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Abstract

In this paper, we study the problem of zero-001
shot NER, which aims at building a Named En-002
tity Recognition (NER) system from scratch.003
It needs to identify the entities in the given004
sentences when we have zero token-level an-005
notations for training. Previous works usu-006
ally use sequential labeling models to solve007
the NER task and obtain weakly labeled data008
from entity dictionaries in the zero-shot set-009
ting. However, these labeled data are quite010
noisy since we need the labels for each token011
and the entity coverage of the dictionaries is012
limited. Here we propose to formulate the013
NER task as a Textual Entailment problem and014
solve the task via Textual Entailment with Dy-015
namic Contrastive Learning (TEDC). TEDC016
not only alleviates the noisy labeling issue, but017
also transfers the knowledge from pre-trained018
textual entailment models. Additionally, the019
dynamic contrastive learning framework con-020
trasts the entities and non-entities in the same021
sentence and improves the model’s discrimina-022
tion ability. Experiments on two datasets show023
that TEDC can achieve state-of-the-art perfor-024
mance on the task of zero-shot NER.025

1 Introduction026

Named Entity Recognition (NER) (Nadeau and027

Sekine, 2007) is a basic and important task in Natu-028

ral Language Processing (NLP). It aims at recogniz-029

ing named entities in a given sentence. With recent030

developments of deep learning techniques, NER031

has achieved great success based on supervised032

training on a large amount of labeled data. How-033

ever, it’s expensive and time-consuming to collect034

high-quality annotations especially for the token-035

level. To solve the issue of lack of quality labeled036

data, zero-shot learning (ZSL) (Xian et al., 2017)037

has drawn a lot of attention recently. The goal of038

ZSL is to achieve decent performance for new tasks039

without human annotations by transferring previ-040

ous knowledge. In this paper, we focus on solving041

the task of Zero-shot Named Entity Recognition 042

that learns a NER system with zero token-level 043

annotations for training. Zero-shot NER is a chal- 044

lenging task that has been rarely studied. Previous 045

works either use POS taggers (Straka and Straková, 046

2017) or entity dictionaries to provide additional 047

annotations. POS taggger based methods (Fries 048

et al., 2017) require extra human efforts of design- 049

ing POS tag based regular expressions. Dictionary 050

based methods either ignore the context informa- 051

tion (Guerini et al., 2018) or use noisy sequential 052

labeled data to train simple LSTM (Huang et al., 053

2015) models. 054

To effectively build a NER system from scratch, 055

we formulate the NER task as a Textual Entailment 056

(TE) problem (Yin et al., 2020) and propose to 057

use Textual Entailment with Dynamic Contrastive 058

Learning (TEDC) to solve this task. TE studies 059

the relation of two assertive sentences, Premise (P) 060

and Hypothesis (H): whether H is true given P. In 061

the meantime, NER aims at identifying whether a 062

word segment is an entity or not given a sentence. 063

To the best of our knowledge, we are the first to 064

formulate the NER task as a TE task by realizing 065

this analogy. This formulation not only utilizes 066

the pre-trained textual entailment model, but also 067

fits for the situation where we don’t have full an- 068

notations. TE only needs the label for one entity 069

other than the whole sequence to train the model. 070

Furthermore, we combine the textual entailment 071

model with a dynamic contrastive learning frame- 072

work to contrast the entities and non-entities in 073

the same sentence. The contrastive learning frame- 074

work helps the model to output the entities with 075

a higher probability to be entailed with the input 076

sentence other than non-entities. And we propose 077

to adjusts the weights of the contrastive loss during 078

the training dynamically. 079

In summary, the main contributions of our work 080

are as follows: 1) We are the first work that for- 081

mulates the NER task as a textual entailment prob- 082
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lem. This formulation is more suitable for the situa-083

tion when we don’t have annotations for the whole084

sequence. 2) We propose to use Textual Entail-085

ment with Dynamic Contrastive Learning (TEDC)086

to solve the zero-shot NER task. 3) Experiments on087

two real-world datasets show that TEDC achieves088

state-of-the-art performance for zero-shot NER.089

2 Proposed Method090

In our method, we obtain initial supervision from091

the entity dictionaries and use the matched entities092

to provide entailment pairs as our training data. We093

introduce how to use textual entailment to solve the094

NER task in section 2.1 and illustrate the dynamic095

contrastive learning framework in section 2.2.096

2.1 Textual Entailment for NER097

Instead of treating NER as a sequence labeling098

problem, we use a textual entailment model to solve099

the NER task. It can not only alleviate the noisy100

labeling problem, but also transfer knowledge from101

pre-trained textual entailment models.102

2.1.1 Entailment Pairs103

To transfer the NER task into textual entailment,104

we need to form textual entailment pairs. Given105

an input sentence, “John is playing piano”, the106

NER task is to recognize that “John" is a PERSON,107

which is equivalent to ask if “John is a PERSON” is108

true. The input sentence acts as a premise, while the109

assertion “John is a PERSON”, acts as a hypothesis.110

Then the NER task is transferred into a textual111

entailment problem which is to determine whether112

the hypothesis is true given the premise.113

Formally, given an input sentence A, xA =114

{w1, w2, ..., wn}, which contains n tokens, we115

need to recognize whether a sub-sequence, si,j =116

{si, si+1, ..., sj}, where i >= 1 and j <= n,117

contained in xA is an entity or not. Given t en-118

tity types in the dataset T = {E1, E2, ..., Et}, an119

entailment pair is constructed as (xA, xB), where120

xB = {si, si+1, ..., sj , is, a, Ek} and Ek ∈ T . To121

train the entailment model, we need to construct122

both positive and negative entailment pairs. For the123

positive examples, we use the entities in dictionar-124

ies as the supervision. If a sub-sequence exactly125

matches with the surface name of an entity in the126

dictionaries, we use it to construct a positive entail-127

ment pair with its entity type. For the negative ex-128

amples, we sample from the collection with all the129

sub-sequences not existing in the entity dictionaries130

to balance the rate of positive/negative examples.131
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Figure 1: The overall framework of the TEDC model.

Since most sub-sequences are non-entities, we are 132

more likely to obtain true negative examples when 133

we only sample a small portion from the collection. 134

In the experiments, we control the sampling of neg- 135

ative pairs by fixing the rate of negative/positive 136

examples at r. 137

2.1.2 Entailment Encoder 138

As shown in Figure 1, we concatenate the sentences 139

(xA, xB) in the entailment pair and feed it into the 140

entailment encoder. Here we use Roberta (Liu 141

et al., 2019) to encode the input sequence and a 142

fully connected layer is applied for binary textual 143

entailment classification: 144

h =RoBERTa(xA, xB), (1) 145

p =softmax(Wh+ b), (2) 146

where h ∈ Rdh is the embedding for the [CLS] 147

token, W ∈ R2×dh and b ∈ R2 are parameters, p 148

is the output probability for textual entailment. In 149

order to regularize the neural network, we add an 150

additional dropout layer with dropout rate d on the 151

output of the [CLS] embedding h. 152

For the textual entailment, we use cross-entropy 153

loss to train the model to identify whether the hy- 154

pothesis about the word segments are true or false: 155

156

Lce = −
1

N

N∑
i=1

yi · logpi, (3) 157

where N is the number of training examples. 158

2.2 Dynamic Contrastive Learning 159

To improve the model’s ability to discriminate 160

entities and non-entities, we combine textual en- 161

tailment with dynamic contrastive learning for 162

the zero-shot NER task. Additional to the cross- 163

entropy loss, we add a dynamic contrastive learning 164

loss to contrast the entities and non-entities. Given 165

a positive entailment pair, we contrast it with r 166

negative pairs that are constructed with the same 167

sentence, which means we contrast positive and 168

negative examples with the same premise but dif- 169
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ferent hypotheses. As shown in Figure 1, “John is170

a person” is a positive hypothesis for the sentence171

“John is playing piano”, and “Piano is a person” is172

a negative hypothesis for this sentence.173

The contrastive loss is proposed to push the sim-174

ilarity of the positive entailment pairs higher than175

the negative entailment pairs. Here we use a fully176

connected layer on top of the entailment embed-177

dings to simulate the similarity, si = Wshi + bs,178

where hi is the embedding for the i-th entailment179

pair, Ws ∈ R1×dh and bs ∈ R are parameters and180

si is the similarity between the premise and the181

hypothesis of the i-th example. In the implemen-182

tation, we put the positive entailment pair and its183

negative pairs in the same batch to calculate the184

contrastive loss:185

Lcr = −log
exp(s+/τ)∑Ncr
i=1 exp(si/τ)

, (4)186

where s+ is the similarity for the positive entail-187

ment pair, si is the similarity for all the entailment188

pairs for the same sentence, Ncr = 1 + r and τ is189

the temperature parameter.190

We add the cross entropy loss and the contrastive191

loss together to train the whole model. To provide192

a stable training procedure and control the impor-193

tance of the contrastive loss, we use a cosine func-194

tion (Loshchilov and Hutter, 2016) to dynamically195

increase the weight for the contrastive loss:196

L =Lce + d · Lcr, (5)197

d =max(0,
1

2
∗ (1 + cos((1− t

T
)π), (6)198

where d is the dynamic weight, t is the current199

training step, T is the total training step. During200

the trainig, d will increase from 0 to 1, which is201

also a warm-up process.202

Training Process. The training process of TEDC203

has two phases: the pre-training stage and the204

fine-tuning stage. For the pre-training, we use205

RoBERTa to initialize the entailment encoder, and206

pre-train TEDC on a textual entailment dataset,207

MNLI (Williams et al., 2018), to transfer knowl-208

edge. During the fine-tuning, we minimize the loss209

illustrated in Equation 5 on the entailment pairs210

constructed from NER datasets.211

Inference strategy. After the two-phase training212

process, we use the model to recognize entities for213

a test sentence. For each input, we generate entail-214

ment pairs by accompanying the sentence with all215

possible sub-sequences with each entity type. For216

each pair, we send it into the entailment model to217

obtain the result whether it is Positive or Negative.218

Dataset BC5CDR NCBI-Disease

Entity Types Disease, Chemical Disease
Dictionary Coverage 51.7% 47.3%
# of Total S(E) 18,256(12,850/15,935/28,785) 8,552(6,892)
# of Training S(E) 5,827(4,182/5,203/9,385) 6,433(5,154)
# of Validation S(E) 5,928(4,244/5,347/9,591) 1,048(787)
# of Test S(E) 6,501(4,424/5,385/9,809) 1,071(960)
# of E (length <= 3) 93.3% 96.6%

Table 1: Statistics of the datasets. For the dictionary
coverage, we show the percentage of unique entities
contained in the vocabularies. S is short for sentences
while E means entities. For the BC5CDR dataset, we
show the number of entities as the number of Dis-
ease/Chemical/Total Entities.

We recognize all the Positive entailment pairs as 219

entities. To balance the computational cost and the 220

performance, we set a maximum entity length L to 221

limit the number of sub-sequence candidates. 222

3 Experiments 223

3.1 Datasets and Dictionaries 224

Two real-world NER datasets are used in the exper- 225

iments: BC5CDR (Wei et al.) and NCBI-Disease 226

(Doğan et al., 2014). 1) BC5CDR is a task dataset 227

from the BioCreative V Chemical and Disease 228

Mention Recognition challenge1. It consists of 229

1,500 PubMed2 articles containing 12,852 Disease 230

entities and 15,935 Chemical entities. 2) NCBI- 231

Disease3 is fully annotated at the mention level for 232

Disease Name Recognition. It contains PubMed 233

793 abstracts with 6,892 Disease entities. We use 234

the data splits provided in the original dataset for 235

training, validation and test. 236

In the zero-shot NER setting, we use entities 237

from dictionaries as the initial supervision. For 238

these two datasets, we use the CTD Chemical and 239

Disease vocabularies4 to serve as the entities in the 240

knowledge base. These dictionaries contain 17,097 241

Chemical entities and 13,061 Disease entities. 242

3.2 Experiment settings 243

In order to validate the effectiveness of our method, 244

we compare TEDC with the following four base- 245

lines: 1) Dictionary Match recognizes the word 246

segments as entity mentions if they match the en- 247

tities in the dictionaries. 2) NNg (Guerini et al., 248

2018) is a three-layer bidirectional LSTM that clas- 249

sifies an input sequence of tokens either as entity 250

or non-entity for a certain entity category. 3) Au- 251

toNER (Shang et al., 2018) builds a binary classi- 252

1https://biocreative.bioinformatics.udel.edu/tasks/biocreative-
v/track-3-cdr/

2https://pubmed.ncbi.nlm.nih.gov/
3https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
4http://ctdbase.org/downloads/
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Datasets
BC5CDR NCBI-Disease

Total Disease Chemical Disease

Metrics P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Dictionary Match 63.35 55.95 59.42 65.41 46.64 54.46 61.65 67.70 64.56 57.01 65.82 61.10
NNg 70.08 69.19 69.63 69.01 61.92 65.27 70.95 76.36 73.56 55.71 67.71 61.13
AutoNER 81.64 76.36 78.91 76.85 65.71 70.84 84.96 85.02 84.99 74.09 66.49 69.25
Fuzzy-LSTM-CRF 84.01 69.15 75.86 77.30 64.04 70.05 89.31 73.14 80.42 81.95 69.82 75.40
Roberta 86.77 66.10 75.04 81.11 55.41 65.84 89.89 77.23 83.08 80.17 66.50 72.67

TEDC w/o Contrastive 87.69 83.20 85.39 84.07 78.41 81.14 91.15 87.92 89.51 82.60 73.57 77.83
TEDC w/o Dynamic 88.53 85.37 86.92 84.69 79.04 81.77 90.10 92.24 91.15 83.60 76.17 79.71
TEDC 89.16 84.96 87.01 86.57 77.62 81.85 91.30 91.77 91.53 85.23 75.17 79.88

Table 2: Experiment results for the zero-shot NER task on two datasets: BC5CDR and NCBI-Disease.

Datasets BC5CDR NCBI-Disease

Metrics P(%) R(%) F1(%) P(%) R(%) F1(%)

Dictionary Match / / / / / /
NNg 19.78 21.72 20.71 10.08 26.39 14.59
AutoNER 14.86 2.24 3.90 28.67 17.92 22.05
Fuzzy-LSTM-CRF 61.31 52.83 56.76 63.93 46.20 53.64
Roberta 54.58 26.12 35.33 50.58 23.97 32.53
TEDC 64.70 60.47 62.51 63.89 52.03 57.35

Table 3: Performance of zero-shot entities.

fier to distinguish Break from Tie between adjacent253

tokens. 4) Fuzzy-LSTM-CRF (Shang et al., 2018)254

customizes the conventional CRF layer in LSTM-255

CRF into a Fuzzy CRF layer. 5) Roberta (Liu256

et al., 2019) is a pre-trained language model. We257

use Roberta-base as in our proposed model, TEDC.258

Since these baselines can only use full super-259

visions, we use the dictionaries to obtain pseudo260

token-level labels to train the models. For all the261

baselines, we use the recommended parameters262

provided by the original paper. For TEDC, we263

use the Adam optimizer with a learning rate of264

1e-5. For NNg and TEDC, we set the rate of nega-265

tive/positve examples r as 20. We feed one positive266

entailment pair and 20 negative pairs in one batch267

and therefore the batch size is 21. For TEDC, the268

dropout rate d is 0.2 and the maximum input length269

is 512. We use the Roberta-base model with 12270

transformer layers in our experiments. The hidden271

dimension dh in transformer layers is 768.272

3.3 Results273

We report the experiment results for zero-shot NER274

on two real-world datasets, BC5CDR and NCBI-275

Disease. We use Precision, recall and F1 for the276

performance evaluation. For the BC5CDR dataset,277

we not only show the total performance for two en-278

tity types, Disease and Chemical, but also illustrate279

the detailed information for separated entity types.280

Overall Performance. As shown in Table 2, our281

proposed model outperformances all the other282

baselines for both datasets on all the three met-283

rics. It can be observed that our TEDC improves284

the best baseline for BC5CDR (AutoNER) and 285

NCBI-Disease (Fuzzy-LSTM-CRF) by 10.26% 286

and 5.94% in F1 score, respectively. Both the best 287

baselines try to transfer knowledge from dictionar- 288

ies and might suffer from the noisy labeled data. 289

The proposed TEDC alleviates this issue by formu- 290

lating the NER task as textual entailment. Addition- 291

ally, the dynamic contrastive framework improves 292

the model’s ability of discriminating the entities 293

and non-entities. 294

Ablation Study. We also conduct the ablation ex- 295

periments to explore the impact of the contrastive 296

component and dynamic weight. For the variant 297

model without dynamic weight, we set the weight 298

for the contrastive loss as 0.1. Table 2 shows that 299

the model with contrastive learning framework 300

achieves the better performance, which verifies 301

TEDC’s ability for discriminating entities and non- 302

entities. Furthermore, the model without dynam- 303

ically adjusted contrastive loss performs slightly 304

worse, which indicates the effectiveness of the dy- 305

namic weight. 306

Performance on Zero-Shot Entities. Table 3 re- 307

ports the performance on the entities that have 308

never been seen in the training data. Compared to 309

the baselines (especially NNg and AutoNER), the 310

superiority of our TEDC becomes more significant 311

on the those unseen entities, which demonstrates 312

the ability of our TEDC in handling the task of 313

zero-shot NER. 314

4 Conclusion 315

In this work, we propose a Textual Entailment 316

model with Dynamic Contrastive Learning (TEDC) 317

for zero-shot NER. TEDC is the first to model 318

the NER task as a TE problem to fit the situa- 319

tion when there are not annotations for the whole 320

sequence. Furthermore, the dynamic contrastive 321

learning framework improves the model’s ability 322

to discriminate entities and non-entities. 323
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