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ABSTRACT

The lossless data compression algorithm based on Bayesian Attention Networks
is derived from first principles.

1 INTRODUCTION: LOSSLESS COMPRESSION AS A PREDICTION PROBLEM

Data compression is a very important area of study for both practical applications as well as for
fundamental research in information theory (Salomon, 2006),(MacKay, 2002), (Mahoney, 2013b),
(Lossless Compression, 2020) and subject of many competitions, like (Hutter Prize, 2021). See also
(Mahoney, 2013a). The neural compression is an active research area (Kingma et al., 2019).

The fundamental approach to compressing a sequence of data elements is to use a probabilistic
model that is able to reproducibly compute a probability of the sequence via conditional probabil-
ities of all elements and then encode the sequence probability with an entropy encoder (Shannon,
1948),(Rissanen, 1976),(Pasco, 1976).

The direct consequence of that approach is that the finding of a good predictive model becomes
critical for the development of the high performance compression algorithm.

For a sequence of elements
s = a1a2a3..an..aN (1)

the probability of the sequence is a product of conditional probabilities of each element

P (s) = P (a1)P (a2|a1)P (a3|a1a2)..P (an|sn)..P (aN |sN ), (2)

where sub-sequences sn are defined as sn = a1a2..an−1, n = 2..N . To simplify we will consider
conditional dependencies for all probabilities as functions of fixed-length sequences sn,n+l of length
l with left-side zero padding as needed. Then the probability of the sequence s will be

P (s) =
N∏
n=1

P (an|sn−l,n), sn−l,n = an−lan−l+1..an−1. (3)

By defining a model P (a|s, w) for probability of an element a given a previous sequence s and
parametrized by weights w we obtain a parametrized probability of any sequence s

P (s|w) =

N∏
n=1

P (an|sn−l,n, w), sn−l,n = an−lan−l+1..an−1. (4)

For a known training dataset of independent sequences {si, i = 1..M} the probability of the data
for a selected model is given by Bayesian integral over weights as it follows from the Bayes theorem
(Bayes & Price, 1763)

Prob({si}|H) =

∫
w

M∏
i=1

P (si|w)P0(w|H)dw, (5)

where P0(w|H) is a prior of weights conditional on hyperparameters H .

The prediction of the probability P (s|{si}, H) of a new sequence s then will be given by an average

P (s|{si}, H) = 〈P (s|w)〉 =

∫
w

P (s|w)

M∏
i=1

P (si|w)P0(w|H)dw / Prob({si}|H). (6)
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We will call the new sequence s a test sequence.

The prediction probability P (s|{si}, H) is an average over weights with the most significant contri-
bution coming from training sequences that maximize both corresponding probabilities of training
data and the test sequence P (s|w) for the same weights in the Eq.(6). The resulting average prob-
ability is high when the test sequence s is similar to the most typical training sequences. However,
the average will be low when s is very different from the typical training data. The problem is that
all training sequences contributing equally to the average and a good prediction is possible only for
a test sequence that is very similar to training data.

To improve the prediction of the probability for the given sequence s we will introduce the impor-
tance weights for training data samples in the Eq.(6) that will increase contributions of samples with
sequences si similar to the test sequence s and reduce contributions of other samples.

That approach leads to a definition of Bayesian Attention Networks (BAN) considered next.

The idea to account for long-range correlations between data samples for achieving better com-
pression has a long history. The attention mechanism recently proposed in (Vaswani et al., 2017)
was a great success for sequence prediction tasks as well as for other problems including image
recognition (Dosovitskiy et al., 2020).

2 PREDICTION OF SEQUENCE PROBABILITIES WITH BAYESIAN ATTENTION
NETWORKS (BAN)

We will define BAN in a few steps. First, we introduce the importance factors ρi(s) for sequences
by modifying contribution of each training data sample in the Bayesian integrals

P (s|{si}, H) =

∫
w

P (s|w)

M∏
i=1

e−ρi(s)l(si|w)P0(w|H)dw / Prob({si}|H), (7)

Prob({si}|H) =

∫
w

M∏
i=1

e−ρi(s)l(si|w)P0(w|H)dw. (8)

Here l(si|w) are loss functions for sequences defined as logs of probabilities l(s|w) =
− log(P (s|w)). The importance factors ρi(s) are assigned to each training sequence si and are
functions of predicted sequence s. The importance factors must be constrained by normalization
condition

∑
i ρi(s) = M , so the total contribution of all training sequences is preserved.

The meaning of the importance factors is very simple - it defines the importance of a given training
sample si to influence a solution for the prediction probability of the test sequence s with higher im-
portance ρi(s) increasing contribution of the sample si to predicting s. We will clarify the definition
of importance weights in the following steps.

Next, we will approximate the average of probability of a sequence as product of averages for
predictions of probabilities of elements conditional on corresponding immediate sub-sequences

P (s) = P (a1a2..aN ) = 〈P (a1|s1, w)〉〈P (a2|s2, w)〉..〈P (aN |sN , w)〉. (9)

Then the prediction of the probability of an element is given by

〈P (a|s, w)〉 =

∫
w

P (a|s, w)

K∏
i=1

e−ρi(s)l(ai|si,w)P0(w|H)dw / Prob({ai}|H) (10)

with the normalization factor Prob({ai}|H) that keeps 〈P (a|s, w)〉 normalized defined as follows

Prob({ai}|H) =

∫
w

K∏
i=1

e−ρi(s)l(ai|si,w)P0(w|H)dw. (11)

Here the importance factors depend only on input sequences in each sample and not on predicted
elements. The index i runs over all K sequence elements ai in training data in Eqs.(10,11). The
losses l(ai|si, w) are per element in training sequences and the importance factors ρi(s) control the
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contributions of each training sample i and depend on the sub-sequence s of the element a in the
prediction probability P (a|s). The importance factors are normalized by condition

∑
i ρi(s) = K

where K is a total number of training data samples.

The Eqs.(10,11) are defining the Bayesian Attention Network with attention variable ρi(s) which
is a function of two sequences. The attention or importance factors allow to take into account long
range interactions between different data samples.

It is important to note that for any approximation of the integrals in Eqs.(10,11) the solution is
dependent on the input sequence s in the data sample we are making prediction for P (a|s), which
requires computing the integrals for every test sample.

To resolve this problem and find the practical computing approach we will use a latent variable z
representation with the encoder-decoder network that is considered in the next section.

3 COMPUTING IMPORTANCE VIA EXTENDED VARIATIONAL
APPROXIMATION

Let’s define encoder ρ(z|s) and decoder ρ(s|z). To do a prediction for a sample (a,s) the encoder
ρ(z|s) gives a probability of z for input s and the decoder ρ(si|z) gives a probability of a training
sequence si for a given z.

The decoder allows to define the normalized importance factor

ρi(z) = Kρ(si|z)/
∑
j

ρ(sj |z). (12)

With that we can reformulate Eqs.(10,11) as follows

〈P (a|s, w)〉 =

∫
w,z

P (a|s, w)

K∏
i=1

e−ρi(z)l(ai|si,w)P0(w|H)ρ(z|s)dwdz / Prob({ai}|H)

Prob({ai}|H) =

∫
w,z

K∏
i=1

e−ρi(z)l(ai|si,w)P0(w|H)ρ(z|s)dwdz (13)

Due to Bayesian theorem (Bayes & Price, 1763) the encoder probability related to the decoder
probability and can be expressed via decoder probability and priors for z and s

ρ(z|s) =
ρ(s|z)ρ(z)

ρ(s)
. (14)

By introducing an approximation for the encoder q(z|s) we can use a variational method for simpli-
fying the integral over z following (Kingma & Welling, 2014)∫

z

e−L(z)ρ(s|z)ρ(z)dz > exp

(
−
∫
z

q(z|s)L(z, w)dz +

∫
z

q(z|s) log
ρ(s|z)ρ(z)

q(z|s)
dz

)
, (15)

where total training loss is L(z, w) =
∑
i ρi(z)l(ai|si, w). Maximizing the right side of Eq.(15)

w.r.t. parameters of q(z|s) allows to find the encoder q.

However, the variational approximation that is based on Jensen’s inequality, (Jensen, 1906)
〈exp(x)〉 > exp(〈x〉), results in the loss of dependency on importance factors in the prediction
probability in the Eqs.(13). To retain that dependency we have to use a sharpened Jensen’s inequal-
ity, (see Appendix A for the proof)

〈ex〉 > e〈x〉+
1
2 〈(x−〈x〉)

2〉. (16)
Then the probability of prediction can be maximized w.r.t. importance weights. Now we can find
that the variation of the log of the prediction probability is equal to a correlation function of test and
train losses

δ log 〈P (a|s, w)〉
δρi(z)

= 〈l(ai|si, w)l(a|s, w)〉w − 〈l(ai|si, w)〉w〈l(a|s, w)〉w ≈∑
j

σ2
j

∂l(ai|si, w)

∂wj

∂l(a|s, w)

∂wj
, (17)
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where averages 〈(..)〉w are computed with a posterior distribution of weights

Post(w|H0, z) =

K∏
i=1

e−ρi(z)l(ai|si,w)P0(w|H0), (18)

by expanding the weights around the means up to the second order and averaging over it.

4 COMPLETE LOSS AND RECURRENT UPDATE RULES FOR
HYPERPARAMETERS

Due to the sharpened Jensen’s inequality in Eq.(16) the complete loss includes a cross-correlation
term between the test sample loss and training sample losses∫

w,z

P0(w|H0)q(z|s) (L(z, w)− l(a|s, w)L(z, w)) dwdz −
∫
z

q(z|s) log
ρ(s|z)ρ(z)

q(z|s)
dz, (19)

where the training loss L(z, w) =
∑
i ρi(z)l(ai|si, w).

Finding the importance factors by maximizing the prediction probability for test sample requires to
minimize only the cross-correlation loss due to normalization factor in Eq.(13). All other parameters
could be found by minimizing the loss in the Eq.(19).

Let’s use a posterior distribution for weights that depends on initial hyperparameters H0 and the
latent variable z in the Eq.(18). The method developed in (Tetelman, 2020) allows to compute ap-
proximations of the Bayesian integrals by re-parametrizing a prior of weights P0(w|H) to represent
a posterior

Post(w|H ′, z) =

K∏
i=1

e−ρi(z)l(ai|si,w)P0(w|H0) ∼ P0(w|H(z,H0)). (20)

The re-parametrization is computed recursively. With Gaussian priors for all network weights and
Gaussian encoder q(z|s) we can find the following update rules for hyperparameters: (mean, vari-
ance) pairs (µ, σ2) for all weights of all networks. The training update steps are as follows

i ∼ Uniform[1..K] (21)
z(s, v) ∼ q(z|s, v) (22)
w(z, v) ∼ P0(w|µw(z|v), σw(z|v)) (23)

ρi(z, u) = Kρ(si|z, u)/
∑
j

ρ(sj |z, u) (24)

gradv =
∂

∂v

[
ρi(z, u)l(ai|si, w(z, v))− log

ρ(s|z, u)ρ(z)

q(z|s, v)

]
(25)

∆µv + = −εσ2
vgradv (26)

∆
1

σ2
v

+ = ε(gradv)2 (27)

gradu =
∑
j

(
σ2
w,j

K

∂l(ai|si, w)

∂wj

∂l(a|s, w)

∂wj

)
∂ρi(z, u)

∂u
(28)

∆µu + = −εσ2
ugradu (29)

∆
1

σ2
u

+ = ε(gradu)2. (30)

Here the learning rate ε is equal to the inverse number of epochs T : ε = 1/T .

The prediction for a sample with input s is done by sampling z ∼ q(z|s, v), computing a mean for
weight w equal to µw(z, v) and finally computing a prediction probability P (a|s, µw).
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A APPENDIX

To prove the sharpened Jensen’s inequality we note that for a normal distribution

〈ex〉 = e〈x〉+
1
2 〈(x−〈x〉)

2〉 (31)
As Gaussian mixture is an universal approximator for any (non-pathological) distribution, see
(Goodfellow et al., 2016) p.65, then it directly proves the sharpened Jensen’s inequality in Eq.(16):∫

x

dx
∑
k

AkG(x|µ, σ)ex =
∑
k

Ake
µk+

1
2σ

2
k > eµ+

1
2σ

2

. (32)

Here
∑
k Ak = 1 and µ =

∑
k Akµk, σ

2 =
∑
k Akσ

2
k.
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