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ABSTRACT

The use of Convolutional Neural Networks (CNNs) has brought significant benefits
to the healthcare industry, enabling the successful execution of challenging tasks
such as disease diagnosis and drug discovery. However, CNNs are vulnerable to
various types of noise and attacks, including transmission noise, noisy mediums,
truncated operations, and intentional poisoning attacks. To address these challenges,
this paper proposes a robust recovery method that removes noise from potentially
contaminated CNNs and offers an exact recovery guarantee for one-hidden-layer
non-overlapping CNNs with the rectified linear unit (ReLU) activation function.
The proposed method can recover both the weights and biases of the CNNs pre-
cisely, given some mild assumptions and an overparameterization setting. Our
experimental results on synthetic data and the Wisconsin Diagnostic Breast Cancer
(WDBC) dataset validate the efficacy of the proposed method. Additionally, we
extend the method to eliminate poisoning attacks and demonstrate that it can be
used as a defense strategy against malicious model poisoning.

1 INTRODUCTION

Health care is coming to a new era where abundant medical images are playing important roles. In
this context, Convolution Neural Networks (CNNs) have captured tremendous attention in handling a
surge of biomedical data because of their efficiency and accuracy. Overcoming medical challenges
is becoming possible with the help of CNNs. Examples of the CNN model’s application include
detecting tuberculosis in chest X-ray images (Liu et al., 2017), diagnosing COVID-19 through chest
X-ray image classification (Reshi et al., 2021), and predicting abnormal health conditions using
unstructured medical health records (Ismail et al., 2020). Experimental results have shown that CNN
model could achieve as high as 99.5% accuracy in terms of COVID-19 disease detection (Reshi et al.,
2021). However, CNN models are usually delivered or trained in untrusted environments and can be
easily contaminated (Gündüz et al., 2019; Ma et al., 2022). The performance of polluted CNN could
be greatly reduced and thus its credibility is weakened, which brings about severe medical accidents
such as clinical misdiagnosis and treatment failure. Thus, an efficient model purification algorithm is
needed to maintain a reliable CNN model in the field of medical care. Few studies have explored how
to purify fully-connected neural networks to reduce the negative impact of unexpected noise from a
robust recovery perspective (Gao & Lafferty, 2020) and Bayesian estimation (Shao et al., 2021). In
this paper, we for the first time consider the recovery of a one-hidden-layer CNN polluted by some
noises from an arbitrary distribution. We further extend the proposed recovery method to detoxify
CNNs under training-phase poisoning attacks (Gu et al., 2019; Bai et al., 2023).

Our contributions. By properly selecting design matrices in the proposed robust recovery method,
all CNN parameters can be purified to ground-truth parameters, as demonstrated in this work.
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Additionally, we establish a quantitative relationship between learning accuracy and noise level.
Synthetic and Wisconsin Diagnostic Breast Cancer (WDBC) data experiments confirm the theoretical
correctness and method effectiveness, in addition to the novel contributions to the theoretical analysis
of CNNs. Furthermore, we leverage the proposed method to purify CNNs trained on poisoned data,
which differs from previous works that focused on detection and fine-tuning. Our approach aims to
directly remove the noisy weights corresponding to the poisoning effect, and only requires a small
amount of clean data from resources other than the training set.

Figure 1: The proposed convolutional neural network (CNN) purification method aims to
remove noises from contaminated weights. Hidden-layer weights W and output layer weights
β of a CNN may be contaminated by noises or corruptions. The proposed framework can directly
recover W and β with clean data points.

2 PROBLEM FORMULATION

In this section, we begin by providing an overview of the problem of purifying CNNs. We then
proceed to describe the CNN architecture and the contamination model that we investigate in this study.
Specifically, we consider the scenario where a CNN is trained on a set of n inputs {xs}ns=1 ∈ Rd

along with their corresponding ground truth labels ys. The network’s parameters are assumed to be
contaminated by random noise z, which is independent of the input data and is generated from an
arbitrary distribution. Such noise can arise from either post-training phase perturbations or poisoned
inputs. Our primary objective is to purify the contaminated CNN parameters using a proposed robust
recovery method that avoids the need to retrain the model from scratch.

3 CNN AND CORRUPTION MODEL

As illustrated in Figure 1, this work studies the one-hidden-layer CNN architecture:

ŷs =
∑p

j=1

∑m
i=1 βjψ(W

T
j Pixs) , (3.1)

where xs ∈ Rd is the input and the scalar ŷs is its prediction. Following the same setting as in
previous theoretical works on CNNs (Zhong et al., 2017), we consider CNN with m non-overlapping
input patches. Pixs ∈ Rk is the i-th patch (i = 1, 2, · · · ,m) of input xs, which is separated by m
matrices {Pi}mi=1 ∈ Rk×d defined as follows.

Pi = [0k×k(i−1)︸ ︷︷ ︸
All zero matrix

Ik︸︷︷︸
Identity matrix ∈ Rk×k

0k×k(m−i)︸ ︷︷ ︸
All zero matrix

]

Note that the non-overlapping setting forces {Pi}mi=1 independent of each other and therefore
simplifies our proofs. W = [W1,W2, · · · ,Wp] ∈ Rk×p denotes the hidden layer weights with each
column Wj ∈ Rk representing the j-th kernel weights. The Rectified Linear Unit (ReLU) operation
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ψ is the most commonly used activation function that transforms data t into ReLU(·) = max(0, ·).
β ∈ Rp denotes the output layer weights and βj is its j-th entry. In this paper, we consider an
overparameterization setting, where p, k ≫ n.

Here we define the contamination model for W and β.

Θj =Wj + zWj , (3.2)

η = β + zβ , (3.3)

where Θ and η are contaminated parameters of CNN’s hidden layer and output layer, respectively.
The vectors zWj

∈ Rk, zβ ∈ Rp are noise vectors with each entry [zWj
]i ([zβ ]i) generated from an

arbitrary distribution Qi with fixed probability ϵ, which is between 0 and 1. In the post-training
phase poisoning scenario, our contamination model describes the additional noises added to clean
weights W and β. In the training phase poisoning scenario we considered in this work, additional
noises are injected through manipulated training data. According to recent research (Wang et al.,
2020; Pal et al., 2023), some CNN weights contain a portion of poisoning information, which our
contamination model can also characterize.

4 PURIFICATION OF ONE-HIDDEN-LAYER CNN ALGORITHM

CNN model training. Before introducing the CNN recovery optimization and algorithm, we need
to specify the process of obtaining W and β. In our setting, the one-hidden-layer CNN is trained
by the traditional gradient descent algorithm, which is shown in Algorithm 1. X ∈ Rd×n is the
matrix format of the training examples. W (0), β(0) are initializations of hidden and output layers’
weights. They are initialized randomly following Gaussian distributions N (0, k−1Ik) and N (0, 1),
respectively. γ and γ

k are learning rates indicating step sizes of gradient descents. With the purpose
of easier computation of the partial derivative of loss function L with respect to β and W , we use the
squared error empirical risk

L(β,W ) =
1

2

1

n

n∑
s=1

(ys −
1
√
p

p∑
j=1

m∑
i=1

βjψ(W
T
j Pixs))

2

that quantifies the prediction errors of the learned CNN. 1√
p is used for simplifying our proofs.

Note that in the post-training phase poisoning scenario, W (tmax) and β(tmax) are the ground truth
we want to extract from observations Θ and η. We will introduce the details of the training phase
poisoning scenario in Section 6. We use the following ℓ1 norm-based robust recovery optimization
method to achieve accurate estimations.

Algorithm 1 CNN Model Training

Input: Data (y,X), maximum number of iterations tmax

Output: W (tmax) and β(tmax)
Initialize Wj(0) ∼ N (0, k−1Ik) and βj(0) ∼ N (0, 1) independently for all j ∈ [p].
for t = 0 to tmax do

for j = 1 to p do
βj(t) = βj(t− 1)− γ ∂L(β(t−1),W (t−1))

∂βj(t−1)

end for
for j = 1 to p do
Wj(t) =Wj(t− 1)− γ

k
∂L(β(t),W (t−1))

∂Wj(t−1)

end for
end for
Output: β(tmax) and W (tmax)

Robust recovery for CNN purification. The ℓ1 norm-based recovery optimizations for W and β
are defined as

ũj = argmin
u

∥Θj −Wj(0)−AT
Wuj∥1 , (4.1)
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ṽ = argmin
v

∥η − β(0)−AT
β v∥1 , (4.2)

where AW is the design matrix for purifying W :

AW = [P1X,P2X..., PmX] , (4.3)

Aβ is the design matrix for recovering β:

Aβ =
[∑m

i=1 ψ(W
TPix1), ...,

∑m
i=1 ψ(W

TPixn)
]
, (4.4)

ũj , ṽ are the optimal estimations of the models’ coefficients of the two optimization problems. The
key for successful recovery of Wj out of Θj is that Wj(tmax)−Wj(0) lies in the subspaces spanned
by AW . Similarly, we can recover β out of η because βj(tmax)− βj(0) lies in the subspace spanned
by Aβ . Further conditions which are necessary for successful recovery of Wj , β are theoretically
analyzed in theorem 5.2. Based on equation 4.1 and equation 4.2, the purification of contaminated
one-hidden-layer CNN is given in Algorithm 2. By properly selecting the design matrix of the hidden
layer recovery AW and the design matrix of the output layer Aβ , one can make a successful recovery.

Algorithm 2 Purification of One-hidden-Layer CNN

Input: Contaminated model (η,Θ), design matrix AW , Aβ , and parameter initialization
β(0),W (0).
Output:The repaired parameters β̃ and W̃
for j = 1 to p do
ũj = argmin

u
∥Θj −Wj(0)−AT

Wuj∥1

W̃j =Wj(0) +AT
W ũj

end for
ṽ = argmin

v
∥η − β(0)−AT

β v∥1

β̃ = β(0) +AT
β ṽ

Output: W̃ and β̃

Design Matrix of hidden layer AW . We now explain in detail why we choose AW in
the format of equation 4.3. We define the mapping from input to output as f(xs) =
1√
p

∑p
j=1

∑m
i=1 βjψ(W

T
j Pixs). For weights update in each iteration of the Algorithm 1, the partial

derivative of the loss function with respect to Wj is represented by ∂L(β,W )
∂Wj

∣∣∣∣
(β,W )=(β(t),W (t−1))

=∑n
s=1

∑m
i=1 αiPixs where αi sums up all other remaining terms .

One can easily observe that the gradient ∂L(β,W )
∂Wj

lies in the subspace spanned by Pixs. And this
indidates that vector Wj(tmax)−Wj(0) also lies in the same subspace. Therefore, we can use the
design matrix AW in the format of equation 4.3 to purify CNNs’ weights.

Design Matrix of output layer Aβ . We then introduce how we select Aβ in the form of equa-
tion 4.4 and how it helps the recovery. For weights update in each iteration of the Algorithm 1,

the partial derivative of the loss function with respect to β is ∂L(β,W )
∂βj

∣∣∣∣
(β,W )=(β(t−1),W (t−1))

=∑n
s=1 δs

∑m
i=1 ψ(W

T
j (t− 1)Pixs) where δs sum ups all other remaining terms.

Since the derivative of L with respect to the j-th entry βj is represented by combinations of∑m
i=1 ψ(W

T
j (t − 1)Pixs) and δs only depends on xs, we get the conclusion that ∂L(β,W )

∂β lies
in the subspace that is spanned by

∑m
i=1 ψ(W

T (t− 1)Pixs). Further notice that β(tmax)− β(0) is
an accumulation of ∂L(β,W )

∂β in each iteration. Unlike the subspace spanned by Pixs which is used for
hidden layer recovery remains constant, the subspace spanned by

∑m
i=1 ψ(W

T (t− 1)Pixs) which
is used for output layer recovery keeps changing over t. However, thanks to overparametrization
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assumption of CNN, one could show W (t) obtained by Algorithm 1 is close to initialization W (0)
for all t ≥ 0. Theorem 5.1 in the next section shows that W (t)s are all not far away from each other.
Thus, β(tmax)− β(0) approximately lies in the same spanned subspace, resulting in the proposed
design matrix Aβ .

5 THEORETICAL RECOVERY GUARANTEE

In the previous section, we introduced our CNN purification algorithm and went over how to
build design matrices for recovering the hidden and output layers. In this section, we demonstrate
theoretically that the proposed algorithm’s estimation is accurate. We assume xs follows Gaussian
distribution N (0, Id) for ∀s ∈ [n] with |ys| ≤ 1. Let fs(t) be f(xs) with weights Wj(t) and βj(t).
We then have the following conclusion.

Theorem 5.1. If mnlog(mn)
k , (mn)3log(p)4

p and mnγ are all sufficiently small, then

max
1≤j≤p

||Wj(t)−Wj(0)|| ≤
100mnlog(p)√

pk
= RW (5.1)

max
1≤j≤p

||βj(t)− βj(0)|| ≤ 32

√
(mn)2log(p)

p
= Rβ (5.2)

||y − fs(t)||2 ≤ (1− γ

8
)||y − fs(0)||2 (5.3)

for all t ≥ 1 with high probability.

Although weights W (t) and β(t) are updated over iterations t, Theorem 5.1 tells us that the post-
trained parameter W and β via Algorithm 1 are not too far away from their initializations. Due to the
bounded distance, we can show that β(tmax)− β(0) approximately lies in the subspace spanned by
Aβ . Moreover, the distance between the ground truth y and the final prediction is bounded by the
distance between y and the model’s initial prediction, indicating a global convergence of Algorithm 1
despite the nonconvexity of the loss.

Assisting by Theorem 5.1, we propose the main theorem below to demonstrate that Algorithm 2 can
effectively purify CNN. Under Algorithm 1, the following conclusion holds.

Theorem 5.2. Under condition of theorem 5.1 with additional assumption that log(p)
k and ϵ

√
mn are

sufficiently small, then W̃ =W (tmax) and 1
p ||β̃ − β(tmax)||2 ≲ (mn)3log(p)

p with high probability,

where W (tmax) and β(tmax) are obtained by gradient descent algorithm and W̃ and β̃ are results
of purification of CNN.

According to theorem 5.2 pre-condition mnlog(mn)
k , (mn)3log(p)4

p and mnγ, successful model repair
requires large number of hidden layer neurons p, large partition dimension k, small number of
partition m, small training examples n and small poison ratio ϵ. The assumption log(p)

k further
puts the constraint on the distance between log(p) and k in terms of successful parameter repairing.
Compared with theorem B.2 in Gao & Lafferty (2020), the constraint contains extra m and replaces
d with k. Extra m appears since the construction of both design matrices takes account of m. And
input dimension to feed into CNN is k rather than d of DNN. The reason β could not be exactly
recovered and has error bound (mn)3log(p)

p is subspace spanned by
∑m

i=1 ψ(W
T (t− 1)Pixs) keeps

changing over t, which has been discussed in section 4. Thus β(tmax)− β(0) approximately lies in
the subspace spanned by Aβ .

6 EXPERIMENTAL RESULTS

In this section, we conduct experiments on synthetic data and Wisconsin Diagnostic Breast Cancer
(WDBC) dataset (Dua & Graff, 2017) to demonstrate the effectiveness of our proposed CNN purifica-
tion method and evaluate the alignments of the results with our theoretical analysis. Furthermore,
experiments show the proposed purification algorithm can be utilized to mitigate poisoning attacks
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(a) k=50 (b) k=100 (c) k=150

Figure 2: Increasing p and k promotes the recovery performance on the synthetic dataset
(n = 5,m = 5). When p increases, the limit of ϵ for successful recovery of β also increases. When k
increases, the limit of ϵ for successful recovery of W increases.

(a) m = 2, k = 15 (b) m = 3, k = 10 (c) m = 5, k = 6

Figure 3: Increasing p promotes the recovery performance on the WDBC dataset (n = 5). When
p increases, the limit of ϵ for successful recovery of β also increases.

from the poisoned CNNs. The error is measured by the average ℓ2 error. All the experimental
results of synthetic data are averaged over 100 trials. All the experimental results of WDBC data are
averaged over 10 trials.
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(a) CNN purification by training instances (b) Model repair by non-training instances

Figure 4: Our CNN purification method has the ability to yield good performance even when
using a limited number of clean data points, which may not necessarily originate from the
training dataset (training batch size = 10). When n decreases, the limit of ϵ for successful recovery
of both W and β also increases

6.1 EXPERIMENTS ON SYNTHETIC DATA

The synthetic data are generated by xs ∼ N (0, Id). The noises [zWj
]i, ([zβ ]i) are generated from

N (1, 1). We evaluate p and k by fixing the number of data points n = 5 and the number of partitions
m = 5. Figure 2 shows results of recovery errors under different p with k = 50, 100, 200. When
ϵ is small, e.g., ϵ < 0.2, the recovery of both W and β are more likely to be successful. In each
column, one can see that increasing p further increases the limit of ϵ for successful recovery of β.
The phenomenon is consistent with Theorem 5.2 as we require (mn)3log(p)

p to be small. Across the
three columns of figures, an obvious observation is that the limit of ϵ for successful recovery of W
increases when k increases. In our theorems, successful recovery needs log(p)

k and mnlog(mn)
k to be

sufficiently small.

6.2 EXPERIMENTS ON REAL DATASET

The studied data are randomly selected from the WDBC training dataset, which is a widely used
benchmark dataset in machine learning and medical research. It contains features derived from
digitized images of fine needle aspirate (FNA) of breast mass and corresponding diagnosis of
malignant or benign tumors. The noise [zWj

]i, ([zβ ]i) are generated from N (1, 1).

First, we evaluate p by fixing the number of data points n = 5. Figure 3 shows results of recovery
errors under different p,m, k. In each column, one can see that increasing p increases the limit
of ϵ for successful recovery of β. The phenomenon is similar to that shown in the synthetic data
experiment Figure 2 and the same reason applies here.

Then we evaluate the number of data points n used in recovery by fixing the training batch size to be
10. Left column figures in Figure 4 show results of recovery errors by n data points selected from
the training batch. Right column figures in Figure 4 show results of recovery errors by n data points
selected outside of the training batch. One can see that our CNN purification method can achieve
good performance even recovering with a small number of clean data points and potentially not
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(a) Mitigating poisoning attack by training
batch instances

(b) Mitigating poisoning attack by instances
not in training batch

Figure 5: Even with a small number of clean data points, CNN purification can mitigate the
poisoning effect (training batch size = 100). The poisoned ratio indicates the percentage of the
poisoned training data. The attack success rate is the percentage of test data that has been successively
attacked.

from the training data. The phenomenon is consistent with Theorem 5.2 as we require (mn)3log(p)
p ,

mnlog(mn)
k and ϵ

√
mn to be small.

6.3 POISONING ATTACK MITIGATION

Here we use the same data selected from the WDBC dataset. The training loss is set to cross-entropy
loss, which is commonly used in poisoning settings. Noise vectors are poisoned parameters generated
from poisoning attacks Gu et al. (2019); Wang et al. (2020). The poisoning attack used in this work
aims to force CNNs to predict a target class when the input is injected by a fixed pattern. When the
first five features of inputs are set to 5, the outputs of the CNN model will always be 0 (benign). We
vary the ratio of poisoned inputs ϵ by fixing the training batch size to 100. Figure 5 shows results
of test accuracy and attack success rate under different n. One can see that CNN purification can
maintain high average test accuracy and mitigate the poisoning effect even with a small number of
clean data points.

7 CONCLUSION

CNNs are susceptible to various types of noise and attacks in applications to healthcare. To address
these challenges, this paper proposes a robust recovery method that removes noise from potentially
contaminated CNNs, offering an exact recovery guarantee for one-hidden-layer non-overlapping
CNNs with the rectified linear unit (ReLU) activation function. The proposed method can precisely
recover both the weights and biases of the CNNs, given some mild assumptions and an overparame-
terization setting. We have successfully validated our method on the Wisconsin Diagnostic Breast
Cancer (WDBC) dataset. We emphasize that this work mainly focuses on theoretical analysis. Our
future directions are (1) Extending CNN purification to larger healthcare models and large medical
datasets (2) Improving the proposed method to eliminate various poisoning attacks on medical
models.

8



Published as a conference paper at ICLR 2023 TML4H

REFERENCES

Jianing Bai, Ren Wang, and Zuyi Li. Physics-constrained backdoor attacks on power system fault
localization. IEEE PES General Meeting, 2023.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Chao Gao and John Lafferty. Model repair: Robust recovery of over-parameterized statistical models.
arXiv preprint arXiv:2005.09912, 2020.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.
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