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Abstract

In this paper, we study the problem of zero-
shot NER, which aims at building a Named En-
tity Recognition (NER) system from scratch.
It needs to identify the entities in the given
sentences when we have zero token-level an-
notations for training. Previous works usu-
ally use sequential labeling models to solve
the NER task and obtain weakly labeled data
from entity dictionaries in the zero-shot set-
ting. However, these labeled data are quite
noisy since we need the labels for each token
and the entity coverage of the dictionaries is
limited. Here we propose to formulate the
NER task as a Textual Entailment problem and
solve the task via Textual Entailment with Dy-
namic Contrastive Learning (TEDC). TEDC
not only alleviates the noisy labeling issue, but
also transfers the knowledge from pre-trained
textual entailment models. Additionally, the
dynamic contrastive learning framework con-
trasts the entities and non-entities in the same
sentence and improves the model’s discrimina-
tion ability. Experiments on two datasets show
that TEDC can achieve state-of-the-art perfor-
mance on the task of zero-shot NER.

1 Introduction

Named Entity Recognition (NER) (Nadeau and
Sekine, 2007) is a basic and important task in Natu-
ral Language Processing (NLP). It aims at recogniz-
ing named entities in a given sentence. With recent
developments of deep learning techniques, NER
has achieved great success based on supervised
training on a large amount of labeled data. How-
ever, it’s expensive and time-consuming to collect
high-quality annotations especially for the token-
level. To solve the issue of lack of quality labeled
data, zero-shot learning (ZSL) (Xian et al., 2017)
has drawn a lot of attention recently. The goal of
ZSL is to achieve decent performance for new tasks
without human annotations by transferring previ-
ous knowledge. In this paper, we focus on solving

the task of Zero-shot Named Entity Recognition
that learns a NER system with zero token-level
annotations for training. Zero-shot NER is a chal-
lenging task that has been rarely studied. Previous
works either use POS taggers (Straka and Strakova,
2017) or entity dictionaries to provide additional
annotations. POS taggger based methods (Fries
et al., 2017) require extra human efforts of design-
ing POS tag based regular expressions. Dictionary
based methods either ignore the context informa-
tion (Guerini et al., 2018) or use noisy sequential
labeled data to train simple LSTM (Huang et al.,
2015) models.

To effectively build a NER system from scratch,
we formulate the NER task as a Textual Entailment
(TE) problem (Yin et al., 2020) and propose to
use Textual Entailment with Dynamic Contrastive
Learning (TEDC) to solve this task. TE studies
the relation of two assertive sentences, Premise (P)
and Hypothesis (H): whether H is true given P. In
the meantime, NER aims at identifying whether a
word segment is an entity or not given a sentence.
To the best of our knowledge, we are the first to
formulate the NER task as a TE task by realizing
this analogy. This formulation not only utilizes
the pre-trained textual entailment model, but also
fits for the situation where we don’t have full an-
notations. TE only needs the label for one entity
other than the whole sequence to train the model.
Furthermore, we combine the textual entailment
model with a dynamic contrastive learning frame-
work to contrast the entities and non-entities in
the same sentence. The contrastive learning frame-
work helps the model to output the entities with
a higher probability to be entailed with the input
sentence other than non-entities. And we propose
to adjusts the weights of the contrastive loss during
the training dynamically.

In summary, the main contributions of our work
are as follows: 1) We are the first work that for-
mulates the NER task as a textual entailment prob-



lem. This formulation is more suitable for the situa-
tion when we don’t have annotations for the whole
sequence. 2) We propose to use Textual Entail-
ment with Dynamic Contrastive Learning (TEDC)
to solve the zero-shot NER task. 3) Experiments on
two real-world datasets show that TEDC achieves
state-of-the-art performance for zero-shot NER.

2 Proposed Method

In our method, we obtain initial supervision from
the entity dictionaries and use the matched entities
to provide entailment pairs as our training data. We
introduce how to use textual entailment to solve the
NER task in section 2.1 and illustrate the dynamic
contrastive learning framework in section 2.2.

2.1 Textual Entailment for NER

Instead of treating NER as a sequence labeling
problem, we use a textual entailment model to solve
the NER task. It can not only alleviate the noisy
labeling problem, but also transfer knowledge from
pre-trained textual entailment models.

2.1.1 Entailment Pairs

To transfer the NER task into textual entailment,
we need to form textual entailment pairs. Given
an input sentence, “John is playing piano”, the
NER task is to recognize that “John" is a PERSON,
which is equivalent to ask if “John is a PERSON” is
true. The input sentence acts as a premise, while the
assertion “John is a PERSON”, acts as a hypothesis.
Then the NER task is transferred into a textual
entailment problem which is to determine whether
the hypothesis is true given the premise.

Formally, given an input sentence A, x4 =
{w1,wa,...,w,}, which contains n tokens, we
need to recognize whether a sub-sequence, s; ; =
{si, Si+1,...,5j}, where i >= 1 and j <= n,
contained in x 4 is an entity or not. Given t en-
tity types in the dataset 7' = {E1, Eo, ..., E;}, an
entailment pair is constructed as (z 4, zp), where
rB = {Si, Si+1,..-,Sj, 18, a, B} and B, € T'. To
train the entailment model, we need to construct
both positive and negative entailment pairs. For the
positive examples, we use the entities in dictionar-
ies as the supervision. If a sub-sequence exactly
matches with the surface name of an entity in the
dictionaries, we use it to construct a positive entail-
ment pair with its entity type. For the negative ex-
amples, we sample from the collection with all the
sub-sequences not existing in the entity dictionaries
to balance the rate of positive/negative examples.
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Figure 1: The overall framework of the TEDC model.

Since most sub-sequences are non-entities, we are
more likely to obtain true negative examples when
we only sample a small portion from the collection.
In the experiments, we control the sampling of neg-
ative pairs by fixing the rate of negative/positive
examples at 7.

2.1.2 Entailment Encoder

As shown in Figure 1, we concatenate the sentences
(x 4, xp) in the entailment pair and feed it into the
entailment encoder. Here we use Roberta (Liu
et al., 2019) to encode the input sequence and a
fully connected layer is applied for binary textual
entailment classification:

h =RoBERTa(z 4, zp), (1)

p =softmax(Wh + b), 2)

where h € R% is the embedding for the [CLS]
token, W € R?*% and b € R? are parameters, p
is the output probability for textual entailment. In
order to regularize the neural network, we add an
additional dropout layer with dropout rate d on the
output of the [CLS] embedding h.

For the textual entailment, we use cross-entropy
loss to train the model to identify whether the hy-
pothesis about the word segments are true or false:

N
1
Loe =7 Zl yi - logpi, (3)
i—
where IV is the number of training examples.

2.2 Dynamic Contrastive Learning

To improve the model’s ability to discriminate
entities and non-entities, we combine textual en-
tailment with dynamic contrastive learning for
the zero-shot NER task. Additional to the cross-
entropy loss, we add a dynamic contrastive learning
loss to contrast the entities and non-entities. Given
a positive entailment pair, we contrast it with r
negative pairs that are constructed with the same
sentence, which means we contrast positive and
negative examples with the same premise but dif-



ferent hypotheses. As shown in Figure 1, “John is
a person” is a positive hypothesis for the sentence
“John is playing piano”, and “Piano is a person” is
a negative hypothesis for this sentence.

The contrastive loss is proposed to push the sim-
ilarity of the positive entailment pairs higher than
the negative entailment pairs. Here we use a fully
connected layer on top of the entailment embed-
dings to simulate the similarity, s; = Wsh; + bs,
where h; is the embedding for the i-th entailment
pair, W, € R and b, € R are parameters and
s; is the similarity between the premise and the
hypothesis of the i-th example. In the implemen-
tation, we put the positive entailment pair and its
negative pairs in the same batch to calculate the
contrastive loss:

exp(st/7)

Lo = —lo 4
cr gZ&{eXP(Si/T), “4)
where s is the similarity for the positive entail-
ment pair, s; is the similarity for all the entailment
pairs for the same sentence, N, = 1 + r and 7 is
the temperature parameter.

We add the cross entropy loss and the contrastive
loss together to train the whole model. To provide
a stable training procedure and control the impor-
tance of the contrastive loss, we use a cosine func-
tion (Loshchilov and Hutter, 2016) to dynamically
increase the weight for the contrastive loss:

L :Ece +d- Ecrv (5)

d = max(0, % # (1 + cos((1 — %)w), ©)

where d is the dynamic weight, ¢ is the current
training step, 7" is the total training step. During
the trainig, d will increase from O to 1, which is
also a warm-up process.

Training Process. The training process of TEDC
has two phases: the pre-training stage and the
fine-tuning stage. For the pre-training, we use
RoBERTa to initialize the entailment encoder, and
pre-train TEDC on a textual entailment dataset,
MNLI (Williams et al., 2018), to transfer knowl-
edge. During the fine-tuning, we minimize the loss
illustrated in Equation 5 on the entailment pairs
constructed from NER datasets.

Inference strategy. After the two-phase training
process, we use the model to recognize entities for
a test sentence. For each input, we generate entail-
ment pairs by accompanying the sentence with all
possible sub-sequences with each entity type. For
each pair, we send it into the entailment model to
obtain the result whether it is Positive or Negative.

Dataset | BCSCDR | NCBI-Disease

Disease
47.3%
8,552(6,892)

Disease, Chemical
51.7%
18,256(12,850/15,935/28,785)

Entity Types
Dictionary Coverage
# of Total S(E)

# of Training S(E) 5,827(4,182/5,203/9,385) 6,433(5,154)
#of Validation S(E) |  5,928(4,244/5,347/9,591) 1,048(787)
# of Test S(E) 6,501(4,424/5,385/9,809) 1,071(960)

# of E (length <= 3) 93.3% 96.6%

Table 1: Statistics of the datasets. For the dictionary
coverage, we show the percentage of unique entities
contained in the vocabularies. S is short for sentences
while E means entities. For the BC5SCDR dataset, we
show the number of entities as the number of Dis-
ease/Chemical/Total Entities.

We recognize all the Positive entailment pairs as
entities. To balance the computational cost and the
performance, we set a maximum entity length L to
limit the number of sub-sequence candidates.

3 Experiments
3.1 Datasets and Dictionaries

Two real-world NER datasets are used in the exper-
iments: BC5CDR (Wei et al.) and NCBI-Disease
(Dogan et al., 2014). 1) BCSCDR is a task dataset
from the BioCreative V Chemical and Disease
Mention Recognition challenge!. It consists of
1,500 PubMed? articles containing 12,852 Disease
entities and 15,935 Chemical entities. 2) NCBI-
Disease’ is fully annotated at the mention level for
Disease Name Recognition. It contains PubMed
793 abstracts with 6,892 Disease entities. We use
the data splits provided in the original dataset for
training, validation and test.

In the zero-shot NER setting, we use entities
from dictionaries as the initial supervision. For
these two datasets, we use the CTD Chemical and
Disease vocabularies* to serve as the entities in the
knowledge base. These dictionaries contain 17,097
Chemical entities and 13,061 Disease entities.

3.2 Experiment settings

In order to validate the effectiveness of our method,
we compare TEDC with the following four base-
lines: 1) Dictionary Match recognizes the word
segments as entity mentions if they match the en-
tities in the dictionaries. 2) NNg (Guerini et al.,
2018) is a three-layer bidirectional LSTM that clas-
sifies an input sequence of tokens either as entity
or non-entity for a certain entity category. 3) Au-
toNER (Shang et al., 2018) builds a binary classi-

"https://biocreative. bioinformatics.udel.edu/tasks/biocreative-
v/track-3-cdr/
Zhttps://pubmed.ncbi.nlm.nih.gov/

3https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/

*http://ctdbase.org/downloads/



BC5CDR

NCBI-Disease

Datasets
‘ Total ‘ Disease ‘ Chemical ‘ Disease

Metrics | P(%) R(%) FL(%) | P(%) R(%) Fl(%)|P(%) R(%) FL(%) | P(%) R%) Fl(%)
Dictionary Match 6335 5595 5942 | 65.41 46.64 54.46 | 61.65 67.70 64.56 | 57.01 65.82 61.10
NNg 70.08 69.19 69.63 | 69.01 61.92 6527 | 7095 7636 73.56 | 55.71 67.71 61.13
AutoNER 81.64 7636 7891 | 76.85 65.71 70.84 | 84.96 85.02 84.99 | 74.09 6649 69.25
Fuzzy-LSTM-CRF 84.01 69.15 75.86 | 77.30 64.04 70.05 | 89.31 73.14 80.42 | 81.95 69.82 75.40
Roberta 86.77 66.10 75.04 | 81.11 55.41 65.84 | 89.89 77.23 83.08 | 80.17 66.50 72.67
TEDC w/o Contrastive | 87.69 83.20 85.39 | 84.07 78.41 81.14 | 91.15 87.92 8951 | 82.60 73.57 77.83
TEDC w/o Dynamic | 88.53 85.37 86.92 | 84.69 79.04 81.77 | 90.10 9224 91.15 | 83.60 76.17 79.71
TEDC 89.16 8496 87.01 | 86.57 77.62 81.85 | 91.30 91.77 91.53 | 8523 75.17 79.88

Table 2: Experiment results for the zero-shot NER task on two datasets: BCSCDR and NCBI-Disease.

Datasets | BC5CDR | NCBI-Disease

Metrics | P%) R FI%) | P%) R% Fl%)
Dictionary Match / / / / / /
NNg 19.78 21.72 20.71 10.08 26.39 14.59
AutoNER 14.86 2.24 3.90 28.67 17.92 22.05
Fuzzy-LSTM-CRF 61.31 52.83 56.76 63.93 46.20 53.64
Roberta 54.58 26.12 35.33 50.58 23.97 32.53

TEDC 64.70  60.47 62.51 63.89  52.03 57.35

Table 3: Performance of zero-shot entities.

fier to distinguish Break from Tie between adjacent
tokens. 4) Fuzzy-LSTM-CREF (Shang et al., 2018)
customizes the conventional CRF layer in LSTM-
CREF into a Fuzzy CRF layer. 5) Roberta (Liu
et al., 2019) is a pre-trained language model. We
use Roberta-base as in our proposed model, TEDC.
Since these baselines can only use full super-
visions, we use the dictionaries to obtain pseudo
token-level labels to train the models. For all the
baselines, we use the recommended parameters
provided by the original paper. For TEDC, we
use the Adam optimizer with a learning rate of
le-5. For NN, and TEDC, we set the rate of nega-
tive/positve examples r as 20. We feed one positive
entailment pair and 20 negative pairs in one batch
and therefore the batch size is 21. For TEDC, the
dropout rate d is 0.2 and the maximum input length
is 512. We use the Roberta-base model with 12
transformer layers in our experiments. The hidden
dimension dj, in transformer layers is 768.
3.3 Results

We report the experiment results for zero-shot NER
on two real-world datasets, BCSCDR and NCBI-
Disease. We use Precision, recall and F1 for the
performance evaluation. For the BC5CDR dataset,
we not only show the total performance for two en-
tity types, Disease and Chemical, but also illustrate
the detailed information for separated entity types.
Overall Performance. As shown in Table 2, our
proposed model outperformances all the other
baselines for both datasets on all the three met-
rics. It can be observed that our TEDC improves

the best baseline for BCSCDR (AutoNER) and
NCBI-Disease (Fuzzy-LSTM-CRF) by 10.26%
and 5.94% in F1 score, respectively. Both the best
baselines try to transfer knowledge from dictionar-
ies and might suffer from the noisy labeled data.
The proposed TEDC alleviates this issue by formu-
lating the NER task as textual entailment. Addition-
ally, the dynamic contrastive framework improves
the model’s ability of discriminating the entities
and non-entities.

Ablation Study. We also conduct the ablation ex-
periments to explore the impact of the contrastive
component and dynamic weight. For the variant
model without dynamic weight, we set the weight
for the contrastive loss as 0.1. Table 2 shows that
the model with contrastive learning framework
achieves the better performance, which verifies
TEDC's ability for discriminating entities and non-
entities. Furthermore, the model without dynam-
ically adjusted contrastive loss performs slightly
worse, which indicates the effectiveness of the dy-
namic weight.

Performance on Zero-Shot Entities. Table 3 re-
ports the performance on the entities that have
never been seen in the training data. Compared to
the baselines (especially NNg and AutoNER), the
superiority of our TEDC becomes more significant
on the those unseen entities, which demonstrates
the ability of our TEDC in handling the task of
zero-shot NER.

4 Conclusion

In this work, we propose a Textual Entailment
model with Dynamic Contrastive Learning (TEDC)
for zero-shot NER. TEDC is the first to model
the NER task as a TE problem to fit the situa-
tion when there are not annotations for the whole
sequence. Furthermore, the dynamic contrastive
learning framework improves the model’s ability
to discriminate entities and non-entities.
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