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Abstract

Knowledge graph embedding (KGE) models001
represent each entity and relation of a knowl-002
edge graph (KG) with low-dimensional em-003
bedding vectors. These methods have recently004
been applied to KG link prediction and ques-005
tion answering over incomplete KGs (KGQA).006
KGEs typically create an embedding for each007
entity in the graph, which results in large008
model sizes on real-world graphs with mil-009
lions of entities. Their atomic entity represen-010
tation also necessitates a multi-stage approach011
to downstream tasks, which limits their utility.012
We show that an off-the-shelf encoder-decoder013
Transformer model can serve as a scalable and014
versatile KGE model obtaining state-of-the-art015
results for KG link prediction and KGQA. We016
achieve this by posing KG link prediction as017
a sequence-to-sequence task and exchange the018
triple scoring approach taken by prior KGE019
methods with a generative decoding approach.020
Such a simple but powerful method reduces021
the model size up to 90% compared to con-022
ventional KGE models and attains the best per-023
formance among small-sized models. An en-024
semble with a traditional KGE model even sets025
a new state-of-the-art. After finetuning this026
model on the task of KGQA over incomplete027
KGs, our approach outperforms baselines on028
multiple large-scale datasets without extensive029
hyperparameter tuning.030

1 Introduction031

A knowledge graph (KG) is a multi-relational032

graph where the nodes are entities from the real033

world (e.g. Barack Obama, United States) and034

the named edges represent the relationships be-035

tween them (e.g. Barack Obama - born in - United036

States). KGs can be either domain specific such as037

WikiMovies (Miller et al., 2016) or public, cross-038

domain KGs encoding common knowledge such as039

WikiData and DBPedia (Heist et al., 2020). These040

graph-structure databases play an important role041

in knowledge-intensive applications including web 042

search, question answering and recommendation 043

systems (Ji et al., 2020). 044

Most real-world knowledge graphs are incom- 045

plete. However, some missing facts can be in- 046

ferred using existing facts in the KG (Bordes et al., 047

2013). This task termed knowledge graph com- 048

pletion (KGC)1 has become a popular area of re- 049

search in recent years (Wang et al., 2017) and is of- 050

ten approached using knowledge graph embedding 051

(KGE) models. KGE models represent each entity 052

and relation of the KG by a dense vector embed- 053

ding. Using these embeddings the model is trained 054

to distinguish correct from incorrect facts. One 055

of the main downstream applications of KGEs is 056

question answering over incomplete KGs (KGQA) 057

(Choudhary et al., 2021). 058

Taking into account the large size of real world 059

KGs (WikiData contains ~90M entities) and the 060

applicability to downstream tasks, KGE models 061

should fulfill the following desiderata: (i) scala- 062

bility – i.e. have model size and inference time 063

independent of the amount of entities (ii) quality 064

– reach good empirical performance (iii) versatil- 065

ity – be applicable for multiple tasks such as KGC 066

and QA, and (iv) simplicity – consist of a single 067

module with a standard architecture and training 068

pipeline. Traditional KGE models fulfill quality 069

and simplicity. They build upon a simple archi- 070

tecture and reach a high quality in terms of KGC. 071

However, as they create a unique embedding per 072

entity/relation, they scale linearly with the amount 073

of entities in the graph, both in model size and in- 074

ference time, and offer limited versatility. Methods 075

such as DKRL (Xie et al., 2016a) and KEPLER 076

(Wang et al., 2021) attempt to tackle the scalability 077

issue using compositional embeddings. However, 078

they fail to achieve quality comparable to conven- 079

tional KGEs. KG-BERT (Yao et al., 2019) utilizes 080

pre-trained BERT for link prediction and holds po- 081

1We use the term KGC for the task of KG link prediction.
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predict tail: john o'connor | position held

predict head: blondeliini | parent taxon

predict answer: what does jamaican people speak

archbishop

euhalidaya

jamaican english

Figure 1: Overview of our method KGT5. The encoder-decoder Transformer model is first trained on the link
prediction task (predicting head/tail entities, given tail/head and relation). For question answering, the same model
is further finetuned using question-answer pairs.

tential in terms of versatility as it is applicable to082

downstream NLP tasks. However, it is not scalable083

since it needs to encode the full triple representa-084

tion in order capture rich interactions between en-085

tities and relations2. QA methods which leverage086

KGEs outperform traditional KGQA approaches087

on incomplete KGs. But, combining KGEs with088

the QA pipeline is a non-trivial task; models that089

attempt to do this often work on only limited query090

types (Huang et al. 2019; Sun et al. 2021; Saxena091

et al. 2020) or require multi-stage training and in-092

ference pipelines (Ren et al., 2021). Here, in order093

to achieve quality, these models have sacrificed094

versatility and simplicity.095

Our paper shows that all of these desiderata096

can be fulfilled by a simple sequence-to-sequence097

(seq2seq) model. To this end, we pose KG link098

prediction as a seq2seq task and train an encoder-099

decoder Transformer model (Vaswani et al., 2017)100

on this task. We then use this model pre-trained for101

link prediction and further finetune it for question102

answering; while finetuning for QA, we regular-103

ize with the link prediction objective. This sim-104

ple but powerful approach, which we call KGT5,105

can be visualised in Fig. 1. With such a unified106

seq2seq approach we achieve (i) scalability – by107

using compositional entity representations and gen-108

erative decoding (rather than scoring all entities)109

for inference (ii) quality – we obtain state-of-the-110

art performance on two tasks (iii) versatility – the111

same model can be used for both KGC and KGQA112

on multiple datasets, and (iv) simplicity – we ob-113

tain all results using an off-the-shelf model with no114

task or dataset-specific hyperparameter tuning.115

In summary, we make the following contributions:116

• We show that KG link prediction and question an-117

swering can be treated as sequence-to-sequence118

tasks and tackled successfully with a single119

encoder-decoder Transformer (with the same ar-120

chitecture as T5-small (Raffel et al., 2020)).121

2Shen et al. (2020) estimate it would take KG-BERT 3
days for an evaluation run on a KG with just 40k entities

• With this simple but powerful approach called 122

KGT5, we reduce model size for KG link predic- 123

tion up to 90% while maintaining quality com- 124

petitive to conventional KGE approaches. 125

• After ensembling KGT5 with a conventional 126

KGE model, we even establish a new state-of- 127

the-art for KG link prediction 128

• We show the versatility of this approach through 129

the task of KGQA over incomplete graphs. By 130

pre-training on KG link prediction and finetuning 131

on QA, our Transformer model outperforms the 132

state-of-the-art on multiple large-scale datasets. 133

We will make our source code, datasets and 134

pre-trained models publicly available once the 135

anonymity period ends. 136

2 Background & Related Work 137

Given a set of entities E and a set of relationsR, a 138

knowledge graph K ⊆ E ×R × E is a collection 139

of subject-predicate-object (s, p, o) triples. Link 140

prediction is the task of predicting missing triples 141

in K by answering queries of the form of (s, p, ?) 142

and (?, p, o). This is typically accomplished using 143

knowledge graph embedding (KGE) models. 144

Conventional KGEs assign an embedding vec- 145

tor for each entity and relation in the KG. They 146

model the plausibility of (s, p, o) triples via model 147

specific scoring functions f(es, ep, eo) using the 148

subject (es), predicate (ep) and object (eo) specific 149

embeddings. Once trained, these embeddings are 150

used for downstream tasks such as question answer- 151

ing. 152

Knowledge graph question answering (KGQA) 153

is the task of answering a natural language question 154

using a KG as source of knowledge. The questions 155

can be either simple factual questions that require a 156

single fact retrieval (e.g. What language is spoken 157

in India?), or they can be complex questions that 158

require reasoning over multiple facts in the KG (e.g. 159

What is the predominant religion where the leader 160

is Ovadia Yosef?). KGEs can be utilized to perform 161

KGQA when the background KGs are incomplete. 162
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In the next few sections we will go into more163

detail about existing work on KGEs and KGQA.164

2.1 Knowledge Graph Embeddings165

Atomic KGE models. Multiple KGE models have166

been proposed in the literature, mainly differing in167

the form of their scoring function f(es, ep, eo). A168

comprehensive survey of these models, their scor-169

ing functions, training regime and link prediction170

performance can be found in Wang et al. (2017) and171

Ruffinelli et al. (2020). It is important to note that172

although these models obtain superior performance173

in the link prediction task, they suffer from a linear174

scaling in model size with the number of entities in175

the KG, and applying them to question answering176

necessitates separate KGE and QA modules.177

Compositional KGE models. To combat the lin-178

ear scaling of the model size with the amount of en-179

tities in a KG, entity embeddings can be composed180

of token embeddings. DKRL (Xie et al., 2016b)181

embeds entities by combining word embeddings of182

entity descriptions with a CNN encoder, followed183

by the TransE scoring function. KEPLER (Wang184

et al., 2021) uses a Transformer-based encoder and185

combines the typical KGE training objective with186

a masked language modeling objective. Both of187

these approaches encode entities and relations sepa-188

rately which limits the transferability of these mod-189

els to downstream tasks such as question answer-190

ing. MLMLM (Clouatre et al., 2021) encodes the191

whole query with a RoBERTa-based model and192

uses [MASK] tokens to generate predictions. How-193

ever, it performs significantly worse than atomic194

KGE models on link prediction on large KGs, and195

is yet to be applied to any downstream text-based196

tasks.197

2.2 Knowledge Graph Question Answering198

Knowledge Graph Question Answering (KGQA)199

has been traditionally solved using semantic pars-200

ing (Berant et al. 2013; Bast and Haussmann 2015;201

Das et al. 2021) where a natural language (NL)202

question is converted to a symbolic query over203

the KG. This is problematic for incomplete KGs,204

where a single missing link can cause the query to205

fail. Recent work has focused on KGQA over in-206

complete KGs, which is also the focus of our work.207

These methods attempt to overcome KG incom-208

pleteness using KG embeddings (Huang et al. 2019;209

Saxena et al. 2020; Sun et al. 2021; Ren et al. 2021).210

In order to use KGEs for KGQA, these methods211

first train a KGE model on the background KG,212

and then integrate the learned entity and relation 213

embeddings into the QA pipeline. This fragmented 214

approach brings several disadvantages; for exam- 215

ple Huang et al. (2019)’s method only works for 216

single fact question answering, while EmQL (Sun 217

et al., 2021) requires prior knowledge of the NL 218

question’s query structure. EmbedKGQA (Saxena 219

et al., 2020) is capable of multi-hop question an- 220

swering but is unable to deal with questions involv- 221

ing more than one entity. Hence, these methods 222

are lacking in versatility. LEGO (Ren et al., 2021) 223

can theoretically answer all first order logic based 224

questions but requires multiple dataset dependent 225

components including entity linking, relation prun- 226

ing and branch pruning modules; here, to obtain 227

versatility, LEGO has sacrificed simplicity. 228

3 The KGT5 Model 229

We pose both knowledge graph link prediction 230

and question answering as sequence-to-sequence 231

(seq2seq) tasks. We then train a simple encoder- 232

decoder Transformer – that has the same architec- 233

ture as T5-small (Raffel et al., 2020) – on these 234

tasks. While training for question answering, we 235

regularize with the link prediction objective. This 236

method, which we call KGT5, results in a scalable 237

KG link prediction model with vastly fewer param- 238

eters than conventional KGE models for large KGs. 239

This approach also confers simplicity and versatil- 240

ity to the model, whereby it can be easily adapted 241

to KGQA on any dataset regardless of question 242

complexity. 243

Posing KG link prediction as a seq2seq task re- 244

quires textual representations of entities and rela- 245

tions, and a verbalization scheme to convert link 246

prediction queries to textual queries; these are de- 247

tailed in §3.1. The link prediction training pro- 248

cedure is explained in §3.2 and inference in §3.3. 249

The KGQA finetuning and inference pipeline is 250

explained in §3.4. 251

3.1 Textual Representations & Verbalization 252

Text mapping. For link prediction we require 253

a one-to-one mapping between an entity/relation 254

and its textual representation. For WikiData-based 255

KGs, we use canonical mentions of entities and re- 256

lations as their textual representation, followed by a 257

disambiguation scheme that uses name aliases and 258

unique ids3. A similar naming and disambiguation 259

3Please see appendix A for details on textual representa-
tions.
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Figure 2: Inference pipeline of (A) conventional KGE models versus (B) KGT5 on the link prediction task. Given
a query (s, p, ?), we first verbalize it to a textual representation and then input it to the model. A fixed number of
sequences are sampled from the model decoder and then mapped back to their entity IDs. This is in contrast to
conventional KGEs, where each entity in the KG must be scored. Please see §3.3 for more details.

scheme is used for Freebase-based KGs; here, how-260

ever, we do not enforce a one-to-one mapping since261

these datasets are used for QA and not link pre-262

diction and unnecessary disambiguation can even263

harm model performance4.264

Verbalization. We convert (s, p, ?) query answer-265

ing to a sequence-to-sequence task by verbalizing266

the query (s, p, ?) to a textual representation. This267

is similar to the verbalization performed by Petroni268

et al. (2019) except there is no relation-specific269

template. For example, given a query (barack270

obama, born in, ?), we first obtain the textual men-271

tions of the entity and relation and then verbalize272

it as ’predict tail: barack obama |273

born in’. This sequence is input to the model,274

and output sequence is expected to be the an-275

swer to this query, ’united states’. A simi-276

lar scheme is used to verbalize subject prediction277

queries.278

3.2 Training KGT5 for Link Prediction279

To train a sequence-to-sequence model, we need a280

set of (input, output) sequences. For each triple281

(s, p, o) in the training graph, we verbalize the282

queries (s, p, ?) and (?, p, o) according to §3.1 to283

obtain two input sequences. The corresponding284

4This is because QA systems consider surface forms during
evaluation, not entity IDs. For example, it will be better to treat
both the single and album version of a song as the same entity
rather than append a unique number to their text mentions.

output sequences are the text mentions of o and 285

s respectively. The Transformer model is trained 286

with teacher forcing (Williams and Zipser, 1989) 287

and cross entropy loss.5 288

One thing to note is that unlike standard KGE 289

models, we train using only positive triples. At 290

each step of decoding, the model produces a proba- 291

bility distribution over possible next tokens. While 292

training, this distribution is penalised for being dif- 293

ferent from the ‘true’ distribution (i.e. a probability 294

of 1 for the true next token, 0 for all other tokens) 295

using cross entropy loss. Hence, this training pro- 296

cedure is most similar to the 1vsAll + CE loss in 297

Ruffinelli et al. (2020), except instead of scoring 298

the true entity against all other entities, we are scor- 299

ing the true token against all other tokens at each 300

step, and the process is repeated as many times as 301

the length of the tokenized true entity. This avoids 302

the need for many negatives, and is independent of 303

the number of entities. 304

3.3 Link Prediction Inference 305

In conventional KGE models we answer a query 306

(s, p, ?) by finding the score f(s, p, o) ∀o ∈ E 307

where f is the model specific scoring function. The 308

entities o are then ranked according to the scores. 309

In our approach, given query (s, p, ?), we first 310

verbalize it (§3.1) before feeding it to the Trans- 311

5More details about training are available in Appendix B
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Dataset Entities Rels Edges Tokenizer
Vocab Pretrained

WD5M 4.8M 828 21M 30k No
MetaQA 43k 9 70k 10k No
WQSP† 158k 816 376k 32k Yes
CWQ† 3.9M 326 6.9M 32k Yes

Table 1: Statistics of the KGs used. †We use sub-
sets of FreeBase (Google, 2015) for WebQuestionsSP
(WQSP) and ComplexWebQuestions (CWQ).

former model. We then sample a fixed number312

of sequences from the decoder6, which are then313

mapped to their entity ids7. By using such a gen-314

erative model we are able to approximate (with315

high confidence) top-m model predictions without316

having to score all entities in the KG, as is done by317

conventional KGE models. For each decoded en-318

tity we assign a score equal to the (log) probability319

of decoding it’s sequence. This gives us a set of320

(entity, score) pairs. To calculate the final ranking321

metrics comparable to traditional KGE models, we322

assign a score of −inf for all entities not encoun-323

tered during the sampling procedure. A comparison324

of inference strategy of conventional KGE models325

and KGT5 can be visualized in Figure 2.326

3.4 KGQA Training and Inference327

For KGQA, we pre-train the model on the back-328

ground KG using the link prediction task (§3.2).329

This pre-training strategy is analogous to ‘KGE330

module training’ used in other KGQA works331

(Sun et al. 2021; Ren et al. 2021). The same332

model is then finetuned for question answering.333

Hereby, we employ the same strategy as Roberts334

et al. (2020): we concatenate a new task prefix335

(predict answer:) with the input question336

and define the mention string of the answer entity337

as output. This unified approach allows us to apply338

KGT5 to any KGQA dataset regardless of question339

complexity, and without the need for sub-modules340

such as entity linking.341

To combat overfitting during QA finetuning342

(which happens on datasets with small KGs) we343

devise a regularisation scheme: we add link predic-344

tion sequences sampled randomly from the back-345

6See Appendix C for additional details on sampling and
our choice of decoding strategy.

7The decoded sequence may or may not be an entity men-
tion. We experimented with constrained decoding (Cao et al.,
2021) to force the decoder to output only entity mentions;
however, we found this unnecessary since the model almost
always outputs an entity mention, and increasing the number
of samples was enough to solve the issue.

ground KG to each batch such that a batch consists 346

of an equal number of QA and link prediction se- 347

quences. For inference we use beam search fol- 348

lowed by neighbourhood-based reranking to obtain 349

the model’s prediction which is a single answer. 350

4 Experimental Study 351

We investigate whether a simple seq2seq Trans- 352

former model can be jointly trained to perform 353

both knowledge graph link prediction as well as 354

question answering. Hereby, we first describe the 355

used datasets (§4.1), the baselines we compared to 356

(§4.2) and the experimental setup (§4.3). The re- 357

sults of our experiments are analysed in §4.4-§4.6. 358

Before going into detail, we summarize our key 359

findings: 360

1. For link prediction on large KGs, the text-based 361

approach of KGT5 reduces model size to com- 362

parable KGE models by 90% and is the best 363

performing model of such a small size. 364

2. An ensemble of KGT5 with a traditional KGE 365

method outperforms the current state-of-the-art. 366

3. On the task of KGQA over incomplete KGs, our 367

simple seq2seq approach obtains better results 368

than the current state-of-the-art across multiple 369

datasets. 370

4. KG link prediction training might be more ben- 371

eficial than language modeling pre-training on 372

knowledge intensive tasks such as KGQA. 373

4.1 Datasets 374

We evaluate the link prediction capability of KGT5 375

on Wikidata5M (Wang et al., 2021). It is one of 376

the largest benchmark KGs and contains textual 377

mentions of all its entities and relations. We do 378

not use the common benchmarks FB15k-237 and 379

WN18RR since they are too small to test the param- 380

eter efficiency of models and a Transformer model 381

such as KGT5 is not suitable for small data. 382

We evaluate the QA capabilities of KGT5 383

on three large-scale KGQA benchmark datasets: 384

MetaQA (Zhang et al., 2018), WebQuestionsSP 385

(WQSP) (Yih et al., 2016) and ComplexWebQues- 386

tions (CWQ) (Talmor and Berant, 2018). Questions 387

in MetaQA span from 1-hop to 3-hop questions re- 388

quiring path-based reasoning on a KG which is 389

based on WikiMovies (Miller et al., 2016). WQSP 390

contains both 1-hop and 2-hop path based questions 391

while CWQ contains questions requiring steps such 392

as composition, conjunction, comparative and su- 393

perlative reasoning. Both WQSP and CWQ can 394
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Model MRR Hits@1 Hits@3 Hits@10 Params
TransE (Bordes et al., 2013) † 0.253 0.170 0.311 0.392 2,400M
DistMult (Yang et al., 2015) † 0.253 0.209 0.278 0.334 2,400M
SimplE (Kazemi and Poole, 2018) † 0.296 0.252 0.317 0.377 2,400M
RotatE (Sun et al., 2019b) † 0.290 0.234 0.322 0.390 2,400M
QuatE (Zhang et al., 2019) † 0.276 0.227 0.301 0.359 2,400M
ComplEx (Trouillon et al., 2016) ‡ 0.301 0.245 0.331 0.397 614M
KGT5 (Our method) 0.271 0.240 0.288 0.334 60M
ComplEx 14-dim ‡ 0.201 0.161 0.211 0.275 67M
ComplEx 26-dim ‡ 0.239 0.187 0.261 0.342 125M
KEPLER (Wang et al., 2021) †† 0.210 0.173 0.224 0.277 125M
DKRL (Xie et al., 2016a) †† 0.160 0.120 0.181 0.229 20M
MLMLM (Clouatre et al., 2021) ‡‡ 0.223 0.201 0.232 0.264 355M
KGT5-ComplEx Ensemble 0.316 0.266 0.341 0.408 674M

Table 2: Link prediction results on Wikidata5M . † results are from the best pre-trained models made available by
Graphvite (Zhu et al., 2019) . ‡ results were obtained through a hyperparameter search with LibKGE (Broscheit
et al., 2020). †† results are from Wang et al. (2021). ‡‡ results are from Clouatre et al. (2021). For more details,
please see §4.4.

be answered using FreeBase (Google, 2015) as the395

background KG. We create subsets of Freebase396

using the scheme proposed by Ren et al. (2021)397

which results in KGs that are much smaller than398

Freebase but can still be used to answer all ques-399

tions in CWQ and WQSP.400

Following prior work (Sun et al., 2019a) we ran-401

domly drop 50% of edges from all KGs to simu-402

late KG incompleteness. This stochasticity causes403

different works to have different KGs, making it404

hard to compare results without re-implementing405

methods. Ren et al. (2021) implemented all com-406

parison methods using their own KG splits which407

they have not yet published8. A common KG split408

is important and we intend to publish ours. We do409

not re-implement comparison methods but instead410

report the numbers for our methods and baselines411

separately. We also report the accuracy obtained by412

executing the ground truth SPARQL queries (GT413

query) for test questions. GT query serves as an414

estimate of the hardness of a KG split and helps415

us compare model performance across KG splits.416

Note that for training all models, we only use (NL417

question, answer entity) pairs - no ground truth418

query information is used for training. Statistics419

of the KGs used in our experiments can be seen in420

Tab. 1. Statistics of the QA datasets can be seen in421

Tab. 7.422

8Through private communication with the authors we were
able to obtain the same KG split for WQSP.

4.2 Comparison Models 423

For KG completion we compared with several 424

standard KGE models that have been shown to 425

achieve good performance across multiple datasets 426

(Ruffinelli et al., 2020) but with a large number 427

of parameters. Among low-parameter models, 428

we compared to the text based approaches KE- 429

PLER (Wang et al., 2021), DKRL (Xie et al., 430

2016a) and MLMLM (Clouatre et al., 2021). We 431

also considerd low-dimensional versions of the 432

state-of-the-art method ComplEx. The low di- 433

mensional KGE model proposed by Chami et al. 434

(2020) achieves good performance on common 435

small benchmark datasets but shows a large drop 436

in terms of quality on the larger graph Yago3-10 437

(Dettmers et al., 2018). We did not apply this ap- 438

proach on Wikidata5M. 439

For KGQA, we compared against several meth- 440

ods that have been shown to achieve SOTA on QA 441

over incomplete KGs. These include PullNet (Sun 442

et al., 2019a), EmQL (Sun et al., 2021), Embed- 443

KGQA (Saxena et al., 2020) and LEGO (Ren et al., 444

2021). For the MetaQA datasets we compared with 445

a relation-path finding baseline as well, which we 446

call PathPred. This simple method maps a NL ques- 447

tion to a relation path using distantly supervised 448

data obtained from QA pairs in the training set.9. 449

9Please see Appendix D for details of PathPred.
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Model CWQ WQSP
GT query 25.2 56.9
Pullnet 26.8 (+1.6) 47.4 (-9.5)

EmbedKGQA - 42.5 (-14.4)

LEGO 29.4 (+4.2) 48.5 (-8.4)

GT query 24.5 56.9
KGT5 34.5 (+10.0) 50.5 (-6.4)

Table 3: Hits@1 (gain vs GT query) on ComplexWe-
bQuestions (CWQ) and WebQuestionsSP (WQSP)
datasets in the 50% KG setting. Baseline results are
from Ren et al. (2021). We use the same KG as used by
the baselines for WQSP and a slightly harder KG for
CWQ. Please see §4.5 for more details.

4.3 Experimental Setup450

In all our main experiments we used a model with451

the same architecture as T5-small (∼60M parame-452

ters) but without the pre-trained weights. For tok-453

enizing sequences we trained SentencePiece (Kudo454

and Richardson, 2018) tokenizers on the verbalised455

KGs (see Tab. 1 for tokenizer statistics).456

We used AdaFactor (Shazeer and Stern, 2018)457

with a learning rate warmup schedule for link pre-458

diction training, batch size 320 and 10% dropout.459

We adopted the same procedure as Roberts et al.460

(2020) for QA finetuning - we halved the batch461

size and fixed the learning rate to 0.001. All ex-462

periments were performed using 4 Nvidia 1080Ti463

GPUs and models were implemented using the464

HuggingFace library (Wolf et al., 2019). We per-465

formed no dataset-specific hyperparameter tuning466

for KGT5 and used the same architecture, batch467

size, dropout and learning rate schedule throughout468

all experiments10. All models were trained until469

validation accuracy did not significantly increase470

for 10k steps.11471

For inference, we used sampling size = 200 for472

link prediction and beam size = 4 for KGQA. We473

further performed a neighbourhood-based rerank-474

ing for KGQA: given question q, topic entity from475

question e, predicted answer entity a and (log)476

probability of predicted entity pa, we compute477

score for a being answer as478

score(a) = pa + α if a ∈ N (e)

= pa otherwise
(1)479

10The vocabulary size for MetaQA is 10k, compared to
∼30k for other datasets. This was needed in order to train
SentencePiece tokenizer on such a small KG.

11∼500k steps for large KGs (WD5M, CWQ), ∼30k steps
for QA finetuning

Model 1-hop 2-hop 3-hop
GT query 63.3 45.8 45.3
PullNet 65.1 (+1.8) 52.1 (+6.3) 59.7 (+14.4)

EmbedKGQA 70.6 (+7.3) 54.3 (+8.5) 53.5 (+8.2)

EmQL 63.8 (+0.5) 47.6 (+1.8) 48.1 (+2.8)

LEGO 69.3 (+6.0) 57.8 (+12.0) 63.8 (+18.5)

GT query 67.7 48.7 44.4
PathPred 67.7 (+0.0) 48.7 (+0.0) 44.4 (+0.0)

KGT5 75.0 (+7.3) 36.2 (-8.2) 64.4 (+20.0)

KGT5-PP-Ens. 76.0 (+8.3) 65.4 (+16.7) 76.6 (+32.2)

Table 4: Hits@1 (gain vs GT query) on MetaQA in the
50% KG setting. Baseline results are from Ren et al.
(2021). There are two ground truth query (GT query)
rows since the KG used by baseline models is differ-
ent from ours. KGT5-PP-Ens. is the KGT5-PathPred
ensemble model. Please see §4.5 for more details.

where α is a constant hyperparameter and N (e) is 480

the n-hop neighbourhood of the topic entity (n = 481

1, 2 or 3). Re-ranking was only done on datasets 482

where topic entity annotation is available as part of 483

test questions. 484

4.4 Link Prediction with KGT5 485

Tab. 2 shows link prediction performance on Wiki- 486

data5M. We see that KGT5 outperformed all low- 487

parameter count models in terms of MRR as well as 488

hits@1,3. When compared to larger models, there 489

is a drop of 0.03 points in MRR and 0.01 points in 490

hits@1 against the best performing model. 491

We performed a more fine-grained analysis of 492

model predictions according to the type of query 493

(Tab. 9 in the appendix). We found that KGT5 494

excelled at answering queries which have none or 495

only a few correct answers in the train set; perfor- 496

mance dropped when several entities can be correct 497

for a query. This could be due to the nature of 498

sampling: low probability sequences are harder to 499

sample and also harder to rank correctly. Addition- 500

ally, the limited sampling (§3.3) may not even pro- 501

vide the correct answer if there exist more known 502

positives than sampled answers. 503

Based on these observations we created an en- 504

semble of ComplEx and KGT5 which answers 505

queries as follows: if the query does not have an- 506

swers in the train KG, use KGT5; otherwise use 507

ComplEx (614M). As shown in Tab. 2, the ensem- 508

ble created by this simple rule outperformed all 509

other single models and achieved the state-of-the- 510
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art on Wikidata5M12,13. Such an ensemble neither511

achieves the goal of scalability nor versatility but512

instead serves as an ablation to point out weak spots513

of KGT5.514

4.5 QA over Incomplete KGs with KGT5515

Due to the lack of public KG splits, we compared516

KGQA methods using gain over ground truth query517

model, which is available for both the compari-518

son methods (from Ren et al. 2021) as well as519

our methods14. Tab. 3 shows hits@1 performance520

on Freebase-based datasets ComplexWebQuestions521

and WebQuestionsSP. On both datasets, KGT5 out-522

performed all baselines. The gains were the largest523

on ComplexWebQuestions which is the hardest524

dataset in terms of complexity and KG size.525

Tab. 4 shows hits@1 performance on the526

MetaQA datasets. On MetaQA 1- and 3-hop,527

KGT5 was either equal or better than all baselines528

(in terms of gain). On MetaQA 2-hop however, the529

performance was significantly worse compared to530

the baselines, and even worse than ground truth531

querying. We did a more fine-grained analysis of532

the performance of KGT5 on different question533

types (Tab. 11, 12 and 13 in the appendix). We534

found that KGT5 performance suffered most on535

questions where the head and answer entity were536

of the same type (for e.g. actor→ movie→ actor537

questions). These question types are absent in the538

1-hop and 3-hop datasets. When head and answer539

entities had different types (for e.g. director →540

movie→ language questions), KGT5 was able to541

answer them better than GT query.542

To remedy this issue and create a model more543

faithful towards the knowledge present in the in-544

complete KG, we devised an ensemble of KGT5545

with the PathPred baseline. The ensemble works546

as follows: Given a question q, try to answer it547

using PathPred. If this returns an empty set, use548

KGT5. This ensemble outperformed all single549

models on all MetaQA datasets, often by large mar-550

gins (Tab. 4).551

Additionally, we performed an ablation to study552

the effect of neighbourhood reranking on KGQA553

performance (Tab. 5). We found that reranking554

gave small but consistent gains on all datasets.555

12In this ensemble KGT5 was used to answer 42% of the
queries; the rest were answered by ComplEx

13To the best of our knowledge current state-of-the-art on
Wikidata5M is ComplEx published with Broscheit et al. (2020)
presented in Tab. 2.

14Details about KGs used by us compared to baselines can
be seen in Tab. 10

Model MetaQA WQSP1-hop 2-hop 3-hop
KGT5 75.0 36.2 64.4 50.5
- reranking 73.1 35.8 63.3 47.2

Table 5: Effect of neighbourhood reranking on KGQA
with 50% KG. The numbers reported are hits@1.

Model WQSP CWQ
KGT5 50.5 34.5
T5-small + QA finetuning 31.3 27.1

Table 6: Effect of KG pretraining versus LM pretrain-
ing on the KGQA task. The numbers reported are
hits@1. For details please see §4.6

4.6 KG vs LM Pre-training 556

We analyzed how generic corpora pre-training per- 557

formed compared to KG link prediction training 558

for the task of KGQA. We compared with T5-small 559

(Raffel et al., 2020), which has the same archi- 560

tecture as KGT5 but pre-trained on a mixture of 561

tasks, most notable being language modeling on 562

web text. From Tab. 6 we see that KGT5 vastly 563

outperformed T5-small. This is not surprising: the 564

data for KGT5 pretraining was tailored towards 565

the task performed – KGQA – which was not the 566

case for T5-small. However, this shows that it is 567

the link prediction pre-training that is responsible 568

for the excellent KGQA performance of KGT5. 569

5 Conclusion 570

We have shown that KG link prediction and ques- 571

tion answering can be treated as seq2seq tasks and 572

tackled successfully with a single encoder-decoder 573

Transformer model. We did this by training a Trans- 574

former model with the same architecture as T5- 575

small on the link prediction task, and then finetun- 576

ing it on the QA task. This simple but powerful 577

approach, which we call KGT5, performed com- 578

petitively with the state-of-the-art method for KG 579

completion while using 90% fewer parameters, and 580

when used in conjunction with a conventional KGE 581

model, it even established a new state-of-the-art. 582

On the task of KGQA on incomplete KGs, we 583

found that our unified approach outperformed base- 584

lines on multiple large-scale benchmark datasets. 585

Additionally, we compared language modeling pre- 586

training with KG link prediction training and found 587

that for knowledge-intensive tasks such as KGQA, 588

link prediction training could be more beneficial. 589
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A Textual representations of entities and802

relations803

For WikiData based datasets we obtain canonical804

mentions of entities and relations from the corre-805

sponding WikiData page titles. However, multiple806

entities can have identical canonical mentions; we807

disambiguate such entities with their correspond-808

ing name aliases if present. In all other cases of809

identical canonical mentions we extend each men-810

tion with a unique id. This results in a one-to-one811

mapping between entities and their textual repre-812

sentations.813

For the Freebase based question answering814

datasets, such as WQSP and CWQ, we use the815

identifier triples (Chah, 2017) to retrieve men-816

tion strings. In particular, we use the canon-817

ical name (in English) connected by the rela-818

tion type /type/object/name. Furthermore,819

we disambiguate similar to the WikiData based820

datasets with an alias retrieved via the relation821

/common/topic/alias or append part of the822

description /common/topic/description823

if available.824

B Teacher forcing825

At each step of decoding, the model produces a826

probability distribution over possible next tokens.827

While training, this distribution is penalised for828

being different from the ‘true’ distribution (i.e. a829

probability of 1 for the true next token, 0 for all830

other tokens) using cross entropy loss. In teacher831

forcing (Williams and Zipser, 1989) the target to-832

ken is used as the next token during decoding.833

An entity usually consists of multiple tokens.834

Consider an input sequence input, target entity835

mention tokenized as [w1, w2, .., wT ] and vocabu-836

lary [v1, v2, ..., vM ]. Then837

yt,c = 1c=wt

pt,c = IP(vc|input, w1, w2, ..., wt−1)

Jt = −
M∑
c=1

yt,c log pt,c

Loss =
1

T

T∑
t=1

Jt

838

where IP is the model’s output distribution.839

C Sampling strategy for link prediction840

At each step of decoding we get a probability dis-841

tribution over tokens. We sample a token from842

Dataset Train Validation Test
MetaQA 1-hop 96,106 9,992 9,947
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
WQSP 2,998 100 1,639
CWQ 27,639 3,519 3,531

Table 7: Numbers of questions in the KGQA datasets
used in our experiments.

Dataset
Train
Questions

Distinct
Qtypes

Distinct
NL questions

Train
QA pairs

1-hop 96,106 11 161 184,884
2-hop 118,980 21 210 739,782
3-hop 114,196 15 150 1,521,495

Table 8: Statistics for MetaQA QA datasets. Since it is
a template-based dataset, there is very little linguistic
variation - for each linguistic variation, there more than
1,000 QA pairs on average in the 1-hop dataset. This
is further amplified for 2-hop and 3-hop datasets since
there are more correct answers on average per question.

this distribution and then autoregressively decode 843

until the ‘stop’ token. By repeating this sampling 844

procedure multiple times we can get multiple pre- 845

dictions for the same input sequence. The score 846

for a sequence is the sum of log probabilities for 847

its tokens. For an input sequence input, and an 848

entity mention tokenized as [w1, w2, ..., wT ], the 849

score for the entity would be 850

T∑
t=1

log(IP(wt|input, w1, w2, ..., wt−1)) 851

where IP is the model’s output distribution. 852

Another way to obtain large number predictions 853

could have been beam search (Graves, 2012). This 854

would also have the advantage of being determin- 855

istic and guaranteed to produce as many predic- 856

tions as we want. Although in theory wider beam 857

sizes should give improved performance, it has 858

been observed that for beam sizes larger than 5, 859

performance of generative models suffers drasti- 860

cally (Yang et al., 2018) and sampling generally 861

produces better results. We observe the same phe- 862

nomenon in our work where beam size 50 produces 863

far worse results than sampling 50 times. Modi- 864

fying the stopping criteron (Murray and Chiang, 865

2018) or training method (Welleck et al., 2019) 866

might be helpful solutions that we hope to explore 867

in future work. 868
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Model
MRR Hits@1

No. of entities to filter All
queries

No. of entities to filter All
queries0 <2 <10 0 <2 <10

ComplEx SOTA 0.54 0.535 0.495 0.301 0.469 0.461 0.411 0.245
KGT5 0.576 0.547 0.475 0.271 0.52 0.489 0.421 0.24

Table 9: For a test query (s, r, ?), there can be multiple entities o such that (s, r, o) is in train set. These entities
need to be ‘filtered’ before evaluation. This table shows model performance on queries requiring different amounts
of filtering. Dataset is Wikidata5M.

Model(s)
MetaQA

WQSP CWQ
1-hop 2-hop 3-hop

Baselines (LEGO, EmbedKGQA, EMQL, PullNet) 63.3 45.8 45.3 56.9 25.2
Ours (KGT5, KGT5 Ensemble) 67.7 48.7 44.4 56.9 24.5

Table 10: Percentage of questions answerable using ground truth query. For the baselines that we compare with,
we do not have access to the exact same 50% KG split used by them. This table lists the percentage of questions
answerable using GT query, for the KGs used by the comparison models (LEGO, EmbedKGQA, EMQL, PullNet)
as well as by our models (KGT5, KGT5 + PathPred Ensemble). The GT query numbers for baselines were made
available by Ren et al. 2021.

D Path Predictor on MetaQA869

Being an artificially generated template-based870

dataset, MetaQA has far more questions than any871

other dataset that we compare with (Tab. 7). It872

also has very little variety in the forms of questions873

(Tab. 8). Hence we try to answer the following874

question: Can we create a simple model that maps875

a NL question to a relation path, and then does KG876

traversal with this path to answer questions? We877

achieve this by using distant supervision to get the878

question→ path mapping data, which is then pro-879

cessed to get the final model. We call this model880

PathPred. We do not use ground truth queries to881

create this data.882

A question in MetaQA consists of the question883

text qtext, a topic entity h and a set of answers884

{a1, a2, ...} (answers only in train set). Since the885

topic entity annotation is present for all questions886

(including test set), we can replace the entity in the887

question to get a base template qbase15.888

Given a training tuple of (qbase, h, a), we find889

all the k-hop relation paths [r1, .., rk] between h890

and a (k=1,2 or 3 depending on the dataset). We891

then aggregate these paths for each distinct qbase,892

and take the most frequent path as the mapping893

from qbase to relation path. This mapping from894

question template qbase to a relation path [r1, .., rk]895

15As an example given a qtext ‘who are the co-actors of
Brad Pitt’ and topic entity annotation ‘Brad Pitt’, we can get
a base template qbase as ‘who are the co-actors of NE’ where
NE (named entity) is the substitution string

constitutes the PathPred model. 896

For a test question (qtext, h), we first get qbase 897

from qtext. We then use the aforementioned map- 898

ping to get a relation path using qbase. This relation 899

path is then used to traverse the KG starting from 900

h to arrive at the answer(s). 901

In the KGT5 + PathPred ensemble (§4.5, Tab. 4), 902

we first apply the PathPred technique; if the result- 903

ing answer set is empty – which can happen due to 904

KG incompleteness – we apply KGT5 to get the 905

answer. 906
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Question type GTQ KGT5 Gain
actor→movie→director 0.44 0.39 -0.05
director→movie→director 0.34 0.62 0.28
director→movie→language 0.37 0.77 0.4
writer→movie→writer 0.39 0.39 0
actor→movie→genre 0.48 0.55 0.07
director→movie→genre 0.46 0.7 0.24
actor→movie→actor 0.57 0.09 -0.48
writer→movie→actor 0.51 0.31 -0.2
actor→movie→writer 0.48 0.44 -0.04
movie→director→movie 0.45 0.21 -0.24
actor→movie→year 0.48 0.23 -0.25
writer→movie→genre 0.4 0.59 0.19
director→movie→actor 0.51 0.5 -0.01
movie→actor→movie 0.73 0.06 -0.67
writer→movie→year 0.37 0.35 -0.02
director→movie→year 0.45 0.51 0.06
director→movie→writer 0.47 0.44 -0.03
movie→writer→movie 0.5 0.3 -0.2
writer→movie→director 0.33 0.31 -0.02
writer→movie→language 0.32 0.66 0.34
actor→movie→language 0.4 0.54 0.14
All 0.471 0.363 -0.108

Table 11: Hits@1 performance on MetaQA 2-hop vali-
dation dataset, 50% KG setting. GTQ refers to ground
truth querying.

Question type GTQ KGT5 Gain
actor→movie 0.96 0.95 -0.01
director→movie 0.84 0.92 0.08
movie→actor 0.79 0.77 -0.02
movie→director 0.52 0.64 0.12
movie→genre 0.48 0.63 0.15
movie→language 0.49 0.63 0.14
movie→tags 0.72 0.7 -0.02
movie→writer 0.66 0.8 0.14
movie→year 0.46 0.45 -0.01
tag→movie 1 0.96 -0.04
writer→movie 0.88 0.94 0.06
All 0.678 0.732 0.054

Table 12: Hits@1 performance on MetaQA 1-hop vali-
dation dataset, 50% KG setting. GTQ refers to ground
truth querying.
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Question type GTQ KGT5 Gain
movie→director→movie→language 0.17 0.85 0.68
movie→director→movie→actor 0.37 0.54 0.17
movie→actor→movie→language 0.29 0.8 0.51
movie→writer→movie→year 0.31 0.47 0.16
movie→actor→movie→director 0.65 0.57 -0.08
movie→director→movie→genre 0.37 0.82 0.45
movie→writer→movie→director 0.4 0.52 0.12
movie→actor→movie→year 0.63 0.72 0.09
movie→actor→movie→writer 0.63 0.51 -0.12
movie→actor→movie→genre 0.65 0.83 0.18
movie→director→movie→writer 0.39 0.55 0.16
movie→writer→movie→genre 0.42 0.75 0.33
movie→writer→movie→actor 0.41 0.43 0.02
movie→director→movie→year 0.32 0.56 0.24
movie→writer→movie→language 0.27 0.74 0.47
All 0.443 0.634 0.191

Table 13: Hits@1 performance on MetaQA 3-hop validation dataset, 50% KG setting. GTQ refers to ground truth
querying.
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