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Abstract

Diffusion Probabilistic models have been shown to generate state-of-the-art results
on several competitive image synthesis benchmarks but lack a low-dimensional,
interpretable latent space, and are slow at generation. On the other hand, Varia-
tional Autoencoders (VAEs) have access to a low-dimensional latent space but,
despite recent advances, exhibit poor sample quality. We present VAEDM, a novel
generative framework for refining VAE generated samples using diffusion models
while also presenting a novel conditional forward process parameterization for
diffusion models. We show that the resulting parameterization can improve upon
the unconditional diffusion model in terms of sampling efficiency during inference
while also equipping diffusion models with the low-dimensional VAE inferred
latent code. Furthermore, we show that the proposed model exhibits out-of-the-box
capabilities for downstream tasks like image superresolution and denoising.

1 Introduction

Generative modeling is the task of capturing the underlying data distribution and learning to generate
novel samples from a posited explicit/implicit distribution of the data in an unsupervised manner.
Variational Autoencoders (VAEs) [17, 29] are a type of explicit-likelihood based generative models
which can also learn a low-dimensional latent representation for the data. The resulting framework
is flexible and can be used for several downstream applications [3, 11, 18, 27]. However, in image
synthesis applications, VAE generated samples are usually blurry and fail to incorporate high-
frequency information [7]. Despite recent advances [4, 28, 37, 39] in improving VAE sample
quality, there is still a significant gap in sample quality between VAEs and their implicit-likelihood
counterparts like GANs [8, 14, 15, 16]. In contrast, Denoising diffusion probabilistic models (DDPM)
[12, 33] have been recently shown to achieve impressive performance on several image synthesis
benchmarks, even surpassing GANs on several such benchmarks [6, 13]. However, conventional
diffusion models require an expensive iterative sampling procedure and lack a low-dimensional latent
representation, limiting these models’ practical applicability for downstream applications.

In this preliminary work, we present VAEDM, a novel framework which combines the best of both
VAEs and DDPMs. VAEDM consists of a generator-refiner framework in which blurry samples
generated from a VAE are refined using a conditional DDPM. Using qualitative and quantitative
experiments, we show that the proposed method, unlike standard VAEs, can generate high-quality
samples that can be controlled using the low-dimensional VAE latent space. Moreover, we show that
the proposed method requires fewer reverse diffusion sampling steps during inference, and exhibits
out-of-the-box generalization to downstream tasks like image super-resolution and denoising.
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2 The VAEDM framework

Before introducing the VAEDM framework, we recommend the readers to refer to Appendix A
for a background on VAEs and diffusion models. Given a high-resolution image x0, an auxiliary
conditioning signal y to be modelled using a VAE, a latent representation z associated with y, and a
sequence of T representations x1:T learned by a diffusion model, the VAEDM generative process
can be formulated as follows:

p(x0:T , y, z) = p(z)pθ(y|z)pφ(x0:T |y, z) (1)

where θ and φ are the parameters of the VAE decoder and the reverse process of the conditional
diffusion model, respectively. Since computation of the likelihood for this generative process is
intractable, we can approximate it by computing a lower bound (ELBO) with respect to the joint
posterior over the unknowns (x1:T , y, z) which can be formulated as follows:

q(x1:T , z|x0, y) = qψ(z|y, x0)q(x1:T |y, z, x0) (2)

where ψ are the parameters of the VAE recognition network (qψ(z|y, x0)). We keep the DDPM
forward process (q(x1:T |y, z, x0)) fixed throughout training. It can be shown that the specified
probabilistic framework yields the following ELBO objective (See Appendix C.1 for proof)

log p(x0, y) ≥ Eqψ(z|y,x0)[pθ(y|z)]−DKL(qψ(z|y, x0)||p(z))︸ ︷︷ ︸
LVAE

+

Ez∼q(z|x0,y)

[
Eq(x1:T |y,z,x0)

[
pφ(x0:T |y, z)
q(x1:T |y, z, x0)

]
︸ ︷︷ ︸

LDDPM

]
(3)

Therefore, the overall VAEDM training objective decomposes into a sum of VAE and a conditional
DDPM objectives. In addition to the above objective, we make the following simplifying assumptions:

1. We assume the conditioning signal y to be x0 itself. Given this choice, we do not condition
the reverse diffusion process on y and take it as pφ(x0:T |z).

2. For ease of optimization, we train Eq. (3) in a sequential two-stage manner, i.e., first
optimizing LVAE and then optimize for LDDPM while fixing θ and ψ.

3. Lastly, instead of conditioning the reverse diffusion directly on the latent code z, we condi-
tion the second stage DDPM model on the VAE reconstruction x̂0 which is a deterministic
function of z.

Moreover, in this work, we only consider a single-stage VAE (with a single stochastic layer) for the
VAE training stage. However, due to the flexibility of the VAEDM two-stage training, multi-stage
VAE approaches as proposed in [4, 28, 37] can also be utilized. For the second stage DDPM training,
we consider the following two DDPM variants in this work.

Formulation-1: In this DDPM formulation, we assume that the forward process is independent of
the VAE reconstructions x̂ (and hence the latent code information z) i.e. q(x1:T |z, x0) ≈ q(x1:T |x0).
Moreover, given the simplifying assumptions discussed previously, the reverse process transitions
take the following form i.e. p(x0:T |z) ≈ p(x0:T |x̂0).

Formulation-2: In this DDPM formulation, we assume that the forward process is also dependent
on the VAE reconstructions x̂ i.e. q(x1:T |z, x0) ≈ q(x1:T |x0, x̂0). The form of the reverse process
remains the same as in Formulation-1. Since, the forward process is also dependent on x̂0 in addition
to the input data x0, the form of the conditional marginal q(xt|x0) in the forward process changes,
which leads to a modified DDPM training and inference procedure. We refer interested readers to
Appendix B for a detailed discussion of this formulation.

3 Experiments

We evaluate the effectiveness of our method by making qualitative and quantitative comparisons
between the proposed VAEDM framework and the unconditional DDPM model [12] on the
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Figure 1: (Left) Illustration of the VAEDM generator-refiner framework. (Right) Illustration of
sampling speed improvements in VAEDM (Best viewed with zoom-in)
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Figure 2: (Left) Illustration of the VAEDM generator-refiner framework. (Right) Illustration of
sampling speed improvements in VAEDM (Best viewed with zoom-in)

CelebAMask-HQ [22] dataset. All the images in the CelebAMask-HQ dataset were downsam-
pled to 128 x 128 resolution for efficiency. For all the experiments, we set number of DDPM
timesteps, T = 1000, the noise schedule, β1 = 10−4 and β2 = 0.02 and use our unconditional
DDPM implementation to compare with the proposed approach. More details regarding the network
architecture and the training and evaluation procedures can be found in Appendix E.

3.1 Sample quality

Fig. 1a shows some samples generated from the VAEDM model (using Formulation-1). As can be
observed from the visualization, the final generated samples (Fig. 1a (Top row)) are a refinement of
the blurry samples generated by our single-stage VAE model (Fig. 1a (Bottom row)). Some more
unconditional samples from the VAEDM model are provided in Appendix F.

3.2 Number of Reverse process steps during sampling

Next, we qualitatively compared the unconditional DDPM model proposed in [12] and VAEDM in
terms of the number of reverse process sampling steps required to produce high-fidelity samples. The
visualization in Fig. 1b suggests that our method requires around half the number of reverse process
steps to generate high-fidelity samples than the unconditional DDPM model. These qualitative results
are further supported by Fig. 3a where VAEDM largely outperforms the unconditional DDPM model
in terms of FID in the low-step regime. Intuitively, these results might not be surprising as the DDPM
model in VAEDM only needs to refine a pre-generated blurry template while the unconditional
DDPM in [12] requires a longer sampling schedule to model all image details, which is a harder task
than refining a pre-generated template.

3.3 Interpolations in the latent space

The proposed VAEDM model consists of two latent codes: the VAE latent code z and the latent
representations xT associated with the reverse process base measure p(xT ) (which is of the same
size of the input image x0 and thus might not be beneficial for downstream tasks). We next discuss
the effects of manipulating both z and xT . We consider the following two interpolation settings:

Varying z with fixed xT : We first sample two VAE latent codes z1 and z2 using the standard
Gaussian distribution. We then perform linear interpolation between z1 and z2 to obtain intermediate
VAE latent codes z̃ = λz1 + (1− λ)z2, which are then used to generate the final VAEDM samples
with a shared xT latent.

Fixed z with varying xT : Next, we sampled the VAE latent code z using the standard Gaussian
distribution. With a fixed z, we then sampled two latent DDPM representations xT1

and xT2
from the
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Figure 3: (a) Plot of FID vs. number of reverse process steps in VAEDM and DDPM [12] (b)
Illustration of VAEDM generalization to image-superresolution and denoising (Best viewed with
zoom-in)

reverse process base measure p(xT ). We then performed linear interpolation between xT1
and xT2

with a fixed z to generate the final VAEDM samples.

As can be observed from Fig. 2, interpolating in the low-dimensional VAE latent space leads to
changes in major features of the generated samples while changes in the DDPM latent conditioned on
the same VAE reconstructions leads to minor differences between the generated samples which can be
attributed to the stochastic nature of the DDPM sampling procedure. This observation implies that we
can control the DDPM generated samples primarily by manipulating the low-dimensional VAE latent
code zvae and that the DDPM latents in VAEDM have low-entropy. To the best of our knowledge,
our work is the first to equip diffusion models with such a low-dimensional latent representation.

3.4 Out-of-the-box super-resolution and denoising

Recently, [31] showed impressive image super-resolution results using diffusion models. To test if our
generator-refiner framework can generalize over different types of noisy inputs, we conditioned the
DDPM reverse process on the noisy input (instead of the VAE reconstruction). The samples obtained
from such conditioning are visualized in Fig. 3. On a 16 x 16 to 32 x 32 image super-resolution
task and an image denoising task (using gaussian noise corruption) for the CIFAR-10 dataset, our
model is able to generate plausible reconstructions (Fig. 3b(Middle row)) when compared to the
original samples. Intuitively, these results can be expected since the task of refining (blurry) VAE
reconstructions might be more challenging than learning to upsample a downsampled version of an
image. However, it is worth noting that certain artifacts in the generated reconstructions are evident,
leaving scope for improvements.

4 Conclusion

In this work, we presented a novel unifying framework for training VAEs and diffusion models. We
presented the effectiveness of the proposed approach in generating high-quality samples, requiring
fewer reverse process steps during inference when compared with the unconditional DDPM formu-
lation, equipping DDPM with a low dimensional latent code, and generalizing to additional tasks
like image super-resolution and denoising. We also provide a detailed comparison of our proposed
approach with other state-of-the-art generative model families in Appendix D. However, we look
forward to combining our proposed approach with recent advances in diffusion models and make
more quantitative comparisons with other state-of-the-art methods on image-synthesis benchmarks.

5 Impact statement

We note that the synthetic image generation techniques have the potential to mitigate bias and privacy
issues for related ML models that require data collection and annotation. However, such techniques
could be misused to produce fake or misleading information, and researchers should be aware of
these risks and explore the techniques responsibly.
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A Appendix: Background on VAE’s and Diffusion models

A.1 Variational Autoencoders

VAEs [17] are based on a simple but principled encoder-decoder based formulation which tries
to maximize the evidence lower bound (ELBO) of the data log-likelihood, which is intractable to
compute in general. The VAE optimization objective can be stated as follows:

L(θ, φ) = Eqφ(z|x)[log pθ(x|z)]−DKL[qφ(z|x)‖p(z)] (4)

Under the amortized variational inference scheme, the approximate posterior (qφ(z|x)) and the
likelihood (pθ(x|z)) distributions can be modeled using deep neural networks with parameters φ and
θ, respectively using the reparameterization trick [17, 29]. The choice of the prior distribution p(z) is
flexible and can vary from a standard Gaussian [17] to more expressive priors like normalizing flows
[9, 19, 38].

A.2 Denoising Diffusion Probabilistic Models

DDPMs [12, 33] are latent-variable models consisting of a forward noising process (q(x1:T |x0))
which gradually destroys the structure of the data x0 and a reverse process ((p(x0:T ))) which learns
to recover the original data x0 from the noisy input. The forward noising process is modeled using a
first-order Markov chain with Gaussian transitions and is fixed throughout training, and the noise
schedules β1 to βT can be fixed or learned. The form of the forward process and some notable
properties of the forward process conditional distributions are summarized in the equations below

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (5)

The forward process of DDPMs admits a closed form for xt for any t, as follows

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) where αt = (1− βt) and ᾱt =

∏
t

αt (6)

The forward process posteriors are also tractable and are given by

q(xt−1|xt, x0) = N (µ̃t(xt, x0), β̃t) (7)

where µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
and β̃t =

1− ᾱt−1

1− ᾱt
βt (8)

The reverse process can also be parameterized using a first-order Markov chain with a learned
Gaussian transition distribution as follows

p(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)) (9)

Given a large enough T and a well-behaved variance schedule of βt, the distribution q(xT |x0)
will approximate an isotropic Gaussian. We can generate a new sample from the underlying data
distribution q(x0) by sampling a latent from p(xT ) (chosen to be an isotropic Gaussian distribution)
and running the reverse process. As proposed in [12], the reverse process in DDPM is trained to
minimize the following upper bound over the negative log-likelihood (See [33] for detailed proofs):

Eq

[
DKL(q(xT |x0)‖p(xT )) +

∑
t>1

DKL(q(xt−1|xt, x0)‖pθ(xt−1|xt))− log pθ(x0|x1)

]
(10)

A notable aspect of the above objective is that all the KL divergences involve Gaussians and, con-
sequently, are available in closed form. Notably, [12] parameterize the reverse process conditional
pθ(xt−1|xt) using the forward process posterior q(xt−1|xt, x0). [12] show that such a parameteriza-
tion simplifies the second term in Eq. 10 at any given time-step t to the following objective in Eq.
11.

‖ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t))‖22 (11)

8



where xt =
√
ᾱtx0 + ε

√
1− ᾱt and ε ∼ N (0, I). Intuitively, this means that the reverse process in

DDPM is trained to predict the noise added to the input x0 at any time-step t. We use this simplified
training formulation throughout our work to train all proposed parameterizations of diffusion models
as [12] show that this formulation yields superior sample quality than other forms of reverse process
parameterizations. For further details on the exact training and inference processes, we encourage the
readers to refer to [12].
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B Appendix: DDPM training and inference under Formulation 2

Algorithm 1: Training (Form. 2)
1 repeat
2 x0 ∼ q(x0)
3 t ∼ Uniform({1 . . . T})
4 ε ∼ N (0, I)
5 Take gradient descent step on
6 Oθ‖ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε+ x̂0, t)‖2

7 until convergence

Algorithm 2: Inference (Form. 2)
1 xT ∼ N (y, I)
2 for t = T to 1 do
3 z = N (0, I), if t > 1 else 0

4 x̂0 = 1√
ᾱt

(xt−x̂0−εθ(xt, x̂0, t)
√

1− ᾱt)
5 x̂t−1 = γ0x̂0 + γ1xt + γ2x̂0

6 xt−1 = x̂t−1 + zσ̂t

7 return x0 − x̂0

The DDPM training objective proposed in [12], has the following form:

Eq[DKL(q(xT |x0)‖p(xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL(q(xt−1|xt, x0)‖pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

] (12)

Reverse Process parameterization: Following [12], we parameterize the reverse process transition
pθ(xt−1|xt) using the functional form of the forward process posterior q(xt−1|xt, x0). For the
VAEDM formulation-2 proposed in Section 2, we design the forward process conditional distributions
as follows:

q(xt|xt−1, x̂0) = N (
√

1− βtxt−1 + (1−
√

1− βt)x̂0, βtI) where t > 1 (13)

q(x1|x0, x̂0) = N (
√

1− β1x0 + x̂0, βtI) (14)
Given this choice of q(xt|xt−1, x̂0), it can be shown that the conditional marginal distribution
q(xt|x0, x̂0) can be specified as:

q(xt|x0, x̂0) = N (
√
ᾱtx0 + x̂0, (1− ᾱt)I) (15)

The posterior distribution q(xt−1|xt, x0) will also be a Gaussian distribution with the following form:

q(xt−1|xt, x0, x̂0) = N (µ̂t(xt, x0, x̂0), β̂tI) (16)

where µ̂t(xt, x0, x̂0) =
βt
√
ᾱt−1

1− ᾱt
x0 +

(1− ᾱt−1)
√
αt

1− ᾱt
xt︸ ︷︷ ︸

µ̃t(xt,x0)

+ (1−
(1− ᾱt−1)

√
αt

1− ᾱt
)︸ ︷︷ ︸

κ

x̂0 (17)

β̂t =
(1− ᾱt−1)

1− ᾱt
βt and x0 =

1√
ᾱt

(xt − x̂0 − ε
√

1− ᾱt) where ε ∼ N (0, I) (18)

Hence the forward process posterior in the VAEDM formulation is a shifted version of the
forward process posterior proposed in [12]. Since the VAE reconstruction x̂0 for an im-
age x0 is constant during DDPM training, we can parameterize the reverse process posterior as
µ̂θ(xt, x0, x̂0, t) = µ̃θ(xt, x0, t)+κx̂0. Additionally, we keep the variance of the reverse process con-
ditional fixed and equal to β̂t as proposed in [12]. Since Lt−1 ∝ ‖µ̂t(xt, x0, x̂0)−µ̂θ(xt, x0, x̂0, t)‖2,
the DDPM training objective in our formulation remains unchanged from the simplified denoising
score matching objective proposed in [12].

Choice of the decoder, L0: One possible choice for the decoder is to set pθ(x0|x1) to be a discrete
independent decoder derived from the Gaussian N (µ̂θ(x1, x̂0, 1), β̂1I) [12]. However, at t = 1, we
have µ̂θ(x1, x̂0, 1) = x0(x1, x̂0, εθ) + x̂0. Therefore, to account for the VAE reconstruction bias in
the final DDPM output, we set our decoder pθ(x0|x1) = N (µ̂θ(x1, x̂0, 1)− x̂0, β̂1I). Without using
this adjustment, we found the final DDPM samples to be a bit blurry in our initial experiments.The
final training and inference algorithms are summarized in Algorithms 1 and 2 respectively. In
Algorithm 2, the coefficients γ0, γ1 and γ2 denote the coefficients of the forward process posterior in
Eqn. 17.
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C Appendix: Detailed Proofs

C.1 Derivation of VAEDM ELBO objective

Given a high-resolution image x0, an auxiliary conditioning signal y to be modelled using a VAE,
a latent representation z associated with y, and a sequence of T representations x1:T learned by a
diffusion model, the DiffuseVAE generative process, p(x0:T , y, z) can be factorized as follows:

p(x0:T , y, z) = p(z)pθ(y|z)pφ(x0:T |y, z) (19)
where θ and φ are the parameters of the VAE decoder and the reverse process of the conditional
diffusion model, respectively.The log-likelihood of the training data can then be obtained as:

log p(x0, y) = log

∫
p(x0:T , y, z)dx1:T dz (20)

Furthermore, since the joint posterior p(x1:T , z|y, x0) is intractable to compute, we approximate it
using a surrogate posterior q(x1:T , z|y, x0) which can also be factorized into the following conditional
distributions:

q(x1:T , z|y, x0) = qψ(z|y, x0)q(x1:T |y, z, x0) (21)
where ψ are the parameters of the VAE recognition network (qψ(z|y, x0)). Since computation of the
likelihood in Eq. (20) is intractable, we can approximate it by computing a lower bound (ELBO) with
respect to the joint posterior over the unknowns (x1:T , z) as:

log p(x0, y) ≥ Eq(x1:T ,z|x0,y)

[
log

p(x0:T , y, z)

q(x1:T , z|x0, y)

]
(22)

Plugging the factorial forms of the DiffuseVAE generative process and the joint posterior defined
above in eqn. (22), we can simplify the ELBO as follows:

log p(x0, y) ≥ Eq(x1:T ,z|y,x0)

[
log

p(x0:T , y, z)

q(x1:T , z|y, x0)

]
(23)

≥ Eq(x1:T ,z|x0,y)

[
log

p(z)pθ(y|z)pφ(x0:T |y, z)
qψ(z|y, x0)q(x1:T |y, z, x0)

]
(24)

≥ Eq(x1:T ,z|x0,y)

[
log

p(z)

qψ(z|y, x0)
+ log pθ(y|z)+

log
pφ(x0:T |y, z)
q(x1:T |y, z, x0)

]
(25)

≥ Eq(z|y,x0)

[
log

p(z)

qψ(z|y, x0)
+ log pθ(y|z)

]
+

Eq(x1:T ,z|x0,y)

[
log

pφ(x0:T |y, z)
q(x1:T |y, z, x0)

]
(26)

≥ Ez∼q(z|y,x0)

[
Eq(x1:T |y,z,x0)

[
pφ(x0:T |y, z)
q(x1:T |y, z, x0)

]
︸ ︷︷ ︸

LDDPM

]
(27)

+ Eqψ(z|y,x0) [pθ(y|z)]−DKL(qψ(z|y, x0)||p(z))︸ ︷︷ ︸
LVAE

(28)

C.2 Derivation of the forward conditional marginal in Formulation 2

Given the forward process transitions for VAEDM (Formulation-2)(See Appendix B):

q(x1|x0, x̂0) = N (
√

1− β1x0 + x̂0, β1I) (29)
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q(xt|xt−1, x̂0) = N (
√

1− βtxt−1 + (1−
√

1− βt)x̂0, βtI) (30)
From Eqn.(30), we can write,

xt =
√

1− βtxt−1 + (1−
√

1− βt)x̂0 + ε
√
βt, where ε ∼ N (0, I) (31)

Taking expectations both sides,

E(xt) =
√

1− βtE(xt−1) + (1−
√

1− βt)x̂0 (32)

E(xt) =
√

1− βt[
√

1− βt−1E(xt−2) + (1−
√

1− βt−1)x̂0] + (1−
√

1− βt)x̂0 (33)

E(xt) =
√

(1− βt)(1− βt−1)E(xt−2) + (1−
√

(1− βt)(1− βt−1))x̂0 (34)
... (35)

E(xt) =

√√√√ t∏
t=2

(1− βt)E(x1) + x̂0(1−

√√√√ t∏
t=2

(1− βt)) (36)

Substituting E(x1) =
√

1− β1x0 + x̂0 from Eqn.(29) into the above formulation we get,

E(xt) =

√√√√ t∏
t=1

(1− βt)x0 + x̂0 =
√
ᾱtx0 + x̂0 (37)

Similarly it can be shown that V ar(xt) = (1− ᾱt)I . Therefore,

q(xt|x0, y) = N (
√
ᾱtx0 + x̂0, (1− ᾱt)I) (38)
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D Appendix: Detailed Comparison with existing approaches

Following the seminal work of [12, 33] in diffusion models, there has been a lot of recent progress in
both unconditional [6, 20, 26] and conditional diffusion models [2, 5, 13, 31] (including score-based
models [34, 35], based on a connection proposed in [12]) for a variety of downstream tasks including
image synthesis, audio synthesis and likelihood estimation among others. Similarly there has also
been progress in improving the ELBO estimates [1, 24, 32] and image synthesis [4, 23, 37, 40] quality
using VAE’s [17, 29]. Next, we compare our proposed approach in detail with several of these related
existing model families.

Unconditional DDPM: DDPM as introduced in [12] generates images unconditionally which has
limited application scope. On the other hand, the proposed VAEDM model can be used for tasks
like image enhancement, super-resolution etc. Essentially, the DDPM formulations proposed in
our method can also be trained in a stand-alone manner with the reverse process conditioned on
an auxiliary input like a grayscale image or an image with missing pixels to generate colorized or
inpainted results, respectively. Moreover, our approach requires lesser number of reverse process
steps in general to produce plausible samples.

Conditional DDPM: Conditional DDPM as introduced in [13] and [31] use multiple diffusion
models for generating high-resolution images in a cascaded fashion. However, for even a two-stage
pipeline the sampling time of such models would be effectively much higher than VAEDM. Given the
flexibility of our approach, we hypothesize that a single-stage VAE can also be replaced by a complex
multi-stage VAE architecture as proposed in [4, 37] for comparable sample quality to cascaded
diffusion models without affecting the sampling time significantly. Moreover, such cascades lack a
low-dimensional latent code which might be a limiting factor for certain downstream applications. It
is worth noting that, [13] use a conditioning augmentation scheme where the high resolution image is
generated by conditioning on a blurred/noisy low resolution image. This augmentation scheme is
empirically chosen and can be sub-optimal across datasets. On the contrary, our model is conditioned
on a reconstruction generated by a VAE and no explicit augmentation is required.

Hierarchical VAEs Hierarchical VAEs [4, 28, 36, 37] can suffer from posterior collapse and heuris-
tics like gradient skipping and spectral normalization [25] might be required to stabilize training.
Moreover, these models require a large dimensionality of the latent codes to generate high-fidelity
samples [28, 39]. In contrast, VAEDM training does not suffer from such instabilities and the
proposed method requires a single latent code layer (with dimensionality comparable to GANs) to
generate high-fidelity samples. Interestingly, in principle, our approach can be considered similar to
Hierarchical VAEs in some sense since the first stage VAE is used to model the high-level attributes
of the generated image while the DDPM model in the second stage can be considered as a refiner that
adds low-level details. In Hierarchical VAEs, the subsequent latent hierarchies perform this function.
[4].
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E Model Architecture and training

Unless otherwise mentioned, we re-used the model architectures and training hyperparameters
proposed in [12]. For all experiments, we used the EMA approach from [10] for updating the target
model parameters with an initial decay rate of 0.9999. However, we did not experiment with the
choice of the EMA scheme.

Data preprocessing: For experiments with the CelebAMask-HQ dataset [22], we downsampled
the training data to 128 x 128 resolution since we believe this setting provides the correct balance
between visual details and training efficiency. We did not use any form of data augmentation during
training for both CelebAMask-HQ and CIFAR-10 datasets. For Stage-1 VAE training, the training
data was scaled between [0.0, 1.0]. For Stage-2 DDPM training, the images were scaled between
[-1.0, 1.0] for training both the unconditional DDPM and the VAEDM (both formulations).

Model architecture: The VAE architecture used for Stage-1 training on the CelebAMask-HQ dataset
consists of around 21M parameters with residual block architectures inspired from [4]. The VAE
latent code size was set to 1024 for CelebAMask-HQ and 512 for the CIFAR-10 dataset. The U-Net
[30] decoder used in Stage-2 DDPM training is around 113M parameters. For CIFAR-10, the VAE
model consists of around 9M parameters whereas the size of the U-Net decoder used is 34.8M
parameters.

Training: The VAE model was trained for around 180 epochs and 500 epochs for the CelebAMask-
HQ and the CIFAR-10 datasets with batch sizes of 40 and 128 respectively. All DDPM models
were trained for around 250 epochs with a batch size of 64 for the CelebAMask-HQ dataset and for
around 1000 epochs with a batch size of 128 for the CIFAR-10 dataset. We used a mix of 4 Nvidia
1080Ti GPUs ( 44GB memory) and a cloud TPUv2-8 ( 64GB memory) provided by Colab Pro for
training the models. For DDPM training, it took around 0.74s and 0.2s per optimization step for the
CelebAHQ and CIFAR-10 datasets respectively.
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F Unconditional samples generated using VAEDM

Figure 4: Selected unconditional samples (128 x 128) generated from VAEDM using formulation 2.
(t=500)
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Figure 5: Selected unconditional samples (128 x 128) generated from VAEDM using formulation 1.
(t=500)
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