤ z),

where z = mint1,t2 . It suffices to show that the above function has a local minimum close to the
point z̄ = 5 (see [Nouiehed and Razaviyayn, 2021]). Simplifying `(t1, t2) as a function of z, we
have:

`(t1, t2) = h(z) =
1

6
exp(−z) +

1

3
− 1

6
exp(−z − 10) +

1

6
exp(z − 10)

By plotting h(z), we can observe that it has a local minimum close to z̄ = 5. �

This claim shows that by optimizing the loss, we may converge to the local optimum (w̃, b̃) where
both abstain classes become essentially the same and we do not utilize the two abstain classes fully.

L Structure of Neural Networks in Section 3

In Section 3 we introduced a toy example in Motivation subsection to show how loser can IBP bounds
become when we go from a 2-layer network to a 3-layer network. The structure of the 2-layer neural
networks is as follows:

z2(x) = V2ReLU(W2x),

where x is the 2-dimensional input, W2 =

(
1 −0.5
−0.8 1.2

)
, and V2 =

(
−0.2 −0.8
−1.9 1.7

)
. The

structure of the 3-layer network can be described as follows:

z3(x) = U3ReLU
(
V2ReLU(W2x)

)
,

where U3 =

(
−1.1 −0.9
−1.6 1.3

)
.

M Societal Impacts

Since current trained neural networks are highly vulnerable to adversarial examples and out-of-
distribution samples, it is debatable whether to use such models in mission-critical applications
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such as self-driving cars. To address neural networks’ safety and reliability concerns, it is crucial to
devise mechanisms guaranteeing the robustness of the trained models in uncertain and adversarial
environments. The current work proposes a rigorous methodology for training and verifying neural
networks against adversarial attacks. From a broader perspective, verifiable guarantees for the
performance of artificial intelligence (AI) models reduce the ethical and safety concerns existing
around AI systems.
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