
Guided Imitation of Task and Motion Planning

Michael J. McDonald
University of California, Berkeley

m j mcdonald@berkeley.edu

Dylan Hadfield-Menell
Massachusetts Institute of Technology

dhm@csail.mit.edu

Abstract: While modern policy optimization methods can do complex manipu-
lation from sensory data, they struggle on problems with extended time horizons
and multiple sub-goals. On the other hand, task and motion planning (TAMP)
methods scale to long horizons but they are computationally expensive and need
to precisely track world state. We propose a method that draws on the strength
of both methods: we train a policy to imitate a TAMP solver’s output. This pro-
duces a feed-forward policy that can accomplish multi-step tasks from sensory
data. First, we build an asynchronous distributed TAMP solver that can produce
supervision data fast enough for imitation learning. Then, we propose a hierarchi-
cal policy architecture that lets us use partially trained control policies to speed up
the TAMP solver. In robotic manipulation tasks with 7-DoF joint control, the par-
tially trained policies reduce the time needed for planning by a factor of up to 2.6.
Among these tasks, we can learn a policy that solves the RoboSuite 4-object pick-
place task 88% of the time from object pose observations and a policy that solves
the RoboDesk 9-goal benchmark 79% of the time from RGB images (averaged
across the 9 disparate tasks).

1 Introduction

This paper describes a policy learning approach that leverages task-and-motion planning (TAMP)
to train robot manipulation policies for long-horizon tasks. Modern policy learning techniques can
solve robotic control tasks from complex sensory input [1, 2, 3], but that success has largely been
limited to short-horizon tasks. It remains an open problem to learn policies that execute long se-
quences of manipulation actions [4, 5]. By contrast, TAMP methods readily solve problems that
require dozens of abstract actions and satisfy complex geometric constraints in high-dimensional
configuration spaces [6, 7]. However, their application is often limited to controlled settings be-
cause TAMP methods need to robustly track world state and budget time for planning [8, 9].

To address these concerns, two lines of work have emerged. The first uses machine learning to
identify policies or heuristics that reduce planning time [10, 11, 12, 13, 14, 15]. This extends the
domains where TAMP can be applied, but still relies on explicit state estimation. The second line of
work learns policies that imitate the output of TAMP solvers. These approaches reduce dependence
on state estimation by, e.g., learning predictors to ground the logical state [16] or training recurrent
models to predict the feasibility of a task plan [17]. These learned policies operate directly on per-
ceptual data, and do not need hand-coded state estimation. However, TAMP solvers define a highly
non-linear mapping from observations to controls and this makes imitation difficult. Furthermore,
the compute resources required for planning limits the availability of training data for learning.

In this paper, we build on both approaches. We take inspiration from guided expert imitation [18, 19]
and train feed-forward policies to imitate TAMP. Our key insight is that Srivastava et al. [20]’s modu-
lar TAMP framework supports a distributed TAMP architecture that: 1) is optimized for throughput
(as opposed to low latency, the typical focus in TAMP research); 2) trains policies to imitate the
planner output; and 3) uses those policies to amortize planning across problems and reduce compute
costs. The result is a virtuous cycle where learning accelerates planning, and faster planning pro-
vides more supervision. We propose a policy architecture that leverages the definition of the TAMP
domain to improve learning performance. Task plans from our system supervise a task-level model
that learns to predict a parameterized action. This output selects from and parameterizes a set of
control networks, one for each action schema. We show that this architecture can execute manipu-
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Figure 1: Left: We train hierarchical policies to imitate the output of a distributed task and motion planning
system. The policy has two components, ⇡hi and ⇡lo. ⇡hi takes observations and a goal and produces a one-hot
encoding of the choice of abstract action and associated parameters. These outputs and the original observa-
tion pass to the motion-level policy ⇡lo. ⇡lo consists of two stages: an attention module and action-specific
control networks. The attention module maps the continuous observation and discrete action parameters to a
continuous parameterization. There is one control network per action type and the choice of abstract action
gates the outputs of these controllers to produce the next control. We denote this combined policy as ⇡lo � ⇡hi.
Right: We evaluate in two simulated robotics domains: RoboSuite [21] (top) and RoboDesk [22] (bottom). In
RoboSuite we train policies from object poses that reach 88% success on the four object variant of the domain.
In RoboDesk, we train policies from RGB image data and reach 79% success on the 9-goal multitask problem.

lation skills in high-dimensional environments from complex sensory input. As a result, our system
is able to compile task and motion planning into a single feed-forward policy.

The contributions of this work are as follows: 1) we show a design for a distributed, asynchronous,
high-throughput task and motion planning system that leverages policy learning to speed up plan-
ning; 2) we propose a hierarchical policy architecture that leverages the TAMP problem specifica-
tion; and 3) we implement and evaluate this method to show it can learn to accomplish multiple
goals over (comparatively) long horizons with high-dimensional sensory data and action spaces. In
a 2D pick-place task, we train policies that place 3 objects precisely onto targets 83% of the time
from RGB images. In the RoboSuite [21] pick-place benchmark we train policies for 7-DoF joint
control that place 4 objects 88% of the time from object pose vectors. In the multitask RoboDesk
benchmark, our learned policy averages a 79% success rate across 9 diverse tasks with 7-DoF joint
control from RGB images.

2 Background

Task and Motion Planning. Task and motion planning (TAMP) divides a robot control problem
into two components: a symbolic representation of actions (e.g., grasp) and a geometric encoding
of the world. Task planning operates on a logical representation of the world. It finds sequences of
abstract actions to accomplish a goal (e.g., pick(obj1), place(obj1, targ1), . . . ). Each action encodes
a motion problem that must be refined (i.e., solved) to obtain a feasible trajectory that satisfies
specified constraints.

We represent TAMP problems with the formalism introduced by Hadfield-Menell et al. [23]. A
TAMP problem is a tuple hX,F,G,U, f, x0, Ai. X is the space of valid world configurations. F is
a set of fluents, binary functions of the world state that characterize the task space f : X ! {0, 1}
(e.g. at(obj3, targ2) or holding(obj1)). G is the goal state, defined as a conjunction of fluents {gi}.
U is the control space of the robot. f describes the world dynamics: f(xt, u) = xt+1. x0 describes
the initial world configuration x0 2 X . Finally, A is the set of abstract action schemas. Each action
schema a has four components: 1) a.params: the parameters of the action (e.g., which object to
grasp); 2) a.pre: a set of parameter-dependent fluents that defines the states when this action can be
taken; 3) a.mid: a set of fluents that constrains the allowable controls for this action; and 4) a.post:
a set of fluents that will be true after the action is executed. Solutions to such a problem are a pair
of sequences (~a,~⌧), where ~a encodes abstract actions and ~⌧ encodes refined motion trajectories. A
plan is valid if 1) the initial state of each ⌧i satisfies ai.pre; 2) each ⌧i satisfies ai.mid; 3) the end
state of each ⌧i satisfies ai.post; and 4) the final state satisfies the fluents that define the goal.
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Figure 2: The system contains five core components which run in parallel and communicate through shared
data structures. This division allows for the execution of arbitrary copies of motion planning, task planning,
and policy rollouts and can scale to utilize all available hardware.

Modular TAMP. Our approach parallelizes the modular TAMP approach of Srivastava et al. [20].
They use a graph representation of TAMP, where nodes correspond to different task plans. A node
can be either refined or expanded. Refinement uses motion planning to search for trajectories that
accomplish the actions in the plan. Refinement failures are tracked along with the unsatisfiable
constraints that caused the failure. When a node is expanded, one of these refinement failures is used
to generate a new plan. The error information (e.g., a collision with an obstacle) is used to update
the abstract domain so that the planner can identify an alternative plan (e.g., one that moves the
obstruction out of the way). To solve a TAMP problem, Srivastava et al. [20] interleave refinement
and expansion to find a plan that reaches the goal.

To implement plan refinement, we use the sequential convex optimization method described in
Hadfield-Menell et al. [23]. This formulates motion planning as an optimization problem. The
objective is a smoothing cost k⌧k2 =

P
tk⌧t+1 � ⌧tk2. The constraints are determined by the pre,

post, and mid conditions of an action schema: ⌧0 2 a.pre, ⌧T 2 a.post, and ⌧ 2 a.mid. E.g., for a
grasp action the preconditions constrain the initial state to position the gripper near the object with
proper orientation. The postconditions constrain the final state so that the object is in a valid grasp.
The midconditions constrain the intermediate states to avoid collisions. If this optimization fails, we
use the unsatisfied constraints to expand the associated plan node, as described above.

3 Method

This section has three parts. First, we propose a distributed TAMP solver. Then, we describe a
hierarchical policy architecture that leverages the TAMP domain description to make it easier to
model TAMP behavior. Finally, we show how to incorporate feedback from the learned policies to
prevent trajectory drift.

3.1 Distributed Planning and Training Architecture

Figure 2 shows our overall design. Our system has four types of nodes that operate asynchronously:
1) policy training; 2) task planning; 3) motion planning; and 4) structured exploration. The task-level
policy ⇡hi and the motion-level policy ⇡lo train within their respective nodes without backpropaga-
tion between the two. For this work we found standard supervised learning sufficient for good
performance. However the modular design makes it straightforward to apply more complex pro-
cedures (e.g. generative adversarial imitation learning [24] or inverse reinforcement learning [25]).
Specific network architectures and hyperparameters are included in the Supplemental Materials.

Algorithm 1 outlines our task planning procedure. It reads from a shared priority queue Qtask that
tracks task planning problems, represented as tuples of an initial state x0, a logical state �0, a goal
g, and a refined trajectory prefix ⌧0. At random intervals, or when the queue is empty, we sample a
new planning problem from the base problem distribution, with an empty trajectory prefix ⌧0 = ;.
A symbolic planner, such as FastFoward [26], computes a valid action sequence ~a that achieves g
and pushes the problem (x0,�0, g, ⌧0) and action sequence ~a to the motion queue Qmotion.
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Algorithm 2 outlines our motion planning procedure. It pulls from Qmotion and applies the refine-
ment procedure from section 2 to compute a valid trajectory segment ⌧ i for each ai. If refinement
fails, it computes the set of unsatisfiable constraints {ei} that describe why the motion planner could
not refine ai, appends these to the original logical description �0, and pushes the updated problem
instance (x0,�0 [ {ei}, g, ⌧0:i�1) to Qtask. If refinement succeeds, each ⌧ i is pushed to the motion
dataset Dmotion to supervise the appropriate control policy. When the goal is reached (i.e., ⌧T 2 g),
it pushes the action sequence ~a to the task dataset Dtask to supervise the task-level policy.

3.2 Hierarchical Task and Motion Policies

Learning to imitate TAMP solutions with a single policy is difficult because small changes in the
observation can lead to different task plans and, thus, radically different controls. We deal with this
through a hierarchical policy architecture that mirrors the TAMP domain description. The policy
is split into two parts: a task-level policy ⇡hi to select parameterized actions at and a motion-level
policy ⇡lo to select controls ut as a function of at and world state. Figure 1 illustrates our design.

Algorithm 1 Task Planning Node
Require: Shared queues Qtask, Qmotion

Require: Problem distribution P
1: while not terminated do
2: if is empty(Qtask) then
3: (x0,�,g, ⌧) ⇠ Pprob

4: else
5: (x0,�,g, ⌧)  pop(Qtask)
6: ~a  task plan(�, g)
7: push(Qmotion, (x0, �, g, ~a))

Algorithm 2 Motion Planning Node
Require: Shared queues Qmotion, Qtask

Require: Expert datasets Dmotion, Dtask

Require: Motion policy ⇡motion

1: while not terminated do
2: (x, �, g, ⌧ ,~a) Qmotion

3: for ai 2 ~a do
4: ⌧̂ i  rollout

�
x, ⇡lo(⇤|ai)

�

5: ⌧ i, success motion plan
�
x, ai, ⌧̂ i

�

6: if success then
7: x ⌧ i[�1]
8: append(⌧ , ⌧ i)
9: push(Dmotion, (ai, ⌧ i))

10: else
11: ## add unsatisfiable constraints {ei}
12: push(Qtask, (x,� [ {ei}, g, ⌧))
13: break
14: if ⌧ [�1] 2 g then push(Dtask, (⌧,~a, g))

⇡hi maps continuous observations and goals
to the discrete space of parameterized action
schemas. We use the factored encoding scheme
from Van et al. [12]. ⇡hi outputs a sequence of
vectors. The first specifies a one-hot encoding
of the choice of action-type (e.g. place). Each
subsequent vector provides a one-hot encoding
of the ordered action parameters (e.g. obj1,
targ2). Training data for this policy is pulled
from the task dataset Dtask.

The low-level policy ⇡lo consists of two stages:
an attention module and action-specific control
networks. The attention module maps the con-
tinuous observation and discrete action parame-
ters to a continuous parameterization. This step
is flexible. In our system, it represents the rel-
evant objects in a particular geometric frame.
E.g., for the action place(obj1, targ2) this is
the pose of obj1 in the targ2 frame. When
the policy has access to state data, we hard
code this step. In other situations (e.g., learning
from camera images), this is learned from su-
pervision alongside the control policy. The ab-
stract action, the continuous parameterization,
and the original observation pass to the second
stage to predict the next control. This stage con-
tains a set of separate control networks, one per
action schema. Training data for this policy is
pulled from the motion dataset Dmotion.

3.3 Policy-Aware Supervision

A common challenge in imitation learning is that small deviations from training supervision build
up over time [27]. To account for this, we propose task and motion supervision methods based
on Dataset Aggregation [28]. For controls, we bias trajectory optimization to provide supervision
near states encountered by the motion policies. After an initial training period, we warm-start opti-
mization with a rollout from the appropriate motion policy. Then, to keep supervision close to this
trajectory, we modify the optimization objective with a rollout deviation cost, based on the accelera-
tion kernel from Dragan et al. [29]. This uses a generalization of Dynamic Movement Primitives [30]
that adapts the rollout trajectory to satisfy optimization constraints. For a sampled trajectory ⌧̂ i, the
optimization cost is k⌧̂ i � ⌧ ik2 =

P
tk(⌧ it+1 � ⌧ it ) � ( ˆ⌧ it+1 � ⌧̂ it ))k2. This is conceptually similar

to the regularization penalty from Guided Policy Search [18].
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Figure 3: Average success rate over the course of training. Left: 2D pick-place domain. Training from RGB
images and LIDAR-style sensors, the system learned to place 1, 2, and 3 objects 99%, 97%, and 83% of the
time, respectively. Observing object positions, it learned to place 5 objects 88% of the time. Center: RoboSuite
pick-place domain. Training from joint angles with object positions and orientations, the system learned to
place 1, 2, and 4 objects 97%, 90%, and 88% of the time, respectively. With Gaussian observation noise it
could place 4 objects 64% of the time. Right: RoboDesk domain. Training from joint angles and RGB images,
the system learned to place the block in the shelf and close the door 89% of the time. Across the multitask
9-goal benchmark, the learned policy averaged a success rate of 68%, or 79% with an added gripper camera.

To generate task-level supervision, the exploration node identifies states where the task policy gen-
erates invalid actions. We sample a problem from the problem distribution and roll out the combined
policy with an execution monitor that ensures that high-level action a is only started when a.pre are
satisfied and is executed until a.post are satisfied. We use this to build up a dataset of negative exam-
ples for the task policy and to identify states where TAMP supervision may improve performance.
Details and pseudo-code are in the Supplemental Materials.

4 Experimental Results

We evaluate our system in three domains: a 2D pick-place simulator, the RoboSuite benchmark [21],
and the RoboDesk benchmark [22]. Screenshots of the simulation environments are shown in Fig-
ure 1. We used FastForward [26] as the task planner. Unless otherwise stated, evaluations used 2
processes for task planning, 18 for motion planning, and, when applicable, 10 for supervised explo-
ration. Experiments ran for 5 random seeds unless otherwise noted. Policy architecture details and
hyperparameters are in the Supplemental Materials.

4.1 Learning 2D Pick-Place

Setup. We begin with a simple, synthetic, pick-place domain. The robot is circular with a par-
allel jaw gripper and its goal is to transfer up to 5 objects each to one of 8 randomly assigned
targets. The domain has three action schemas: moveto-and-grasp(obj), transfer(obj, targ), place-
and-retreat(obj, targ). The full space includes a grounding of these for each object and target.
With 5 objects and 8 targets, this gives 85 possible actions. The control space outputs x, y,
and rotational velocities on the robot body and an open/close gripper signal. We used DMCon-
trol [31] for the underlying physics engine. The goal requires each object overlap with its target (i.e.
||posobj � postarg||2  radiusobj). We use a simulated LIDAR sensor with 39 distance readings to
facilitate collision avoidance.

Manipulated Variables and Dependent Measures. Our primary variable is the training procedure
used. We compare against: 1) flat imitation learning (flat-IL), a single feedforward network trained
to imitate TAMP output; 2) reinforcement learning with a dense reward function, trained with double
the compute of our method (60 vCPUs); and 3) passive imitation learning (no-feedback), which uses
the hierarchical architecture but turns off policy-aware supervision (20 vCPUs). We used two RL
methods: PPO [32], a flat RL method, and HIRO [33], a hierarchical method. See the Supplemental
Materials for training details. We used two performance measures: 1) success rate (Succ.), the rate
at which trained policies achieve the goal; and 2) distance reduced (Dist), the percent reduction in
the distance from each object to its target.

Results. Table 1 shows the results of these comparisons. With 1 object, we observed a 12% success
rate for PPO and a 1% success rate for HIRO. Flat-IL succeeded 21% of the time in the 1 object
variant. With two objects, it reliably reduced distance to the goal, but only succeeded 1.5% of the
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Figure 4: Our architecture utilizes partially trained motion policies to speedup plan refinement and improve
data quality. Left: Speedup of plan refinement. During training, our method gave a 2x speedup of plan refine-
ment in the RoboSuite domain with two objects and 2.6x speedup in the RoboDesk domain. Center: Ablation
of performance as a function of supervision trajectories (Total # Refined Plans) for the RoboSuite domain with
two objects. Right: Performance as a function of supervision trajectories across RoboSuite domains.

time. With 5 objects, we observed an 80% success rate for the hierarchical policy without feedback.
This highlights the strong inductive bias our hierarchical architecture provides. With feedback, we
observed success rates of 99.7%, 98.7%, and 88% for 1, 2, and 5 objects. Performance plateaued on
the 5-object variant with approximately 3.6⇥ 105 environment transitions of supervision, generated
by 1600 successful plans over 2 hours. See Figure 3 (left) for a depiction of performance over the
course of training.

1 obj 2 obj 5 obj
3HL / 39TS 6HL / 85TS 30HL / 223TS

Method Succ. Dist. Succ. Dist. Succ. Dist.
PPO 12% 33% 0% 10% n/a n/a

HIRO 1% 13% n/a n/a n/a n/a
flat-IL 21% 55% 1.5% 51% n/a n/a

no-feedback n/a n/a n/a n/a 80% 97%
tamp-feedback 99.7% 99% 98.7% 99% 88% 97%

Table 1: Comparison of average success rate (Succ.) and
distance towards goal (Dist.) at completion of training for
different learning methods on state data in the 2D Pick-Place
domain. Dist. denotes the percentage reduction in the dis-
tance from each object to its target. HL denotes the number
of high-level actions the planner would use to solve the prob-
lem and TS denotes the number of environment transitions
induced by those actions.

Camera Observations. We investigated
the ability of our approach to train policies
from RGB data. Figure 3 shows perfor-
mance over time for solving problems with
1, 2, and 3 objects. After 4 hours of train-
ing (120 cpu hours) our policy success-
fully solves the 3 object task 83% of the
time. In all cases, performance plateaued
with less than 3.4 ⇥ 105 timesteps of su-
pervision from the planner.

Generalization. We tested the learned
policies’ ability to generalize to novel
goals and dynamics at test time. First, we
introduced 6 additional obstacles to repre-
sent ‘humans’ in the environment. The policy observations were the same as before, so the robot had
to use the LIDAR sensor to avoid the humans. At training time the humans stayed in fixed, random
locations. At test time, the humans use model predictive control to take actions that move towards
a random goal location. Their objective penalized collisions with other humans, but not the robot.
Rollouts terminated if a human collided with the robot. We observed a 50% success rate placing 3
objects in this condition. Next, we moved the target locations for objects from training to test time.
We arranged the targets in a square at the center of the free space at training time. At test time, we
moved the target locations to the edges of the space. This placed all targets outside the region seen
during training. We observed success rates of 99%, 97%, and 39% for problems with 1, 2, and 4
objects, respectively.

4.2 Learning Pick-Place for 7-DoF Robotic Arm Control

Setup. We measured performance in the RoboSuite pick-place benchmark with a simulated 7-DoF
Sawyer arm [21]. The goal is to move a cereal box, milk carton, soda can, and loaf of bread from
random initial locations in a bin on the left to their target bins on the right. The world state is the
joint configuration and the positions of the objects. The action space specifies velocities for the
7 joints and a binary open/close signal for the gripper. The symbolic domain has 16 high-level
actions across 4 action schemas: moveto(obj), grasp(obj), moveholding(obj), and putdown(obj).
The policy observations were joint angles, gripper state, the translation and rotational displacements
from the gripper to each object, and the displacement from each object to its target. Our main
experiment had 4 conditions: 1) can-only, to compare with prior work; 2) cereal-and-milk, the most
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difficult 2 object condition; 3) all, the standard benchmark goal; and 4) all-noisy, which added
Gaussian observation noise to the policy observations with standard deviation equal to 1% of the
possible deviation in initial values. We performed an ablation study in the cereal-and-milk condition
to compare performance across feedback types: 1) no-feedback; 2) task-feedback (only); 3) motion-
feedback (only); and 4) tamp-feedback (i.e., both feedback types).

Dependent Measures. To compare with published results in RL, we report the average dense return
of the trained policies over 500-step horizons for can-only. Our primary measure of performance
is success rate. We also measured the number of timesteps taken to reach the goal on successful
trajectories. For the ablation study, we tracked the amount of time spent during motion optimization
calls to measure the speedup from feedback.

Comparison to Prior Work. First, we compare against published results from RL and LfD. The
official benchmark reports returns near 50 when using Soft-Actor Critic to move the can [21, 34].
In comparison, we observed an average return of 324 for this task. Fan et al. [35] report an aver-
age return below 600 over a 2000-step horizon. Our return for this horizon is at least 1734. We
compare with LfD results on success rate. Mandlekar et al. [36] trained from the RoboTurk cans
dataset [37] and observed success rates of 31% from state data and 43% from RGB camera images.
In comparison, we observed a 98% success rate from state data for our can-only condition.

Results. Figure 3 (center) shows success rates over time for the four conditions described above.
Our learned policies reach an 88% success rate in the all condition, 90% in the cereal-and-milk
condition, and 98% in can-only condition. These correspond to average (successful) rollout lengths
of 244, 120, and 55, respectively. In the all-noisy condition, we observed a success rate of 64%,
compared with a 15% success rate executing plans from the TAMP solver directly. Figure 4 (center)
shows success rate against training time for the ablation study. Both motion-feedback and tamp-
feedback reach 80% success within 2 hours. Task-feedback shows steady improvement but does not
reach the performance of the other variants within the time limit. (See the Supplemental Materials
for a non-stationary condition where task-feedback improves on motion-feedback.) The no-feedback
condition does not get above 20% success. We observe up to a 2x speedup of the motion optimization
code with tamp-feedback compared to no-feedback. Figure 4 (left) illustrates the results.

Generalization. We ran a followup experiment to test the ability of the learned policies to generalize
to unseen goals and dynamics. First, we held out goals that moved 3 and 4 objects and tested with
other sizes of goals. When trained on problems that move 1 and 2 objects, the system was able to
solve 3 object problems 48% of the time. When trained on 1, 2, and 4 object goals, it was able
to solve 3 object problems 58% of the time. Next, we trained on 1, 2, and 3 object problems and
observed a 60% success rate when tested with a goal to move all 4 objects. Note that this condition,
which learns a multitask policy, is harder than the RoboSuite benchmark, which only attempts to
learn a single-task policy.

Next, we used the domain randomization functionality of RoboSuite to test the ability of the pre-
viously trained policies to generalize to different dynamics. This varies properties of the physics
engine such as the inertia and mass of the robot and objects, the parameters of the solver for con-
tact forces, position and quaternion offsets of bodies, and physical properties of the joints. Using
the default randomization parameters, we observed a success rate of 34%. When randomizing all
parameters except the positional and quaternion parameters, we observed a 73% success rate.

4.3 Multitask Learning for 7-DoF Robotic Arm Control from RGB Images

Background. We completed the core of this work on May 19th, with the above domains [38].
Our final experiment anecdotally measures the engineering effort required to adapt the system to
a previously unseen environment. The RoboDesk multitask benchmark had been released 6 days
prior, on May 13th [22]. Our final results reflect one engineer’s effort over the course of three weeks
to train on the benchmark, as well as two further weeks to train on custom variants of the benchmark.
The primary engineering steps were: 1) extension of existing action schemas to handle new tasks;
2) integration of the existing system with the new simulator; and 3) iteration on motion specification
and ML hyperparameters.

Setup. RoboDesk provides a 7-DoF PANDA arm with 9 disparate tasks: open slide, press button,
lift block, open drawer, block in bin, block off table, lift ball, stack blocks, and block in shelf. We
added a composite goal: block in shelf with door closed. Our policy observations contain only RGB
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camera images and joint positions. The controls are on joint velocities and the gripper. Our domain
has 7 action schemas: moveto(obj), lift(obj), stack(obj1, obj2), place(obj, targ), press(button),
open(door), close(door). This gives 31 possible high-level actions.

Results. Figure 3 shows training results over 10 hours on an Nvidia DGX Station (40 vCPUs, 4
GPUs). On the composite task, the policy had a success rate of 89%. On the benchmark with the
default forward-facing camera, the learned policy had a success rate of 68% averaged across the 9
tasks. That rose to 79% when we added a second camera attached to the robot gripper. We report the
benchmark performance for each goal in the Supplemental Material. In this domain, we observed a
2.6x reduction in motion optimization time from feedback as shown in Figure 4 (left).

5 Related Work

Speeding up TAMP. There is a growing field of work that uses machine learning on previous ex-
perience to reduce planning time for TAMP systems. One focus is on guiding the task-level search
— something we do not explicitly address in our system. Chitnis et al. [15] trained linear heuristics
from expert demonstrations. Kim et al. [11] used a score-space representation to guide the search by
transferring knowledge from previous plans. Wells et al. [10] learned a classifier to assess motion
feasibility and incorporated it as a heuristic into the search. At the motion level, Ichnowski et al.
[13] also learned policies to warm-start trajectory optimization. The key differences are that they
predicted full trajectories, rather than executing the policy, and they did not penalize optimization
for deviating from the policy controls. We note that our focus is on the learned policies themselves,
and so we do not directly compare the speedup produced by our system to other methods.

Imitating TAMP. Several other methods distill all or part of TAMP into learned policies. Paxton
et al. [14] used imitation learning to train policies in an abstract task space and deep Q-learning
in a control space. Like our system, they learned feed-forward policies for both task and motion
prediction and used those policies to guide supervision. The key difference is the type of planner
used. Ours is more compute intensive, but scales to larger problems. Kase et al. [16] proposed a
method to imitate hand-engineered trajectories to train a model to predict logical state and controllers
to execute actions. Their method does not directly predict tasks, but allows a TAMP system to run
online. In contrast, we train a single policy that maps observations directly to controls.

The approach most similar to ours is that of Driess et al. [17]. They also train hierarchical policies
to match TAMP output. They show that their system is able to integrate geometric and high-level
reasoning for a reaching task that, depending on the position of the target, potentially requires the
use of tools. The primary difference is that their approach predicts the feasibility of a given action
sequence, based on the initial state, while we predict actions and controls given the current state.
This means that they need to search over candidate high-level action sequences at test time. In our
system, this search is handled by the task planning node during training and bypassed entirely at
test time. The other large difference is that they represent their control policies with learned energy
functions that are minimized online. Task transitions occur when this system reaches an equilibrium
state. In contrast, we learn policies that directly choose when to transition between tasks.

6 Future Work

First, this system should be deployed on physical robots. We hope that our policies will transfer
more readily than those produced by, e.g., RL because TAMP solutions do not rely on detailed
dynamics models. Next, it would be interesting to experiment with parameter sharing for the motion
policies to save space and potentially speed up training. It would also be interesting to experiment
with the output space of the high-level policy to directly output continuous parameters, which may
allow policies to generalize more effectively. There is likely room to improve on both the task
and motion policy learning: sequence modeling methods from NLP [39] may be better suited to
represent task plans and modern imitation learning procedures, such as GAIL [24] or related works,
may reduce training time or improve generalization. Note that each of these changes is relatively
straightforward to implement, as it only modifies a single node of the training architecture. Finally,
it would be interesting to identify theoretical guarantees on the learned policies. For example, it
may be possible to formalize this as optimizing policy parameters with respect to a mixed discrete-
continuous cost function defined by the TAMP domain.
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