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ABSTRACT

Image clustering methods have rapidly improved their ability to discover object
categories. However, unsupervised clustering methods struggle on other image
attributes, e.g. age or activity. The reason is that most recent clustering methods
learn deep features that are designed to be sensitive to object category, but less so
to other image attributes. We propose to overcome this limitation by introducing
the new setting of language-guided image clustering. In this setting, the model
is provided with an exhaustive list of phrases describing all the possible values
of a specific attribute, together with a shared image-language embedding (e.g.
CLIP). Our method then computes the subset of K attribute phrases that form the
best clustering of the images. Differently from standard clustering methods, our
method can cluster according to image attributes other than the object category.
We evaluate our method on attribute clustering tasks and demonstrate that our
method significantly outperforms methods that do not use language-guidance.

1 INTRODUCTION

One of the core tasks of computer vision is to classify images into semantically similar classes. In
the most common case of supervised classification, we explicitly indicate which images we deem
as semantically similar using class labels. When such labels are unavailable, unsupervised image
clustering aims to group the images to semantically similar groups, guided by the clustering meth-
ods’ inductive bias and the statistics of the data (Shiran & Weinshall, 2021). One major limitation
of current clustering methods is their assumption that a particular grouping of the data is inherently
preferable to others. In fact, multiple semantic groupings of the data can be defined by many dif-
ferent image attributes including: object identity, age, activity, position or pose. As an illustrative
example, we can consider the ”drinking” and ”brushing teeth” images seen in Fig.1 taken from the
”Stanford Activity” dataset - note that two distinct groupings are possible. To resolve this ambiguity,
language guidance is needed.

Current clustering methods typically wish to cluster the images according to the image category.
Yet, grouping by other attributes such as activity or age is also perfectly valid. To partially resolve
this ambiguity, clustering methods make design choices, such as the data augmentation (Shiran &
Weinshall, 2021), that often guide the representation towards suppression of some properties (such
as color or object position). The objective is that by suppression (”denying”) of these properties,
the component in the representation related to the object category will be dominant allowing the
algorithm to cluster by category. However, this ”deny-list” approach is problematic for two reasons:
i) manually creating a deny-list for excluding all attributes but the ones we wish to group by is
laborious and non-trivial (if possible). ii) Even if such a complete deny-list is given, there may not
be a simple data augmentation for removing every undesired attribute.

The main idea in this work is to replace this ”deny-listing” approach with ”allow-listing”, specify-
ing which image attributes we deem as acceptable for grouping. In our approach, we provide an
extensive list of words, or short sentences, describing the concepts which we ”allow” as legitimate
clusters for the data at hand. While this ”allow-list” does assume some prior knowledge about the
relevant attributes, it provides a significant advantage: giving guidance for the attributes that we
wish to cluster by. Unlike ”zero-shot classification”, which assumes full knowledge on the dataset-
specific labels, we only assume a list describing the generally allowed attribute values (and not the
specific clusters names for this dataset).
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Figure 1: While unsupervised clustering methods infer classes by visual features only, this may not
be sufficient to identify ground truth classes. Our method guides the desired grouping by language.

Our key technical challenge is selecting the K words (or phrases) out of a long list of English
language phrases that best cluster the images into semantically consistent groups. We show that
this task can be formulated as an unconstrained K facility location problem, a commonly studied
NP-hard problem in algorithmic theory. Although advanced methods exist for the solution with
approximation guarantees, the most popular methods do not scale to our task. Instead, we suggest to
solve the optimization task using a more scalable approach, that can be seen as a discretized version
of K-means. Using an extensive dictionary of words or phrases also presents another issue: some
uninformative words such as ”entity” have an embedding similar to a large proportion of images in
the dataset. We propose an unsupervised criterion for selecting a sublist of performant, informative
words.

We evaluate our method on a range of attribute-clustering tasks, grouping according to different
attributes including: activity or age. We show that language-guidance outperforms top methods
such as SCAN. We take care to verify that this is not only merely due to our use of strong pre-
trained features. Our method also outperforms zero-shot classification with a naive use of the given
dictionary.

Our main contribution are:

1. Introducing the setting of language-guided image clustering and demonstrating its effec-
tiveness for a variety of clustering tasks.

2. Reducing language-guided image clustering to the well-studied facility location problem.
3. Suggesting a scalable and empirically effective solution for solving the optimization task.
4. Proposing an unsupervised criterion for removing uninformative nuisance words from the

word list.

2 RELATED WORK

Self-supervised deep image clustering: Deep features trained using self-supervised criteria are ex-
tensively used for image clustering. Early methods learned deep features using an auto-encoder with
a reconstruction constraint (Xie et al., 2016; Yang et al., 2017). More recent approaches directly op-
timize clustering objectives during feature learning. Specifically, a common approach is to cluster
images according to their learned features, and use this approximate clustering for further improve-
ment of the features (this can be done iteratively or jointly) (Caron et al., 2018; Chang et al., 2017;
Haeusser et al., 2018). An issue that remains is that such approaches are ”free” to learn arbitrary
sets of features, and therefore might clusters according to attributes not related to the ground truth
labels. To overcome this issue, a promising line of approaches use carefully selected augmentations
to remove the nuisance attributes and direct learning towards more semantic features (Wu et al.,
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2019; Niu et al., 2020; Shiran & Weinshall, 2019). These ideas are often combined with contrastive
learning (Tsai et al., 2021). The work by Van Gansbeke et al. (Van Gansbeke et al., 2020) suggested
a two stage approach, where features are first learned using a self-supervised task, and then used as
a prior for learning the features for clustering. In practice, we often look for clusters which would
be balanced in size, at least approximately. Many works utilize an information theoretic criterion
to impose such balancing (Hu et al., 2017; Ji et al., 2019; Darlow & Storkey, 2020). Many recent
works boost the performance on clustering algorithms with self-labelling(Niu & Wang, 2021). This
is a promising approach, which can usually be added as an extra-stage, on top of initial results from
self-supervised or other clustering methods.

Clustering using pretrained features: Some research has also been done on image clustering
using features pretrained on some auxiliary supervised data (Guérin et al., 2021). While pretrained
features are not always applicable, they are often general enough to boost performance on datasets
significantly different than the auxiliary data (Kornblith et al., 2019).

Color name-based features: Color quantization, divides all colors into a discrete number of color
groups. Although simple K-means approaches are common, it has been argued that grouping ac-
cording to a list of colors that have names in the English language provides superior results to simple
clustering only based on the pixel color statistics (Van De Weijer et al., 2009; Yu et al., 2018; Mo-
jsilovic, 2005). Color name-based identification was further applied to other tasks, such as image
classification, visual tracking and action recognition (Van De Weijer & Khan, 2015). As one ex-
ample, for the task of person re-identification in surveillance, color names were used as a prior in
order to define better similarity metrics, which led to better performance (Yang et al., 2014), and
scalability (Prates et al., 2016). Our approach can be seen as extending these ideas from pixel colors
to whole images.

Joint embedding for images and text: Finding the joint embedding of images and text is a long-
standing research task (Mori et al., 1999). A key motivation for looking into such joint embedding
is reducing the requirement for image annotations, needed for supervised machine learning classi-
fiers. This can instead be done by utilizing freely-available text captions from the web (Quattoni
et al., 2007; Joulin et al., 2016; Sariyildiz et al., 2020). It was also suggested that such learned
representations can be used for transfer learning (Mahajan et al., 2018; Desai & Johnson, 2020).
(Radford et al., 2021) presented a new method, CLIP, that also maps images and sentences into a
common space. CLIP was trained using a contrastive objective and provides encoders for images
and text. It was shown that CLIP can be used for very accurate zero-shot classification of standard
image datasets, by mapping all category names to embeddings and then for each image choosing the
category name with the embedding nearest to it. Our method relies on the outstanding infrastructure
provided by CLIP but tackles image clustering rather than zero-shot classification. The essential dif-
ference is that in CLIP, the set of image labels is provided whereas in clustering the set of categories
is unknown.

Uncapacitated facility location problem (UFLP): The UFLP problem is a long-studied task in
economics, computer science, operations research and discrete optimization. It aims to open a set
of facilities, so that they serve all clients at a minimal cost. Since its introduction in the 1960s
(e.g. (Kuehn & Hamburger, 1963)), it attracted many theoretical and heuristic solutions. It has been
shown by (Guha & Khuller, 1999) that the metric UFLP can be solved with a constant approximation
guarantee bounded by ρ > 1.463. Different solutions methodologies have been applied to the
task including: greedy methods (Arya et al., 2004), linear-programming with rounding (Shmoys
et al., 1997) and linear-programming primal-dual methods (Jain & Vazirani, 2001). Here, we are
concerned with the Uncapacitated K-Facility Location Problem (UKFLP) (Cornuéjols et al., 1983;
Jain et al., 2002), which limits the number of facilities toK. We formulate our optimization objective
as the UKFLP and use a fast, relaxed variant of the method of (Arya et al., 2004).

3 IMAGE CLUSTERING WITH THE SINGLE-PHRASE PRIOR

Our goal is to cluster images according to a particular set of attributes for which we receive linguistic
guidance. We are given NI images, which are mapped into feature vectors {v1 . . . vNI

}, vi ∈ Rd.
We further assume a list of NW phrases, such that every phrase is mapped into a vector embedding
{u1 . . . uNW

}, ui ∈ Rd. The list of all phrase embeddings is denoted asW . The images and phrases
are assumed to be embedded in the same feature space, in the sense that for each image, its nearest
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phrase in feature space provides a good description of the content of the image. We obtain this joint
embedding using CLIP (Radford et al., 2021), a recent state-of-the-art approach. We aim to divide
the images into K clusters {S1..SK}. Each cluster should consist of semantically similar images.
We denote the cluster centers by a corresponding set of vectors {c1..cK}, ck ∈ Rd.

3.1 THE SINGLE-PHRASE PRIOR

Our main proposed idea is to further constrain the clustering task beyond merely the visual inter-
cluster similarity requirement as posed by the feature embedding of our images. Unlike previous
methods that use augmentations as a way of specifying the attributes we do not wish to cluster by
(”deny-listing”) - we provide a list of the possible values of the attributes that may be used for
clustering (”allow-listing”). The allow-listing approach has an inherent advantage over the deny-
listing approach, as the number of unwanted attributes is potentially infinite and augmentations that
remove all those attributes may not be known.

Specifically, we define a ”single-phrase” prior. We utilize a pre-trained network for mapping images
and phrases into a common feature space. We require that embeddings of images in any given cluster
v ∈ Sk will be similar to the embedding of a single-phrase of our dictionary w ∈ W describing the
relevant possible clusters. The set of plausible phrases is chosen from the (much longer) allowed list
of phrases. We show that our method can guide the clustering process towards the desired attributes.

3.2 REMOVING NON-SPECIFIC PHRASES

Although we assume all plausible phrases are contained in the listW , some phrases in the list may
have a meaning that is too general, which may describe images taken out of more than one ground
truth class, or even be related to all the images in the dataset. Examples for such phrases are: ’entity’,
’abstraction’, ’thing’, ’object’, ’whole’. We would like to filter out of our list those phrases that are
ambiguous w.r.t. the ground truth classes of each dataset, in order to prevent ”false” clusters. To this
end, we score the ”generality” of each phrases by calculating the average phrase embedding:

uavg =
1

NW

∑
i=1..NW

ui (1)

We calculate the generality score s for each phrase, as the inner product between its embedding ui
and the average phrase embedding uavg:

s(ui) = ui · uavg (2)

We find that this score is indeed higher for the less specific phrases described earlier. We remove
from the list all phrases that have a ”generality score” s higher than some quantile level 0 < q ≤ 1,
and define the new sublistWq ⊆ W (|Wq| ≈ q · |W|, where |.| denotes the length of a set).

To choose the quantile q for each dataset using an unsupervised criterion we consider the balance
of the resulting clusters. We try a set of values for q (see implementation details 5.1), and run our
algorithm with each of them. For each value of q, we obtain cluster assignments, and calculate
the entropy. We choose to use the q value for which our phrase list Wq gives the most balanced
clustering for each dataset, measured as the highest entropy cluster assignment. An ablation for this
part of the method can be found in Sec.6.

3.3 CLUSTERING WITH THE SINGLE PHRASE PRIOR

We consider a cluster Sk describable by a single phrase ck if the embeddings of its associated images
are near the embedding of the phrase ck ∈ Wq . We formulate this objective, using the within-cluster
sum of squares (WCSS) loss:

min
{c1..cK},{S1..SK}

∑K
j=1

∑
v∈Sj

‖v − cj‖2

s.t. cj ∈ Wq

(3)

The objective is to find assignments {S1..Sk} and phrases {c1..ck} ⊆ Wq , so that the sum of square
distances for each cluster between the assigned images and the corresponding phrase is minimal.
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Note that this is different from K-means as the cluster centers are constrained within the discrete set
of phrasesW whereas in K-means they are unconstrained.

4 OPTIMIZATION

4.1 THE UNCAPACITATED FACILITY LOCATION PROBLEM

We formalize our optimization problem, by restating it as an uncapacitated K-facility location prob-
lem (UKFLP). The UKFLP is a long studied discrete optimization task (see Sec. 2). In the UKFLP
task we are asked to ”open” K ”facilities” out of a larger set of sitesWq , and assign each ”client”
to one of the K facilities, such that the sum of distances between the ”clients” and their assigned
”facilities” is minimal. In our case, the clients are the image embeddings v1, v2..vNI

, which are
assigned to a set of K phrase embeddings selected from the complete listWq . We look to optimize
an assignment variable xij ∈ {0, 1} indicating whether the ”client” vi is assigned to the ”facility”,
the phrase uj . We also use a variable yj ∈ {0, 1} to determine if a facility was opened in site j (if
the phrase uj is the center of a cluster). The optimal assignment should minimize the sum squared
distance between each image and its assigned phrase. The squared distance between image vi and
phrase uj is denoted dij . We can now restate our loss as:

min
xij ,yj

∑
i∈1..N,j∈1..NW

dijxij

s.t. ∀i ∈ 1..N :
∑

j∈1..NW
xij = 1
xij ≤ yj∑

j∈1..NW
yj ≤ K

(4)

Where the bottom two constraints limit the number of phrases to be at most K.

Solving UKFLP is NP-hard, and the problem of approximation algorithms for UKFLP have been
studied extensively both in terms of complexity and approximation ratio guarantees (see Sec.2). Yet,
as the distance matrix dij is very large, we could not run the existing solutions at the scale of many
of many datasets (e.g. there may be as many as 82k phrases-”facilities” and a few hundred thousands
images-”clients”). We therefore suggest a relaxed version of the popular Local Search algorithm.

4.2 LOCAL SEARCH ALGORITHM

The Local Search algorithm (Arya et al., 2004) is an effective, established method for solving facility
location problems. Instead of looking for the optimal assignment at once, it looks for swaps between
open and closed facilities that decrease the loss. It starts with ”forward greedy” initialization: in the
first K steps, we open the new facility (choose a new phrase as center) that minimizes the loss the
most, among all unopened sites (unselected phrases). After initialization, we iteratively perform
the following procedure: In each step, we look to swap p of our selected phrases by p unselected
phrases, such that the loss is decreased. If such phrases are found, the swap is applied. We repeat
this step until better swaps cannot be found or the maximal number of iterations is, making it slow
to run even for a small dataset.

4.3 LOCAL SEARCH LOCATION RELAXATION METHOD

As our task is very high-dimensional, running Local Search (or similar UKFLP algorithms) becomes
too slow to be practical. Therefore, we suggest an alternative, a continuous relaxation approach
which is much faster to compute (with complexity O(NI +NW )). Our method iterates the follow-
ing steps until convergence. We initially assign each of our images v1..vN to clusters {S1..SK}
according to the nearest cluster center (”Voronoi tessellation”)

Sk′ = {vi| ‖vi − ck′‖2 ≤ ‖vi − ck‖2 ,∀k} (5)

After assignment, the center locations {c1..cK} are set to be the average feature in each cluster,
which minimizes the WCSS (Eq.3) loss without the constraint. Precisely, we recompute each cluster
center according to the image assignment Sk: cj = 1

|Sj |
∑

v∈Sj
v. However, this is an infeasible
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solution as cluster centers will generally not be in Wq . We therefore replace each cluster center
cj with its nearest neighbour phrase in Wq . The result of this step is a new set of K phrases that
form the cluster centers. Instead of using this new list of phrases as the new cluster centers, we keep
K−p phrases from the previous iteration and select p phrases from the current set, such that the new
combined set of centers decreases the loss in Eq. 3. This is similar to the swap in the Local Search
algorithm, but differently from it, we limit our search space to the new set of K phrases rather than
the entire phrase listWq . If no loss decreasing swap is found, we terminate.

Empty and excessively large clusters: In some cases, the discrete nature of the single-phrase
constraint results in excessively large clusters, or one of our K centers being ”empty” of samples.
In the case of empty clusters, we replace the center location with that of a phrase which would
”attract” most samples. Specifically, we choose that phrase that has the most samples as its nearest
neighbours (among those not already in use). To address the problem of excessively large clusters,
we split the samples in that cluster among the phrases in Wq (by distance), and replace the center
of the largest cluster with the phrase that was chosen by the largest number of images. Images that
only loosely fit the cluster are therefore likely to be reassigned to other clusters.

Cluster initialization: We initialize the cluster assignments using Ward’s clustering on the image
embeddings v1, v2..vNI

.

5 EXPERIMENTS

In this section, we evaluate our method on several attribute clustering tasks. We demonstrate that: i)
our method can identify phrases that are closely aligned with the ground truth ii) it can achieve high
clustering accuracy.

Datasets: Aiming to evaluate our clustering method in cases where the language guidance is nec-
essary, we selected evaluation datasets where the ground truth class attribute is often not the largest
object in the image. We evaluate the following datasets:

Stanford Activity (Yao et al., 2011): A dataset presenting people performing 40 different activities
(”fixing a bike”, ”fixing a car”, ”riding a horse”, etc...). The images are of very high inter class vari-
ability, see Fig.1. As many of the class names are composed from a verb and object, we composed
our phrase list by taking the given verbs i.e. the dataset’s activity names and related verbs aggregated
from Thesaurus.com. Phrases are composed by pairing each verb with each object category.

BU Action (Ma et al., 2017): A dataset containing 101 different activities. The class names in this
dataset consist of a verb, a noun or a combination. Therefore, we evaluated it using the complete
list of over 82K WordNet (Miller, 1995) nouns. While the list does not contain the ”ground truth”
phrases for class names such as ”Rock Climbing”, they can often be identified with a related noun
such as ”Mountain Climbing”.

All-Age-Faces Dataset (Cheng et al., 2019): A dataset containing over 82K images of human faces.
The ground truth annotation of each person’s age (between 2 and 80) is available. For evaluation,
we split that dataset to five age groups in even intervals. We ran our method using the complete list
of all ages in intervals of one year without filtering (due to lack of balance in the dataset).

People Playing Musical Instrument (PPMI) (Yao & Fei-Fei, 2010): A dataset of people interacting
with 12 different musical instruments (we use the PPMI+ version). While this dataset can be viewed
as an object category classification dataset, the musical instrument itself is usually not the single
most visually dominant object in the scene (see Fig.3, Right). We also evaluate this dataset using
the 82K WordNet (Miller, 1995) noun list.

Compared methods: We evaluated our method against standard clustering methods using the same
feature representation, and against other variants of zero-shot classification methods.

ZS-Naive: We apply zero-shot classification using CLIP for all the dataset images using the entire
list of phrases. We use the classifier to assign each image to its most likely phrase. We then choose
the K phrases to which most images were assigned. The number K will typically be much smaller
than the length of the original list W . We finally perform zero-shot classification for each image
using CLIP with the reduced list of K phrases. We set this as the final cluster assignment.
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Figure 2: Representative images of the different datasets, from left to right: Stanford Activity, BU-
action, All-Age-Faces, PPMI

Table 1: Clustering of Attributes Classification Datasets (%)

Stanford Activity BU-action All-Age-Faces PPMI

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

PT Only 61.4 66.4 49.0 61.0 77.4 51.9 47.5 28.6 19.7 34.2 26.5 15.8
PT+SCAN 54.0 66.0 45.3 63.1 78.8 56.9 48.8 33.4 20.2 27.5 24.1 12.3
ZS-Naive 66.0 74.5 55.3 52.5 72.9 44.3 50.6 38.7 24.2 35.6 29.6 16.6

Ours 72.8 76.3 64.5 65.9 79.5 57.8 58.5 38.4 26.6 39.4 33.7 21.9

ZS-GT 82.8 80.1 72.0 77.0 83.6 67.2 60.7 40.8 30.3 54.5 44.5 33.5

PT Only: Classical Ward’s clustering based on CLIP’s visual features but without the language
priors.

PT+SCAN: We evaluate SCAN(Van Gansbeke et al., 2020) image clustering method using CLIP’s
pretrained visual features. The pretrained features are both used for selecting the neighbors in the
first stage, and as the initialization of the second stage.

CLIP-GT: Zero-shot classification using CLIP with the ground truth class names as the K phrases.
Note that this method uses more supervision than our method. In fact, recovery of the ground truth
phrases is the aim of the core part of our method. We consider it as an approximate upper bound on
our method.

We use the three most common clustering metrics: accuracy (ACC), normalized mutual information
(NMI) and adjusted rand index (ARI).

Results: It is clear from Tab.1 that our method is able to utilize the language guidance for better
clustering performance. We achieve strong results on the four evaluated datasets. Yet, our setting
assumes the availability of two components not assumed by previous methods: pretrained visual
features and a feature embedding of the phrase dictionary. We therefore compare our method to
baseline methods enjoying similar supervision. We compare to PT Only and PT+SCAN which rely
only on CLIP’s visual features. While these methods show some image clustering capabilities,
we see that the language guidance provides significant improvement on top of the ”visual only”
baselines. As our classes may differ in many visual properties the language guidance helps to limit
the possible clusters to the ones we may look for.

The given phrase dictionary, although extensive, is another kind of supervision used by our method.
Therefore, we compare our method also to the ZS-Naive baseline, utilizing the same supervision.
Our method outperforms here as well. This stresses the contribution of the suggested method. A
naive use of the language guidance such as ZS-Naive might find among its K most common phrases
ones that are not descriptive of a single class (or ones that describe well images spanning multiple
classes). Further empirical results into the performance of our algorithm for object identification
dataset features can be found in Sec.6.
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Figure 3: Left: Accuracy (%) of the naive zero-shot classification using the entire phrase list
compared to our method. The dashed line notes the zero-shot accuracy using the ”ground truth”
phrases (the given class names). Right: While the ground truth labels in datasets such as ”People
Playing Musical Instrument” are based on identification of objects, these objects are often far from
being the most salient item in the image.

Accuracy (%) STL10 CIFAR10 CIFAR20/100

No filtering 71.6 67.4 38.2
With filtering 72.8 77.0 39.4

Table 2: Our method with and without filtering non-specific phrases (see Sec.3.2)

5.1 IMPLEMENTATION DETAILS

Optimization: We run our algorithm with p = #classes
2 swaps per iteration. For every experiment

we run our algorithm for 30 iterations which was found to be enough for convergence for all datasets.

Dictionary: For each dataset, we performed ”generality” filtering by testing different quantile levels
q. We used 20 q values between 0.05 to 1 in 0.05 intervals. We selected q using our unsupervised
criterion (Sec.3.2).

Dataset: We used the standard train vs. test split for all datasets. We Trained all the methods on the
training data and evaluated on the test data.

Features: We used the CLIP(Radford et al., 2021) pretrained model for our pretrained visual and
text features. The visual features were extracted using the CLIP pretrained ViT-B-32 network. For
the text features we used the CLIP pretrained transformer. Prompted with a ”This is a photo of a
***” prompt, where *** is the single-phrase from our dictionary.

SCAN comparisons: When evaluating the PT+SCAN baselines we replaced SCAN’s backbone
with the visual ViT head of CLIP. We then ran the first stage of SCAN without feature training. We
ran the second stage with the same backbone. We used the parameters for the most relevant dataset
evaluated by SCAN authors. For the further zero-short classification comparisons using the object
categorization benchmarks we also ran a variation using our language guidance. This evaluation
was conducted in a similar manner to PT+SCAN, but with the nearest neighbours of SCAN’s first
stage limited to within the same language-guided cluster (as was calculated by our method). In both
variants we tried to train the entire feature extractor or the head only, and took the better performing
mode between the two. For statistics, we ran each evaluation of SCAN three times.
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6 ANALYSIS

Further zero-short classification comparison: For a further investigation into our method we
report its performance on the different datasets using the other zero-shot classification variants dis-
cussed in Sec.5. As the commonly used benchmarks are driven from object-classification datasets,
we use an extensive list of all WordNet (Miller, 1995) nouns as our phrase lists for all these datasets.
We find that the performance we achieve is close to that of CLIP’s zero-shot classification. This
demonstrated our algorithm’s ability to recover phrases resembling the ground-truth concepts used
for the construction of the dataset. Accordingly, our method significantly outperforms our ZS-Naive
baseline and approaches ZS-GT performance noted by the dashed line.

On object-identification datasets, SCAN can significantly improve its performance using the CLIP
pretrained visual features, achieving 98.33, 88.3 and 46.7 on STL10 (Coates et al., 2011), and
CIFAR10 (Krizhevsky et al., 2009) and CIFAR20/100(Krizhevsky et al., 2009) respectively. As
SCAN’s inductive bias already learns to detect a single salient object in each image, we can obtain
only minor gains from the language guidance by incorporating our method into SCAN’s first stage
(achieving 98.4, 88.5 and 47.1, all within one standard deviation from PT+SCAN). Both these ver-
sions of SCAN outperform ZeroShot-gt, that approximates the maximal performance we can expect
using zero-shot classification approaches such as our without feature adaptation. We note that while
the CLIP (Radford et al., 2021) paper reports better zero-shot classification results on these datasets,
it uses extensive prompt engineering which is beyond the scope of this paper.

Filtering our phrase list: Before running the algorithm, we filter out phrases whose ”generality”
score is above some quantile q, as mentioned in Sec.3.2. We show the performance of our method
with and without filtering in Tab.2.

Ground truth phrase retrieval: While the class names used by the creators of the datasets are only
rarely recovered exactly, for many classes the cluster centers are close in meaning to the original
phrase (e.g., ”firing an arrow” for ”shooting an arrow” or ”marching the dog” for ”walking the
dog”). The ZS-Naive method often finds less accurate phrases (e.g. ”testing an arrow”).

Facility location optimization methods: As explained in Sec.4.3, our optimization method can be
viewed as a relaxed version of the Local Search algorithm. The original Local Search algorithm is
very slow. Yet, we were able to run it with a single swap in each step (also known as the Partitioning
around Medoids algorithm or PAM) for the All-Age-Faces dataset which is both small and utilizes
a relatively short list. As can be seen in Tab.3, PAM reaches comparable losses to our method. Both
methods achieve loss values that are lower than the loss with the ground truth phrases as center
(Lgt = 1.455, for All-Age-Faces Dataset). These metrics suggest that both methods can effectively
optimize the objective. Conversely, PAM is much slower than our method. For large dataset and
larger lists the time complexity of PAM is infeasible and significantly greater than that of our relaxed
version.

Table 3: Comparison between PAM and our method (All-Age-Faces Dataset)
Ours PAM

Train Accuracy (%) 58.6 58.4
Loss 1.451 1.450

7 CONCLUSION

We proposed language-guided image clustering for attribute clustering. We reduce the task to a
well-studied discrete optimization task, the uncapacitated K-facility location problem. To solve this
task with acceptable runtime, we suggested an efficient optimization method for solving it. The
phrases we find optimize the loss well. Therefore, a further improvement of our method is more
likely to be achieved by improving our loss function or by extending our method’s expressivity. A
more expressive method may utilize a language model to produce more specific phrases, or combine
our method with other clustering methods for finetuning the visual features based on the data.
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