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Abstract

As language models grow in size, Parameter Ef-
ficient Fine-tuning (PEFT) methods like Low-
Rank Adaptation (LoRA) offer compute effi-
ciency while maintaining performance. How-
ever, their robustness to label noise, a signif-
icant issue in real-world data, remains unex-
plored. This study investigates whether LoRA-
tuned models demonstrate the same level of
noise resistance observed in fully fine-tuned
Transformer models. Our investigation has mul-
tiple key findings: First, we show that LoRA
exhibits robustness to random noise similar to
full fine-tuning on balanced data, but unlike full
fine-tuning, LoRA does not overfit the noisy
data. Second, we observe that compared to full
fine-tuning, LoRA forgets significantly fewer
data points as noise increases. Third, studying
how these robustness patterns change as train-
ing data becomes imbalanced, we observe that
Transformers struggle with imbalanced data,
with robustness declining as imbalance wors-
ens. This study highlights LoRA’s promise in
real-world settings with noise and data imbal-
ance. Overall, our findings reveal LoRA as a
robust and efficient alternative for fine-tuning,
shedding light on its distinctive characteristics.

1 Introduction

In recent years, natural language processing has
been revolutionized by large pre-trained language
models such as Llama (Touvron et al., 2023), GPT-
4 (Achiam et al., 2023), and Gemini (GeminiTeam
et al., 2023). However, the massive parameter
size of these models, often in the hundreds of
millions or billions, presents challenges for fine-
tuning and deployment. Parameter Efficient fine-
tuning (PEFT) Methods like Low-Rank Adaptation
(LoRA; Hu et al., 2022) have emerged as an effi-
cient approach to adapt only a small subset of a
large model’s parameters for a downstream task
(Fu et al., 2023; He et al., 2021). While compu-
tationally appealing, it remains unclear whether

these parameter-efficient methods exhibit the same
characteristics and capabilities as full fine-tuning,
especially in terms of robustness to label noise.
Machine learning datasets often contain label
noise, which occurs when assigned labels to a data
point differ from the ground truth. In fact, real-
world datasets have been estimated to contain any-
where from 8.0% to 38.5% of noisy labels (Song
et al., 2019; Lee et al., 2018). Recent research
has highlighted the remarkable robustness of fine-
tuned language models to label noise. For example,
Ténzer et al. (2022) find that pre-trained models
such as BERT are more robust to noise. However,
this generalization capacity comes at the cost of
lower F} scores in the face of extreme class imbal-
ances when no noise is present. Zhu et al. (2022)
demonstrate that existing noise handling methods
do not improve the peak performance of BERT
models. Importantly, prior investigations primar-
ily focus on assessing the impact of label noise on
fully fine-tuned models within balanced datasets.
In this paper, our primary focus is on assessing
whether LoRA tuning maintains robustness to noise
inherent in the original model through fine-tuning.
Additionally, we delve into the practical implica-
tions of both LoRA and fine-tuning methodologies
by exploring scenarios involving imbalanced train-
ing data. Through comprehensive experimentation
across datasets with varying noise levels and imbal-
ances, our results demonstrate that LoORA tuning
effectively preserves robustness against random
label noise, matching the robustness observed in
models subjected to full fine-tuning. This under-
scores LoRA’s parameter efficiency comes without
compromising model robustness. Notably, unlike
full fine-tuning, which tends to overfit noisy sam-
ples along with clean ones, LoRA’s training perfor-
mance stabilizes at lower values as noise intensity
increases. We meticulously monitor the influence
of noisy and clean samples during training, reveal-
ing that LoRA predominantly learns from clean
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Figure 1: Comparison of learning dynamics for LoRA (left) and fine-tuning (right) on a balanced subset of the
IMDB dataset. Both LoRA and fine-tuning exhibit robustness to noise, achieving high validation performances.
However, LoORA demonstrates a distinctive resistance to overfitting the noise.

samples. Furthermore, our analysis of learning and
forgetting events highlights LoRA’s superior abil-
ity to retain learned information amidst increasing
noise levels compared to full fine-tuning. We also
scrutinize the model’s resilience under substantial
label imbalance and observe a marked decline in
validation performance as data imbalance worsens,
with this decline initiating at lower noise levels, par-
ticularly when the imbalance is more pronounced.

Overall, this study paves the way for understand-
ing LoRA’s potential in real-world scenarios with
noise and imbalance. Our results demonstrate that
LoRA tuning emerges as a robust and efficient con-
tender for fine-tuning even in the presence of noisy
labels. It retains the impressive noise resistance of
its full-fine-tuning counterparts while showcasing
unique advantages. Notably, LoRA learns primar-
ily from clean data, exhibiting lower forgetting
rates than fine-tuning under noise.

2 Background

2.1 Sources of Label Noise

Label noise is common in tasks involving human
experts due to various factors ranging from in-
sufficient evidence to perceptual errors (McNicol,
2005). Frénay and Verleysen (2013) categorize po-
tential sources for label noise into four categories.
Firstly, the information provided to annotators may
lack sufficient detail, leading to unreliable label-
ing. For example, the annotation manual may not
be elaborate or prescriptive enough (Rottger et al.,
2022). Secondly, errors may also stem from non-
experts often hired through crowdsourcing plat-
forms to reduce annotation costs. Thirdly, many
tasks, such as offensive language detection, are in-
herently subjective, where a single ground truth

does not exist, leading to considerable variation in
labels assigned by individual annotators. Lastly,
label noise may occur due to data encoding issues
(e.g., a post might be flagged as offensive because
of accidental clicks)

2.2 Robustness to Noisy Labels

Deep learning approaches are known to suffer sig-
nificant performance degradation when faced with
noisy labels. This is because these approaches
have the capacity to overfit an entire noisy train-
ing dataset, regardless of the level of noise present
(Zhang et al., 2016, 2021). As a result, various
methods have been proposed to mitigate the nega-
tive impact of noisy labels. These approaches can
be broadly categorized into four categories; robust
architectures, robust regularization, robust loss de-
sign, and sample selection (Song et al., 2022).
Limited research in NLP has investigated the
susceptibility of models to the negative impacts
of noisy labels. For instance, Jindal et al. (2019)
show that CNN models used in text classifica-
tion tend to overfit noisy labels, leading to a de-
crease in generalization performance. They demon-
strated that adding a noise adaptation layer can
significantly reduce the adverse effects of noisy
labels. On the contrary, Transformers have exhib-
ited remarkable resilience to noisy labels (Tédnzer
et al., 2022; Zhu et al., 2022). However, much of
this research focuses on common benchmark NLP
datasets with balanced label distributions, raising
questions about whether this robustness persists in
more practical settings with heavy label imbalance.

2.3 Parameter Efficient Tuning Methods

Methods for PEFT have become an important area
of research in addressing the challenges stemming



from the massive parameter size of large language
models (Fu et al., 2023). PEFT methods involve
maintaining the model parameters in a frozen state,
and primarily operate by updating only a limited set
of additional parameters within the model (He et al.,
2022). These methods allow for rapid adaptation to
new tasks without experiencing catastrophic forget-
ting (Pfeiffer et al., 2021) and frequently demon-
strate enhanced robustness in out-of-distribution
evaluation (Li and Liang, 2021).

Various approaches have been proposed for
PEFT in recent years (Lester et al., 2021; Li and
Liang, 2021; Hu et al., 2023, 2021). Out of these
approaches, LoRA (Hu et al., 2022) has been one
of the most widely adopted. LoRA is designed
with the Lottery Ticket Hypothesis (LTH; Fran-
kle and Carbin, 2018) in mind. According to the
LTH, within densely connected, randomly initial-
ized, feed-forward networks, there exist smaller
subnetworks that, when trained independently, can
achieve performance comparable to the original net-
work. LoRA operationalizes LTH by approximat-
ing the model parameter updates with low-rank ma-
trices inserted between every layer of Transformers.
While these methods enable more efficient adapta-
tion, investigating whether PEFT methods retain
the capabilities and behaviors of the full model,
especially in regard to robustness to noisy labels,
will provide insights into the trade-offs between
efficiency and model reliability.

3 Experimental Setup

We compare the performance of fine-tuning and
LoRA-tuning of pre-trained language models when
applied to training data that contain various degrees
of noisy labels. To create datasets with varying
levels of label noise, we randomly change the label
of a data point with different probabilities ranging
from 10% to 40%. This process, where the label
corruption process is conditionally independent of
the data, is known as instance-independent label
noise (Song et al., 2022).

We conducted our experiments on the IMDB
dataset (Maas et al., 2011), and limited the training
data size to 10000 samples. For all experiments,
we kept the evaluation and test sets fixed. We use
the RoBERTa-base (Liu et al., 2019) and train all
models for 20 epochs with a learning rate of 1e-5
and a linear scheduler of 0.06. We used AdamW
optimizer (Loshchilov and Hutter, 2018) with an
Ly regularization of 0.01. For LoRA we used an «
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Figure 2: Percentage of clean samples correctly classi-
fied by LoRA. LoRA demonstrates a consistent ability
to learn almost exclusively from the clean samples.

value of 16 and an r value of 8.

3.1 LoRA is Also Robust to Label Noise

First, we compare the train and validation perfor-
mance of LoRA and fine-tuning on the fully bal-
anced IMDB training dataset with various levels
of label noise. Our goal in this analysis is to in-
vestigate whether LoRA exhibits similar patterns
of robustness to full fine-tuning. As shown in Fig-
ure 1, similar to full fine-tuning, LoRA achieves
high validation performance of above 90% regard-
less of the level of noise present. However, the two
methods behave differently on the training data.
Specifically, we observe that full fine-tuning over-
fits all training data (including the noisy samples)
consistently getting F scores of above 95% on the
noisy training set. However, the training perfor-
mance of LoRA plateaus. Furthermore, we observe
that the maximum training performance of LoRA
decreases from 93.8% to 55.3% as we increase
the noise in the training dataset (see table Table 1
for detailed results). This low performance on the
noisy training set, in addition to high validation
performance, suggests that LoORA might only be
learning to predict the clean samples correctly.

To gain deeper insights into the underlying mech-
anisms leading to LoRA’s robustness, we look into
the accuracy of the model over both the noisy and
clean sets as training progresses. Figure 2 shows
what percentage of correctly classified samples are
clean data points during the training. We observe
that as training progresses, over 90% of correctly
classified data points come from the clean set. How-
ever, a stark contrast emerges when considering its
performance with noisy samples. Despite the vary-
ing levels of noise, the model consistently resists
fitting the noisy data, accurately classifying as few
as 10% of the noisy samples (Figure 9).
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Figure 3: Number of forgettable data points for LoRA
(blue) and fine-tuning (orange). LoRA consistently for-
gets fewer data points on the validation set.

3.2 Learning and Forgetting in LoORA

The total number of forgettable datapoints reveals
how models get impacted from noise over training,
and points to their resilience to noisy labels (i.e.,
a model that forgets fewer datapoints as a result
of increased noise can potentially generalize better
even after facing noisy examples). Here, we define
forgettable data points for a model as those initially
learned during training (i.e., correctly classified at
some point), yet subsequently forgotten (i.e., mis-
classified in the learning process). Figure 3 shows
the number of forgettable data points for LoRA
and fine-tuning for various levels of noise. Notably,
LoRA consistently exhibits a low number of forget-
table data points on the validation set, indicating
its robustness, whereas the number of forgettable
data points increases for fine-tuning as the level
of noise over training data worsens. Both models
exhibit similar trends for forgettable data points on
the noisy training data, with the count increasing
as the noise level rises.

3.3 Robustness in the Face of Data Imbalance

Many real-world NLP applications lack balanced
data distributions. For example, datasets for hate
speech or offensive language detection often have
a small fraction of positive samples (Yin and Zubi-
aga, 2021). To better understand the benefits of the
observed robustness to label noise in practical set-
tings, it’s crucial to acknowledge the prevalence of
imbalanced data. To assess this, we constructed
various versions of the IMDB dataset, keeping
the training size constant at 10000 but varying the
percentage of positive sentiment samples between
50%, 40%, 30%, 20%, 10%, and 5%. For each
version of the imbalanced dataset, we added vary-
ing degrees of noise conducted robustness to noise
experiments as described in section 3.
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Figure 4: The best validation performance degradation
happens for lower values of noise as imbalance worsens

As depicted in Figure 4, compared to valida-
tion performance with no noise, the validation per-
formance drops more as the imbalance intensifies.
For example, the performance degrades by 5.2%
when 40% of noise is added to the balanced dataset.
However, this degradation is intensified to 12%
with the same noise when the dataset is balanced
at 5%. This widening gap underscores the chal-
lenge posed by imbalanced data and emphasizes
the importance of developing robust NLP models
capable of handling such scenarios effectively. Fur-
thermore, we observe that this performance gap
begins to manifest even at lower levels of noise in
the data distribution. This early emergence of per-
formance discrepancies highlights the sensitivity
of NLP models to imbalanced datasets, suggest-
ing that even a modest degree of imbalance can
significantly impact model generalization.

4 Conclusion

Our study highlights the efficacy and resilience of
PEFT, particularly LoRA, in learning from noisy
labels. Through our comprehensive analysis, we
have shown that LoRA tuning not only retains the
robustness to label noise exhibited by fine-tuning
but also demonstrates unique advantages. Specifi-
cally, LoRA shows resistance to overfitting noisy
labels, an ability to learn almost exclusively from
clean data, and lower forgetting rates compared to
fine-tuning. Additionally, our experiments shed
light on label noise robustness in imbalanced train-
ing data. We found that imbalanced data exacer-
bates the effects of noisy label, particularly as the
level of imbalance increases, even at lower noise
levels. These findings highlight LoRA’s potential in
real-world scenarios where noisy data and class im-
balances prevail, offering a promising balance be-
tween efficiency and robustness for adapting large-
scale language models to downstream tasks.



5 Limitation

Our analysis is limited to English. Hence, the con-
clusions drawn may not fully translate to other lan-
guages or linguistic contexts due to differences
in syntax, semantics, among other factors. Conse-
quently, the applicability of our findings in multilin-
gual or cross-cultural settings warrants careful con-
sideration and potentially necessitates additional
research to ascertain their broader relevance. Ad-
ditionally, we acknowledge that the IMDB dataset
is not devoid of noisy labels. However, since this
dataset has been widely adopted in machine learn-
ing research, the extent of noise can be assumed to
be limited. We also acknowledge that our analysis
is limited in the type of noise explored. Variations
in the nature of noise, such as instance-dependent
noise could lead to disparate results not explored
within the scope of this work. We believe that our
analysis and experimental design serve as a solid
foundation for future researchers to explore other
noise structures, such as instance-dependent noise.
In summary, while our study provides valuable in-
sights within the confines of our chosen language
models, methods, datasets, noise types, and linguis-
tic context, it is essential to recognize the limita-
tions inherent in these choices. Future research en-
deavors should aim to address these limitations by
exploring alternative approaches, diverse datasets,
and broader linguistic contexts to enrich our under-
standing and enhance the generalizability of our
findings
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A Hardware

All the experiments were conducted on an NVIDIA
RTX A6000 with 48GB RAM. Each epoch takes
around 10 minutes to run on a single GPU.

B Detailed Results for Robustness to

Noise

LoRA F; Fine-Tuning F3
Noise Train Val Train Val
0% 0.938 0.938 1 1.00 0.949
10% 0.845 0.934 1 0.991 0.939
20% 0.754 0.931 : 0.965 0.936
30% 0.662 0.925 : 0.955 0.934
40% 0.553 0.900 | 0.992 0.893

Table 1: F} scores of LoORA and fine-tuning on balanced
IMDB dataset for various degrees of noise.

C LoRA Almost Exclusively Learns from
the Clean Data

Figure 9 illustrates the accuracy comparison be-
tween LoRA and fine-tuning on the noisy samples
of the training set. A notable observation is the
strikingly opposite patterns exhibited by the two
approaches. LoRA consistently yields a lower ac-
curacy, typically less than 10%, on the training data.
Conversely, fine-tuning demonstrates the capability
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Figure 5: Percentage of clean samples correctly classi-
fied by fine-tuning.

to adapt to noisy data irrespective of the noise level,
achieving an accuracy of approximately 90% on
both the noisy and clean subsets (Figure 5).

D Learning and Forgetting

In addition to performance, we track when data
points are correctly classified for the first time
(learning event) and when a data point that was
previously learned is misclassified by the model
(forgetting event). Figure 10 presents a comparison
of learning events in LoRA and fine-tuning. It is
evident from the graph that in both approaches, the
majority of learning events occur during the ini-
tial epoch, with LoRA consistently having fewer
learning events compared to fine-tuning in these
early stages. Yet, as shown in the figure, LORA
exhibits more learning events in later epochs com-
pared to fine-tuning, especially in scenarios with
higher noise levels. Figure 11 provides a compari-
son of forgetting events in LoRA and fine-tuning.
We observe a clear distinction between the two
approaches; namely, fine-tuning shows higher for-
getting events throughout the training, especially
for higher values of noise compared to LoRA.

E Increasing Model Size

To examine the influence of model size on robust-
ness, we additionally conduct the analysis outlined
in section 3 using RoBERTa-large. Looking at Fig-
ure 6 we observe similar patterns of robustness
to noise to ROBERTA-base, the only notable dif-
ference is that RoBERTa-large plateaus at earlier
epochs compared to ROBERTa-base.

As depicted in Figure 7, the accuracy of
RoBERTa-large on both clean and noisy training
subsets is shown for different levels of noise. We
note a pattern similar to RoOBERTa-base.
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Figure 6: Learning dynamics for LoRA applied to
RoBERTa-large on a balanced subset of the IMDB.

As shown in Figure 8, LoRA-tuning RoBERTa-
large also exhibits notable ability in fitting clean
samples while demonstrating resilience against
overfitting noisy samples. However, we observe
that the larger model learns the clean data (and un-
learns noisy data) at earlier epochs compared to the
base model.
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Figure 7: Comparison of the accuracy on clean (left) and noisy (right) samples in the training set for LoRA applied
to RoBERTa-large on balanced IMDB dataset.
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Figure 8: Comparison of the accuracy on learning (right) and forgetting (left) for LORA applied to RoBERTa-large

on balanced IMDB dataset.
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Figure 9: Comparison of the accuracy on noisy samples in the training set for LoRA (left) and fine-tuning (right) on

balanced IMDB dataset.
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Figure 10: Comparison of learning events for LoORA (left) and fine-tuning (right) on balanced IMDB dataset.

Figure 11: Comparison of forgetting events for LoRA (left) and fine-tuning (right) on balanced IMDB dataset.
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