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Abstract

As language models grow in size, Parameter Ef-001
ficient Fine-tuning (PEFT) methods like Low-002
Rank Adaptation (LoRA) offer compute effi-003
ciency while maintaining performance. How-004
ever, their robustness to label noise, a signif-005
icant issue in real-world data, remains unex-006
plored. This study investigates whether LoRA-007
tuned models demonstrate the same level of008
noise resistance observed in fully fine-tuned009
Transformer models. Our investigation has mul-010
tiple key findings: First, we show that LoRA011
exhibits robustness to random noise similar to012
full fine-tuning on balanced data, but unlike full013
fine-tuning, LoRA does not overfit the noisy014
data. Second, we observe that compared to full015
fine-tuning, LoRA forgets significantly fewer016
data points as noise increases. Third, studying017
how these robustness patterns change as train-018
ing data becomes imbalanced, we observe that019
Transformers struggle with imbalanced data,020
with robustness declining as imbalance wors-021
ens. This study highlights LoRA’s promise in022
real-world settings with noise and data imbal-023
ance. Overall, our findings reveal LoRA as a024
robust and efficient alternative for fine-tuning,025
shedding light on its distinctive characteristics.026

1 Introduction027

In recent years, natural language processing has028

been revolutionized by large pre-trained language029

models such as Llama (Touvron et al., 2023), GPT-030

4 (Achiam et al., 2023), and Gemini (GeminiTeam031

et al., 2023). However, the massive parameter032

size of these models, often in the hundreds of033

millions or billions, presents challenges for fine-034

tuning and deployment. Parameter Efficient fine-035

tuning (PEFT) Methods like Low-Rank Adaptation036

(LoRA; Hu et al., 2022) have emerged as an effi-037

cient approach to adapt only a small subset of a038

large model’s parameters for a downstream task039

(Fu et al., 2023; He et al., 2021). While compu-040

tationally appealing, it remains unclear whether041

these parameter-efficient methods exhibit the same 042

characteristics and capabilities as full fine-tuning, 043

especially in terms of robustness to label noise. 044

Machine learning datasets often contain label 045

noise, which occurs when assigned labels to a data 046

point differ from the ground truth. In fact, real- 047

world datasets have been estimated to contain any- 048

where from 8.0% to 38.5% of noisy labels (Song 049

et al., 2019; Lee et al., 2018). Recent research 050

has highlighted the remarkable robustness of fine- 051

tuned language models to label noise. For example, 052

Tänzer et al. (2022) find that pre-trained models 053

such as BERT are more robust to noise. However, 054

this generalization capacity comes at the cost of 055

lower F1 scores in the face of extreme class imbal- 056

ances when no noise is present. Zhu et al. (2022) 057

demonstrate that existing noise handling methods 058

do not improve the peak performance of BERT 059

models. Importantly, prior investigations primar- 060

ily focus on assessing the impact of label noise on 061

fully fine-tuned models within balanced datasets. 062

In this paper, our primary focus is on assessing 063

whether LoRA tuning maintains robustness to noise 064

inherent in the original model through fine-tuning. 065

Additionally, we delve into the practical implica- 066

tions of both LoRA and fine-tuning methodologies 067

by exploring scenarios involving imbalanced train- 068

ing data. Through comprehensive experimentation 069

across datasets with varying noise levels and imbal- 070

ances, our results demonstrate that LoRA tuning 071

effectively preserves robustness against random 072

label noise, matching the robustness observed in 073

models subjected to full fine-tuning. This under- 074

scores LoRA’s parameter efficiency comes without 075

compromising model robustness. Notably, unlike 076

full fine-tuning, which tends to overfit noisy sam- 077

ples along with clean ones, LoRA’s training perfor- 078

mance stabilizes at lower values as noise intensity 079

increases. We meticulously monitor the influence 080

of noisy and clean samples during training, reveal- 081

ing that LoRA predominantly learns from clean 082
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Figure 1: Comparison of learning dynamics for LoRA (left) and fine-tuning (right) on a balanced subset of the
IMDB dataset. Both LoRA and fine-tuning exhibit robustness to noise, achieving high validation performances.
However, LoRA demonstrates a distinctive resistance to overfitting the noise.

samples. Furthermore, our analysis of learning and083

forgetting events highlights LoRA’s superior abil-084

ity to retain learned information amidst increasing085

noise levels compared to full fine-tuning. We also086

scrutinize the model’s resilience under substantial087

label imbalance and observe a marked decline in088

validation performance as data imbalance worsens,089

with this decline initiating at lower noise levels, par-090

ticularly when the imbalance is more pronounced.091

Overall, this study paves the way for understand-092

ing LoRA’s potential in real-world scenarios with093

noise and imbalance. Our results demonstrate that094

LoRA tuning emerges as a robust and efficient con-095

tender for fine-tuning even in the presence of noisy096

labels. It retains the impressive noise resistance of097

its full-fine-tuning counterparts while showcasing098

unique advantages. Notably, LoRA learns primar-099

ily from clean data, exhibiting lower forgetting100

rates than fine-tuning under noise.101

2 Background102

2.1 Sources of Label Noise103

Label noise is common in tasks involving human104

experts due to various factors ranging from in-105

sufficient evidence to perceptual errors (McNicol,106

2005). Frénay and Verleysen (2013) categorize po-107

tential sources for label noise into four categories.108

Firstly, the information provided to annotators may109

lack sufficient detail, leading to unreliable label-110

ing. For example, the annotation manual may not111

be elaborate or prescriptive enough (Rottger et al.,112

2022). Secondly, errors may also stem from non-113

experts often hired through crowdsourcing plat-114

forms to reduce annotation costs. Thirdly, many115

tasks, such as offensive language detection, are in-116

herently subjective, where a single ground truth117

does not exist, leading to considerable variation in 118

labels assigned by individual annotators. Lastly, 119

label noise may occur due to data encoding issues 120

(e.g., a post might be flagged as offensive because 121

of accidental clicks) 122

2.2 Robustness to Noisy Labels 123

Deep learning approaches are known to suffer sig- 124

nificant performance degradation when faced with 125

noisy labels. This is because these approaches 126

have the capacity to overfit an entire noisy train- 127

ing dataset, regardless of the level of noise present 128

(Zhang et al., 2016, 2021). As a result, various 129

methods have been proposed to mitigate the nega- 130

tive impact of noisy labels. These approaches can 131

be broadly categorized into four categories; robust 132

architectures, robust regularization, robust loss de- 133

sign, and sample selection (Song et al., 2022). 134

Limited research in NLP has investigated the 135

susceptibility of models to the negative impacts 136

of noisy labels. For instance, Jindal et al. (2019) 137

show that CNN models used in text classifica- 138

tion tend to overfit noisy labels, leading to a de- 139

crease in generalization performance. They demon- 140

strated that adding a noise adaptation layer can 141

significantly reduce the adverse effects of noisy 142

labels. On the contrary, Transformers have exhib- 143

ited remarkable resilience to noisy labels (Tänzer 144

et al., 2022; Zhu et al., 2022). However, much of 145

this research focuses on common benchmark NLP 146

datasets with balanced label distributions, raising 147

questions about whether this robustness persists in 148

more practical settings with heavy label imbalance. 149

2.3 Parameter Efficient Tuning Methods 150

Methods for PEFT have become an important area 151

of research in addressing the challenges stemming 152
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from the massive parameter size of large language153

models (Fu et al., 2023). PEFT methods involve154

maintaining the model parameters in a frozen state,155

and primarily operate by updating only a limited set156

of additional parameters within the model (He et al.,157

2022). These methods allow for rapid adaptation to158

new tasks without experiencing catastrophic forget-159

ting (Pfeiffer et al., 2021) and frequently demon-160

strate enhanced robustness in out-of-distribution161

evaluation (Li and Liang, 2021).162

Various approaches have been proposed for163

PEFT in recent years (Lester et al., 2021; Li and164

Liang, 2021; Hu et al., 2023, 2021). Out of these165

approaches, LoRA (Hu et al., 2022) has been one166

of the most widely adopted. LoRA is designed167

with the Lottery Ticket Hypothesis (LTH; Fran-168

kle and Carbin, 2018) in mind. According to the169

LTH, within densely connected, randomly initial-170

ized, feed-forward networks, there exist smaller171

subnetworks that, when trained independently, can172

achieve performance comparable to the original net-173

work. LoRA operationalizes LTH by approximat-174

ing the model parameter updates with low-rank ma-175

trices inserted between every layer of Transformers.176

While these methods enable more efficient adapta-177

tion, investigating whether PEFT methods retain178

the capabilities and behaviors of the full model,179

especially in regard to robustness to noisy labels,180

will provide insights into the trade-offs between181

efficiency and model reliability.182

3 Experimental Setup183

We compare the performance of fine-tuning and184

LoRA-tuning of pre-trained language models when185

applied to training data that contain various degrees186

of noisy labels. To create datasets with varying187

levels of label noise, we randomly change the label188

of a data point with different probabilities ranging189

from 10% to 40%. This process, where the label190

corruption process is conditionally independent of191

the data, is known as instance-independent label192

noise (Song et al., 2022).193

We conducted our experiments on the IMDB194

dataset (Maas et al., 2011), and limited the training195

data size to 10000 samples. For all experiments,196

we kept the evaluation and test sets fixed. We use197

the RoBERTa-base (Liu et al., 2019) and train all198

models for 20 epochs with a learning rate of 1e-5199

and a linear scheduler of 0.06. We used AdamW200

optimizer (Loshchilov and Hutter, 2018) with an201

L2 regularization of 0.01. For LoRA we used an α202

Figure 2: Percentage of clean samples correctly classi-
fied by LoRA. LoRA demonstrates a consistent ability
to learn almost exclusively from the clean samples.

value of 16 and an r value of 8. 203

3.1 LoRA is Also Robust to Label Noise 204

First, we compare the train and validation perfor- 205

mance of LoRA and fine-tuning on the fully bal- 206

anced IMDB training dataset with various levels 207

of label noise. Our goal in this analysis is to in- 208

vestigate whether LoRA exhibits similar patterns 209

of robustness to full fine-tuning. As shown in Fig- 210

ure 1, similar to full fine-tuning, LoRA achieves 211

high validation performance of above 90% regard- 212

less of the level of noise present. However, the two 213

methods behave differently on the training data. 214

Specifically, we observe that full fine-tuning over- 215

fits all training data (including the noisy samples) 216

consistently getting F1 scores of above 95% on the 217

noisy training set. However, the training perfor- 218

mance of LoRA plateaus. Furthermore, we observe 219

that the maximum training performance of LoRA 220

decreases from 93.8% to 55.3% as we increase 221

the noise in the training dataset (see table Table 1 222

for detailed results). This low performance on the 223

noisy training set, in addition to high validation 224

performance, suggests that LoRA might only be 225

learning to predict the clean samples correctly. 226

To gain deeper insights into the underlying mech- 227

anisms leading to LoRA’s robustness, we look into 228

the accuracy of the model over both the noisy and 229

clean sets as training progresses. Figure 2 shows 230

what percentage of correctly classified samples are 231

clean data points during the training. We observe 232

that as training progresses, over 90% of correctly 233

classified data points come from the clean set. How- 234

ever, a stark contrast emerges when considering its 235

performance with noisy samples. Despite the vary- 236

ing levels of noise, the model consistently resists 237

fitting the noisy data, accurately classifying as few 238

as 10% of the noisy samples (Figure 9). 239
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Figure 3: Number of forgettable data points for LoRA
(blue) and fine-tuning (orange). LoRA consistently for-
gets fewer data points on the validation set.

3.2 Learning and Forgetting in LoRA240

The total number of forgettable datapoints reveals241

how models get impacted from noise over training,242

and points to their resilience to noisy labels (i.e.,243

a model that forgets fewer datapoints as a result244

of increased noise can potentially generalize better245

even after facing noisy examples). Here, we define246

forgettable data points for a model as those initially247

learned during training (i.e., correctly classified at248

some point), yet subsequently forgotten (i.e., mis-249

classified in the learning process). Figure 3 shows250

the number of forgettable data points for LoRA251

and fine-tuning for various levels of noise. Notably,252

LoRA consistently exhibits a low number of forget-253

table data points on the validation set, indicating254

its robustness, whereas the number of forgettable255

data points increases for fine-tuning as the level256

of noise over training data worsens. Both models257

exhibit similar trends for forgettable data points on258

the noisy training data, with the count increasing259

as the noise level rises.260

3.3 Robustness in the Face of Data Imbalance261

Many real-world NLP applications lack balanced262

data distributions. For example, datasets for hate263

speech or offensive language detection often have264

a small fraction of positive samples (Yin and Zubi-265

aga, 2021). To better understand the benefits of the266

observed robustness to label noise in practical set-267

tings, it’s crucial to acknowledge the prevalence of268

imbalanced data. To assess this, we constructed269

various versions of the IMDB dataset, keeping270

the training size constant at 10000 but varying the271

percentage of positive sentiment samples between272

50%, 40%, 30%, 20%, 10%, and 5%. For each273

version of the imbalanced dataset, we added vary-274

ing degrees of noise conducted robustness to noise275

experiments as described in section 3.276

Figure 4: The best validation performance degradation
happens for lower values of noise as imbalance worsens

As depicted in Figure 4, compared to valida- 277

tion performance with no noise, the validation per- 278

formance drops more as the imbalance intensifies. 279

For example, the performance degrades by 5.2% 280

when 40% of noise is added to the balanced dataset. 281

However, this degradation is intensified to 12% 282

with the same noise when the dataset is balanced 283

at 5%. This widening gap underscores the chal- 284

lenge posed by imbalanced data and emphasizes 285

the importance of developing robust NLP models 286

capable of handling such scenarios effectively. Fur- 287

thermore, we observe that this performance gap 288

begins to manifest even at lower levels of noise in 289

the data distribution. This early emergence of per- 290

formance discrepancies highlights the sensitivity 291

of NLP models to imbalanced datasets, suggest- 292

ing that even a modest degree of imbalance can 293

significantly impact model generalization. 294

4 Conclusion 295

Our study highlights the efficacy and resilience of 296

PEFT, particularly LoRA, in learning from noisy 297

labels. Through our comprehensive analysis, we 298

have shown that LoRA tuning not only retains the 299

robustness to label noise exhibited by fine-tuning 300

but also demonstrates unique advantages. Specifi- 301

cally, LoRA shows resistance to overfitting noisy 302

labels, an ability to learn almost exclusively from 303

clean data, and lower forgetting rates compared to 304

fine-tuning. Additionally, our experiments shed 305

light on label noise robustness in imbalanced train- 306

ing data. We found that imbalanced data exacer- 307

bates the effects of noisy label, particularly as the 308

level of imbalance increases, even at lower noise 309

levels. These findings highlight LoRA’s potential in 310

real-world scenarios where noisy data and class im- 311

balances prevail, offering a promising balance be- 312

tween efficiency and robustness for adapting large- 313

scale language models to downstream tasks. 314
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5 Limitation315

Our analysis is limited to English. Hence, the con-316

clusions drawn may not fully translate to other lan-317

guages or linguistic contexts due to differences318

in syntax, semantics, among other factors. Conse-319

quently, the applicability of our findings in multilin-320

gual or cross-cultural settings warrants careful con-321

sideration and potentially necessitates additional322

research to ascertain their broader relevance. Ad-323

ditionally, we acknowledge that the IMDB dataset324

is not devoid of noisy labels. However, since this325

dataset has been widely adopted in machine learn-326

ing research, the extent of noise can be assumed to327

be limited. We also acknowledge that our analysis328

is limited in the type of noise explored. Variations329

in the nature of noise, such as instance-dependent330

noise could lead to disparate results not explored331

within the scope of this work. We believe that our332

analysis and experimental design serve as a solid333

foundation for future researchers to explore other334

noise structures, such as instance-dependent noise.335

In summary, while our study provides valuable in-336

sights within the confines of our chosen language337

models, methods, datasets, noise types, and linguis-338

tic context, it is essential to recognize the limita-339

tions inherent in these choices. Future research en-340

deavors should aim to address these limitations by341

exploring alternative approaches, diverse datasets,342

and broader linguistic contexts to enrich our under-343

standing and enhance the generalizability of our344

findings345
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A Hardware 499

All the experiments were conducted on an NVIDIA 500

RTX A6000 with 48GB RAM. Each epoch takes 501

around 10 minutes to run on a single GPU. 502

B Detailed Results for Robustness to 503

Noise 504

LoRA F1 Fine-Tuning F1

Noise Train Val Train Val

0% 0.938 0.938 1.00 0.949
10% 0.845 0.934 0.991 0.939
20% 0.754 0.931 0.965 0.936
30% 0.662 0.925 0.955 0.934
40% 0.553 0.900 0.992 0.893

Table 1: F1 scores of LoRA and fine-tuning on balanced
IMDB dataset for various degrees of noise.

C LoRA Almost Exclusively Learns from 505

the Clean Data 506

Figure 9 illustrates the accuracy comparison be- 507

tween LoRA and fine-tuning on the noisy samples 508

of the training set. A notable observation is the 509

strikingly opposite patterns exhibited by the two 510

approaches. LoRA consistently yields a lower ac- 511

curacy, typically less than 10%, on the training data. 512

Conversely, fine-tuning demonstrates the capability 513
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Figure 5: Percentage of clean samples correctly classi-
fied by fine-tuning.

to adapt to noisy data irrespective of the noise level,514

achieving an accuracy of approximately 90% on515

both the noisy and clean subsets (Figure 5).516

D Learning and Forgetting517

In addition to performance, we track when data518

points are correctly classified for the first time519

(learning event) and when a data point that was520

previously learned is misclassified by the model521

(forgetting event). Figure 10 presents a comparison522

of learning events in LoRA and fine-tuning. It is523

evident from the graph that in both approaches, the524

majority of learning events occur during the ini-525

tial epoch, with LoRA consistently having fewer526

learning events compared to fine-tuning in these527

early stages. Yet, as shown in the figure, LoRA528

exhibits more learning events in later epochs com-529

pared to fine-tuning, especially in scenarios with530

higher noise levels. Figure 11 provides a compari-531

son of forgetting events in LoRA and fine-tuning.532

We observe a clear distinction between the two533

approaches; namely, fine-tuning shows higher for-534

getting events throughout the training, especially535

for higher values of noise compared to LoRA.536

E Increasing Model Size537

To examine the influence of model size on robust-538

ness, we additionally conduct the analysis outlined539

in section 3 using RoBERTa-large. Looking at Fig-540

ure 6 we observe similar patterns of robustness541

to noise to RoBERTA-base, the only notable dif-542

ference is that RoBERTa-large plateaus at earlier543

epochs compared to RoBERTa-base.544

As depicted in Figure 7, the accuracy of545

RoBERTa-large on both clean and noisy training546

subsets is shown for different levels of noise. We547

note a pattern similar to RoBERTa-base.548

Figure 6: Learning dynamics for LoRA applied to
RoBERTa-large on a balanced subset of the IMDB.

As shown in Figure 8, LoRA-tuning RoBERTa- 549

large also exhibits notable ability in fitting clean 550

samples while demonstrating resilience against 551

overfitting noisy samples. However, we observe 552

that the larger model learns the clean data (and un- 553

learns noisy data) at earlier epochs compared to the 554

base model. 555
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(a) Clean (b) Noisy

Figure 7: Comparison of the accuracy on clean (left) and noisy (right) samples in the training set for LoRA applied
to RoBERTa-large on balanced IMDB dataset.

(a) Learning (b) Forgetting

Figure 8: Comparison of the accuracy on learning (right) and forgetting (left) for LoRA applied to RoBERTa-large
on balanced IMDB dataset.

(a) LoRA (b) Fine-tuning

Figure 9: Comparison of the accuracy on noisy samples in the training set for LoRA (left) and fine-tuning (right) on
balanced IMDB dataset.
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(a) LoRA (b) Fine-tuning

Figure 10: Comparison of learning events for LoRA (left) and fine-tuning (right) on balanced IMDB dataset.

(a) LoRA (b) Fine-tuning

Figure 11: Comparison of forgetting events for LoRA (left) and fine-tuning (right) on balanced IMDB dataset.
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