
Dual Progressive Prototype Network for Generalized 
Zero-Shot Learning 

Chaoqun Wang1 2, Shaobo Min3, Xuejin Chen1 2∗, Xiaoyan Sun2, Houqiang Li1 2 

1School of Data Science 
2The National Engineering Laboratory for Brain-inspired Intelligence Technology and Application 

University of Science and Technology of China, Hefei, Anhui, China 
3Tencent Data Platform, Shenzhen, Guangdong, China 

cq14@mail.ustc.edu.cn,bobmin@tencent.com,{xjchen99,sunxiaoyan,lihq}@ustc.edu.cn 

Abstract 

Generalized Zero-Shot Learning (GZSL) aims to recognize new categories with 
auxiliary semantic information, e.g., category attributes. In this paper, we han-
dle the critical issue of domain shift problem, i.e., confusion between seen and 
unseen categories, by progressively improving cross-domain transferability and 
category discriminability of visual representations. Our approach, named Dual 
Progressive Prototype Network (DPPN), constructs two types of prototypes that 
record prototypical visual patterns for attributes and categories, respectively. With 
attribute prototypes, DPPN alternately searches attribute-related local regions 
and updates corresponding attribute prototypes to progressively explore accurate 
attribute-region correspondence. This enables DPPN to produce visual representa-
tions with accurate attribute localization ability, which benefts the semantic-visual 
alignment and representation transferability. Besides, along with progressive at-
tribute localization, DPPN further projects category prototypes into multiple spaces 
to progressively repel visual representations from different categories, which boosts 
category discriminability. Both attribute and category prototypes are collabora-
tively learned in a unifed framework, which makes visual representations of DPPN 
transferable and distinctive. Experiments on four benchmarks prove that DPPN 
effectively alleviates the domain shift problem in GZSL. 

1 Introduction 

Deep learning methods depend heavily on enormous manually-labelled data, which limits their 
further applications [7, 8, 17, 52, 36, 19, 11]. Therefore, Generalized Zero-Shot Learning (GZSL) 
recently attracts increasing attention, which aims to recognize images from novel categories with 
only seen domain training data. Due to unavailable unseen domain data during training, GZSL 
methods introduce category descriptions, such as category attributes [15, 14] or word embedding 
[5, 37, 26, 41], to associate two domain categories. 

A basic framework of embedding-based GZSL is to align global image representations with corre-
sponding category descriptions in a joint embedding space [16, 3, 55, 38, 2, 6], as shown in Fig. 1 (a). 
Due to the domain shift problem across two domain categories, unseen domain images tend to be 
misclassifed as seen categories. To address this issue, recent methods focus on discovering discrimi-
native local regions to capture subtle differences between two domain categories. For example, AREN 
[45] and VSE [55] leverage attention mechanism to discover important part regions, which improves 
feature discrimination. DAZLE [20] and RGEN [46] introduce semantic guidance, e.g., category 
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Figure 1: The motivation of DPPN. (a) General GZSL methods directly align global image features 
with category attributes. (b) A typical part-based method, i.e., APN [47], learns prototypes shared by 
all images for attribute localization. (c) DPPN progressively adjusts prototypes according to different 
images and introduces category prototypes to enhance category discriminability. 

attributes, into region localization to narrow the semantic-visual gap. Among existing methods, APN 
[47] is most related to our approach. As shown in Fig. 1 (b), APN constructs visual prototypes to 
indicate the typical visual patterns of each attribute, for example describing what attribute "Furry" 
visually refers to, and these prototypes are shared across all images to search attribute-matched local 
regions. However, due to image variances, the textures corresponding to the same attribute may vary 
seriously across images. Thus, sharing prototypes in APN can not well depict the target image. 

In this paper, we propose a novel Dual Progressive Prototype Network (DPPN), which constructs 
two types of progressive prototypes for respective attributes and categories to gradually improve 
cross-domain transferability and category discriminability of visual representations. Instead of 
sharing prototypes, DPPN dynamically adjusts attribute prototypes for each image to capture the vital 
visual differences of the same attribute in different images. This is achieved by alternately localizing 
attribute regions and updating attributes prototypes in turn, as shown in Fig. 1 (c). With image-
specifc prototypes, attribute localization, i.e., attribute-region correspondence, gets more accurate. 
To explicitly preserve such correspondence in the fnal representations, DPPN aggregates the attribute-
related local features by concatenation, instead of widely-used Global Average Pooling (GAP) that 
will damage the attribute localization ability. Furthermore, along with progressively-updated attribute 
prototypes, DPPN also builds category prototypes to record prototypical visual patterns for different 
categories. The category prototypes are projected into multiple spaces to progressively enlarge 
category margins, strengthening category discriminability of visual representations. Consequently, 
with cross-domain transferability and category discriminability, DPPN can effectively bridge the gap 
between seen and unseen domains. 

Experiments on four benchmarks demonstrate that our DPPN alleviates the domain shift problem in 
GZSL and obtains new state-of-the-art performance. Our contributions can be summarized as three-
fold. a) We propose a novel Dual Progressive Prototype Network (DPPN) that constructs progressive 
prototypes for both attributes and categories to gradually improve cross-domain transferability and 
category discriminability of visual representations. b) An alternation updating strategy is designed 
to dynamically adjust attribute prototypes according to target images. Besides, DPPN aggregates 
attribute-related local features by concatenation to produce image representations, which explicitly 
preserves the attribute-region correspondence. c) DPPN projects category prototypes into multiple 
spaces to progressively enhance category discriminability. 

2 Related Work 

Generalized Zero-Shot Learning. GZSL aims to recognize new categories using semantic knowl-
edge transferred from seen categories. Early GZSL methods learn a joint embedding space to align 
global image representations with corresponding category descriptions, e.g., attributes [15, 14, 35] 
or text descriptions [5, 37]. Since unseen and seen categories share a common semantic space, the 
semantic-aligned image representations can be transferred from seen to unseen domain. Based on 
this paradigm, many works focus on improving the discrimination of embedding space by designing 
elaborate semantic-visual alignment functions [38, 44, 1, 54, 3, 55, 27]. For example, some methods 
[40, 53, 55, 21, 33] use high-dimensional visual features to span the embedding space, which is 
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proved more discriminative than that spanned by category attributes. Other methods [23, 9, 42, 32] 
utilize auto-encoders to preserve semantic relationships between categories in the embedding space. 

Though effective, these methods suffer from the domain shift problem, i.e., two domains have different 
data distributions. Since only seen domain images are available during training, images from unseen 
categories tend to be recognized as seen categories. To this end, DVBE [31] and Boundary-based 
OOD [10] explore out-of-distribution detection to treat seen and unseen domains separately. Some 
works [28, 20] suppress the seen category confdence when recognizing images to better distinguish 
two domain samples. These methods can effectively alleviate the domain shift problem via extra 
processing, but they ignore the discriminability of local attribute-related information in distinguishing 
two domains. 

Part-Based GZSL. Since global image representations contain much noisy background information 
which is trivial for knowledge transfer, recent part-based methods [49, 45, 47] aim to localize part 
regions and capture important visual details to better understand the semantic-visual relationship. For 
example, S2GA [49], AREN[45], and VSE [55] leverage the attention mechanism to learn semantic-
relevant representations by automatically discovering discriminative parts in images. RGEN [46] uses 
the region graph to introduce region-based relation reasoning to GZSL and learns complementary 
relationships between different region parts inside an image. GEM-ZSL [30] imitates human attention 
and predicts human gaze location to learn visual attention regions. Usually, the semantic guidance, e.g., 
category attributes, is used to guide the part localization [29]. Thus their generated local features can 
better match corresponding category attributes, which can alleviate the domain shift problem. Instead 
of treating category attributes as an all-in-one vector, DAZLE [20] proposes a dense attribute attention 
mechanism to produce local attention for each attribute separately. APN [47] constructs prototypes 
for separate attributes, which are shared by all images to localize attribute-related regions via region 
searching. In this paper, instead of using prototypes shared by all images, DPPN dynamically adjusts 
attribute prototypes according to different images, which learns visual representations with more 
accurate attribute localization and transferability. Besides, in DPPN, we also design progressive 
category prototypes to enhance category discriminability of visual representations. 

3 Dual Progressive Prototype Network 

3.1 Problem Formulation 

The target of GZSL is to recognize images of novel categories trained with only seen domain data. 
In this paper, we denote S = {X, y, ay |X ∈ Xs, y ∈ Ys, ay ∈ As} as seen domain data, where 
X ∈ RC×N indicates image features extracted by the backbone network, and Xn ∈ RC×1 encodes 
the local information at the n-th region. y is the corresponding category label, and ay ∈ RNa×1 is the 
category description, such as the category-level vector with Na attributes. C is the number of feature 
channels, and N = W × H . The unseen domain data is similarly defned as U , and Ys ∩ Yu = φ. 
Given S during training, GZSL aims to recognize images from either Xs or Xu during inference. A 
basic framework is to learn an image representation f(X) that is aligned with corresponding category 
attributes by minimizing: X exp(f(X)Tay) 

= − log P , (1)Lv2s
j∈Ys 

exp(f(X)Taj )
X∈Xs 

where f(·) is a visual projection function, which is generally implemented via Global Average 
Pooling (GAP) and linear projection. v2s is the abbreviation of visual-to-semantic projection. 

Based on Lv2s, APN [47] expects to improve the localization ability of attributes for intermediate 
feature X . Thus, APN constructs a set of attribute prototypes P = {p1, · · · , pNa 

}, where pi ∈ RC×1 

records visual patterns for the i-th attribute, e.g., depicting what attribute "Yellow Wing" looks like. 
P is learnable and shared by all images. With P , APN learns attribute localization by minimizing: X 

Lapn = d(l(X, P), ay). (2) 
x∈Xs 

l(X, P) is an attribute localization function that searches the most related local feature Xn for pi ∈ P , 
which regresses attributes ây ∈ RNa ×1 . d(·, ·) is a distance measurement function, e.g., l2 norm, that 
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Figure 2: Training pipeline of DPPN. DPPN progressively learns attribute prototypes Pk and 
category prototypes Ck via Lsa and Lcl. {fk(X)|k = 1, · · · ,K} consist of visual representations of 
K iterations, which gradually capture attribute localization and category discrimination. 

aligns the predicted attributes ây and ground truth attributes ay . Finally, the main insight of APN is 
to minimize Lapn + Lv2s, and the inference function is: 

ŷ  = arg min d(f(X), ay ). (3) 
y∈Ys∪Yu 

However, due to instance variance, occlusion, and noise, the visual textures that correspond to the 
same attribute may vary severely across different images. Thus, it is unreasonable to only rely on 
sharing attribute prototypes P to accurately localize attribute-related regions for each individual 
image. Besides, Lapn is applied to intermediate features X as a mere constraint. During inference, 
the fnal visual representation f(X) for recognition is directly aggregated by the intermediate features 
using GAP, which damages the attribute localization ability. 

To this end, our Dual Progressive Prototype Network (DPPN) progressively explores attribute 
localization and category discrimination for different images with two modules, i.e., Progressive 
Attribute Localization and Progressive Category Classifcation, as shown in Fig. 2. 

3.2 Progressive Attribute Localization 

The Progressive Attribute Localization (PAL) module aims to dynamically adjust attribute prototypes 
according to the target image to progressively capture local correspondence between different 
attributes and image regions. 

0 0Defne P0 = {p1, · · · , p } as a set of trainable attribute prototypes, which are randomly initialized Na 

and shared across all images. With P0 initialized, PAL frst localizes related local regions for each 
0 0 0prototype p , and then calculates specifc visual features for all {p1, · · · , p } by:i Na 

P1 = far(XS), S = }(XTP0), (4) 

where S ∈ RN×Na is a similarity matrix, and Sn,i measures the similarity between the n-th local 
0feature Xn and the i-th attribute prototype pi . }(·) is a Softmax normalization along each column. 

With S, Eq. (4) aggregates related region features in X to calculate attribute-specifc features, which 
1 1produces P1 = {p1, · · · , pNa 

}. far(·) is a prototype refnement function implemented by two 
fully-connected (FC) layers as shown in Fig. 2. Compared to the original image feature X ∈ RC×N , 
P1 ∈ RC×Na explicitly captures specifc visual patterns of the target image for each attribute, e.g., 
1p aggregates related local features in X that correspond to the i-th attribute. i 

4 



Considering instance variance, the sharing attribute prototypes P0 cannot well localize accurate 
attribute-related regions for all images. In Eq. (4), compared to P0 , the visual patterns of P1, that 
correspond to different attributes, are more specifc to the given image feature X . Thus, PAL further 
regards P1 as updated attribute prototypes from P0 for the target image. By replacing Pk with Pk+1 

and repeating Eq. (4), PAL can progressively adjust attribute prototypes for a specifc image by: � � 
Pk+1 = far X}(XTPk) , (5) 

where Pk+1 leads to better attribute localization than Pk . 

For the k-th iteration, since Pk ∈ RC×Na contains specifc visual patterns for different attributes, 
k kPAL concatenates all {p1 , · · · , p } to produce the visual representation fk(X):Na � � 

fk(X) = cat frd(Pk) , (6) 
kwhere frd(·) is a dimension reduction layer and projects each p ∈ RC×1 into RD×1 , wherei 

D < C, to avoid excess calculation complexity. cat(·) concatenates all elements of the input. 
fk(X) ∈ RNv ×1 , where Nv = D × Na. With multi-iterative {Pk|k = 1, · · · ,K}, PAL gradually 
generates K visual representations {fk(X)|k = 1, · · · ,K}. 

Finally, fk(X) is aligned with corresponding attributes in a joint embedding space by: X � � 
Lk = d fk(X), g(ay) , (7)sa 

X∈Xs 

where g(·) is a semantic projection function implemented by FC to project attribute vector into a 
latent space, where the visual representations and projected attribute features can be well aligned, 
following [31]. The semantic alignment supervision Lsa is applied to all {fk(X)|k = 1, · · · ,K}
for training acceleration. As k increases appropriately, fk(X) localizes attributes more accurately. 
Thus, fK (X) is used as the fnal visual representation for inference. 

Consequently, by dynamically adjusting attribute prototypes according to the target image, PAL can 
progressively improve the attribute localization ability of visual representations, as shown in Fig. 3. 
PAL captures the attribute-region correspondence, which narrows the semantic-visual gap between 
category attributes and visual representations and boosts knowledge transfer between seen and unseen 
domains. 

3.3 Progressive Category Classifcation 

Besides exploring the correspondence between attributes and local image regions via PAL, we design 
a Progressive Category Classifcation (PCC) module to repel visual representations from different 
categories, which can enlarge category margins. 

Similar to the sharing attribute prototypes in PAL, PCC defnes a set of learnable category prototypes 
C0 0 0 0 ∈ RNv ×1= {c1, · · · , c }, where c records the visual representation center for the j-thNc j 

category. Nc = |Ys| is the number of seen categories. Since the attribute prototypes are progressively 
updated in PAL and K visual representations {fk(X)|k = 1, · · · ,K} are accordingly generated 
for each image, sharing category prototypes C0 cannot well model visual category differences for 
all iterations of fk(X). Thus, PCC is similarly designed to adjust category prototypes for different 
fk(X) by: 

Ck+1 = fcs(Ck) + W k , (8) 
where fcs(·) is a prototype selection function as shown in Fig. 2. Since fk+1(X) derives from 
fk(X), the category center at the (k + 1)-th iteration should not deviate from that of the k-th iteration. 
Thus, fcs(·) actually serves as a gating function implemented by channel attention mechanism, which 
controls the information fow from Ck to Ck+1 . This can ease the training diffculty of PCC by 
avoiding repetitive learning for Ck+1 . W k is a learnable bias at the k-th iteration, which supplements 
some specifc information for Ck+1 . 

At the k-th iteration, with the visual representation fk(X) and category prototypes Ck = 
k k{c1 , · · · , c }, PCC repels different categories by: Nc 

kX exp(fk(X)Tc )yLk = − log P . (9)cl k 
X∈Xs 

exp(fk(X)Tc )j∈Ys j 
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Similar to Lk , Lk is applied to all the K iterations. Compared to Lv2s in Eq. (1), Lcl can bettersa cl 
repel visual representations from different categories via progressive category prototypes {Ck|k = 
1, · · · ,K}. 
With progressively-updated category prototypes, PCC improves the category discriminability of 
visual representations {fk(X)|k = 1, · · · ,K}. 

3.4 Overall Objective 

Overall, the objective loss function of DPPN is: 
KX 

Lall ← (Lsa
k + λLcl

k ), (10) 
k=1 

where λ is the hyper-parameter to balance Lcl. The attribute prototypes and category prototypes are 
collaboratively trained in a unifed framework, which enables the fnal visual representation fK (X) 
to simultaneously capture attribute-region correspondence and category discrimination. During 
inference, only visual representation fK (X) at the K-th iteration is used by: 

ŷ  = arg min d(fK (X), g(ay)). (11) 
y∈Ys∪Yu 

3.5 Discussion 

Compared to APN [47], DPPN is a much different and novel method with three main differences: a) 
instead of sharing prototypes for all images in APN, DPPN dynamically adjusts attribute prototypes 
according to different images. Specifcally, DPPN introduces attribute-related clues from the target 
image feature into attribute prototypes, so that the prototypes are more adapted to the target image and 
result in better attribute localization; b) different from APN’s averagely pooling local visual features 
into a global one, DPPN concatenates local features to represent an image, which better preserves 
attribute-region correspondence. The fnal representation of DPPN is made up of attribute-localized 
features during both training and inference, instead of regarding attribute localization as mere 
supervision during training in APN; and c) DPPN further exploits progressive category prototypes to 
repel visual representations from different categories, which enhances category discrimination. 

4 Experiments 

4.1 Experimental Settings 

Datasets. Four public GZSL benchmarks, i.e., Caltech-USCD Birds-200-2011 (CUB) [43], SUN 
[35], Animals with Attributes2 (AWA2) [24], and Attribute Pascal and Yahoo (aPY) [14], are adopted 
in this paper. CUB contains 11, 788 bird images in 200 species with 312 description attributes. SUN 
contains 14, 340 scene images in 717 classes with 102 attributes. AWA2 contains 37, 322 animal 
images in 50 classes with 85 attributes. aPY contains 15, 339 object images in 32 categories with 64 
attributes. 

Evaluation Metrics. The widely-used harmonic mean H = (2MCAu × MCAs)/(MCAu + 
MCAs) is used to evaluate GZSL performance. MCAs and MCAu are the Mean Class Top-1 
Accuracy for seen and unseen domains, respectively. 

Implementation Details. The input images are resized to 448 × 448 following [55, 45]. Random 
cropping and fipping are used for data augmentation. ResNet-101 [18] pretrained on ImageNet [12] 
is used as the backbone. A two-step training strategy is adopted, which trains DPPN with the fxed 
backbone and then fne-tunes the whole network on two 1080ti GPUs. Adam optimizer [22] is used 
with batch size of 64 and lr = 2e − 4. C = 512 since we use a conv. layer for dimension reduction 
after the backbone. Na is the number of attributes, which is 312, 85, 64, 102 for respective CUB, 
AWA2, aPY, and SUN. K = 3 and λ = 1.0. Nv will be discussed in the ablation study. 

4.2 Ablation Study 

Analysis of Attribute Localization and Category Discrimination. The core motivation of DPPN 
is to learn visual representations that simultaneously explore category discrimination and attribute-
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Method Lv2s Lcl Lsa K CUB aPY GFLOPs
M CAu MCAs H MCAu M CAs H 

Base-V2S 3 - 50.5 84.4 63.2 30.4 42.6 35.5 62.396 
+PCC 3 1 59.3 70.2 64.3 33.2 50.9 40.2 62.440 
+PAL 3 1 64.7 71.8 68.1 34.2 53.8 41.8 62.809 

+PCC&PAL 3 3 1 69.2 71.4 70.3 35.6 59.0 44.4 62.842 
+PCC&PAL 3 3 3 70.2 77.1 73.5 40.0 61.2 48.4 62.900 

Table 1: Effect of PCC and PAL on CUB and aPY datasets. GFLOPs is calculated with input size 
448 × 448 on the CUB dataset. 
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Figure 3: Visualization of attribute localization at different iterations. The localization gets more and 
more accurate as k increases from 0 to 2. 

region correspondence via the proposed PCC and PAL, thus we analyse how PCC and PAL affect 
GZSL performance in this part. For simple comparison, we set K = 1 in PCC and PAL. Results 
are listed in Table 1. "Base-V2S" is the baseline method trained by Lv2s in Eq. (1). "+PCC" 
adds PCC module to Base-V2S, which introduces stronger category discrimination constraint Lcl. 
We can observe that "+PCC" obtains 1.1% and 4.7% gains on H over "Base-V2S" on CUB and 
aPY. This is because that PCC explicitly pushes representations away from different categories via 
category prototypes, thus enlarging category margins for more accurate category classifcation and 
boosting GZSL. The third model "+PAL" replaces f(·) in "Base-V2S" with PAL, which enables 
visual representations with attribute localization ability. Compared with "Base-V2S", PAL module 
brings 4.9% and 6.3% gains on CUB and aPY. This derives from that PAL captures attribute-region 
correspondence by utilizing attribute prototypes to localize attribute-related local regions and produce 
attribute-specifc visual representations. Finally, "+PCC&PAL" simultaneously considers category 
discrimination and attribute localization by incorporating both PCC and PAL, which obtains 7.1% 
and 8.9% gains. This proves that both attribute-region correspondence and category discrimination 
are critical to GZSL and complementary to each other. 

Notably, PAL and PCC bring negligible additional computation, even when K = 3, because frd(·) in 
Eq. (6) controls the dimension of representation fk(X) to limit the computation burden. We visualize 
the difference of representation distribution between Base-V2S and our DPPN in the Appendix. 

Effect of Progressive Prototype Updating. DPPN progressively updates attribute and category 
prototypes to learn more transferable and distinctive representations. Here, we analyse how such a 
progressive learning strategy impacts the attribute localization ability and category recognition by 
evaluating varying K in PAL and PCC. The results are given in Fig. 4. 

As K rises from 1 to 3, H on all the four datasets gradually increases. The best H = 73.5%, 73.1%, 
48.4%, and 41.0% on CUB, AWA2, aPY, and SUN is obtained when K = 3. This demonstrates that, 
with category and attribute prototypes updated, the visual representations become more discriminative 
and transferable to the unseen categories. Here, to intuitively present the attribute localization 
progressively learned by PAL, we visualize the attribute localization results of PAL at different 
iteration k when setting K = 3. As shown in Fig. 3, the localization gets more and more precise 
as attribute prototypes gradually update. With progressively updated attribute prototypes, the PAL 
module can fnally accurately localize corresponding attribute-related visual regions. Besides, with 
updating, the prototype for the same attribute gets more specifc to the target image in the frst four 
columns, refecting that progressive updating can adapt prototypes according to different images. 
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Figure 4: Effect of progressive updating with varying K on four datasets. 

PAL PCC CUB aPY 
far(·) cat(·) sum(·) max(·) fcs(·) M CAu M CAs H M CAu MCAs H 

3 3 3 70.2 77.1 73.5 40.0 61.2 48.4 D

3 3 67.4 78.2 72.4 36.3 60.9 45.5 PPN 3 3 3 67.0 70.5 68.7 35.6 62.0 45.2 
3 3 3 70.4 73.0 71.7 37.3 59.4 45.8 
3 3 68.3 76.0 71.9 38.4 57.1 45.9 

Table 2: Evaluation of components in DPPN. 

This proves that attribute prototypes can capture the attribute-region correspondence, and progressive 
updating makes prototypes more specifc and distinctive. When K > 3, H drops. The reason may 
be that the over-updated prototypes become unstable and hard to train. K = 3 is a good trade-off 
between general knowledge of a whole dataset and specifc knowledge towards an image. Thus, we 
set K = 3 for the rest experiments. 

In summary, both quantitative and qualitative results demonstrate that progressive updating can 
improve attribute and category prototypes, which better captures attribute-region correspondence and 
category discrimination. 

Evaluation of Components in PAL. PAL aims to learn visual representations with accurate attribute 
localization. Thus, we evaluate two important components of PAL, i.e., far(·) in Eq. (5) and cat(·) 
in Eq. (6). The results are given in Table 2. far(·) is a refnement function between Pk and Pk+1 to 
improve prototype quality. As shown in the second row of Table 2, without far(·), H drops by 1.1% 
and 2.9% on CUB and aPY, respectively. This demonstrates that far(·) benefts attribute prototype 
updating, thereby boosting attribute localization ability. 

cat(·) is the aggregation function used to produce visual representation fk(X) by concatenating 
k k k kattribute prototypes Pk = {p1 , · · · , p }. Compared to summing {p1 , · · · , p } up or max pooling Na Na 

operation, cat(·) better preserves attribute-region correspondence. The third and fourth rows of Table 
2 show that H drops as replacing cat(·) with either summing up or max pooling. This proves that 
cat(·) benefts local correspondence preservation. 

Effect of fcs(·) in PCC. fcs(·) in Eq. (8) serves as a gating function to ease the training of category 
prototypes. In this part, we analyse the impact of fcs(·). In Eq. (8), fcs(·) removes redundancy in 
Ck . Without fcs(·), the category prototype updating becomes Ck+1 = Ck + W k+1, which passes all 
information in Ck to Ck+1 . The results are listed in the last row of Table 2. Without fcs(·), H drops 
by 1.6% and 2.5% on CUB and aPY. This proves that fcs(·) helps to ease the training process of 
PCC, which learns more discriminative visual representations. 

Effect of λ. λ is the hyper-parameter to balance Lcl. Here, we evaluate the effect of λ as shown 
in Fig. 5 (a) and (b). As λ rises from 0.0 to 1.0, i.e., category discrimination supervision Lcl is 
introduced into DPPN, H increases on both CUB and aPY. The best H is obtained when λ = 1.0. 
This proves the effectiveness of category discrimination brought by PCC. When λ > 1.0, H starts to 
drop. Thus, we set λ = 1.0 for better results. 

Effect of Nv . Nv is the dimension of fk(X) and Nv = D × Na. Na is the number of attributes, 
which are 312, 85, 64, 102 for CUB, AWA2, aPY, and SUN, respectively. Here, we set different D 
to evaluate the effect of Nv on recognition performance and calculation addition. Fig. 5 (c) shows 
the values of H as Nv varies. Fig. 5 (d) shows GLOPs addition over Nv = 512. When Nv is around 
2, 048, best performance is obtained with a relatively small calculation complexity addition. Thus, 
we set Nv = 2496, 2125, 2048, 2142 and D = 8, 25, 32, 21 for CUB, AWA2, aPY, and SUN, 
respectively. 
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Methods CUB AWA2 aPY SUN 
MCAu MCAs H MCAu MCAs H MCAu MCAs H MCAu MCAs H 

IZF-Softmax[39] 52.7 68.0 59.4 60.6 77.5 68.0 42.3 60.5 49.8 52.7 57.0 54.8 
TF-VAEGAN[34] 63.8 79.3 70.7 - - - - - - 41.8 51.9 46.3 G

E
N

.

E-PGN[50] 
GCM-CF[51] 

52.0 
61.0 

61.1 
59.7 

56.2 
60.3 

52.6 
60.4 

83.5 
75.1 

64.6 
67.0 

-
37.1 

-
56.8 

-
44.9 

-
47.9 

-
37.8 

-
42.2 

CE-GZSL[17] 63.9 66.8 65.3 63.1 78.6 70.0 - - - 48.8 38.6 43.1 

E
M

B
. 

MLSE[13] 
COSMO[4] 
PREN[48] 
VSE-S[55] 
LFGAA[29] 
AREN[45] 
CosineSoftmax[25] 
RGEN[46] 
DAZLE[20] 
APN[47] 
GEM-ZSL[30] 

22.3 
44.4 
32.5 
33.4 
43.4 
63.2 
47.4 
73.5 
56.7 
65.3 
64.8 

71.6 
57.8 
55.8 
87.5 
79.6 
69.0 
47.6 
60.0 
59.6 
69.3 
77.1 

34.0 
50.2 
43.1 
48.4 
56.2 
66.0 
47.5 
66.1 
58.1 
67.2 
70.4 

23.8 
-

32.4 
41.6 
50.0 
54.7 
56.4 
76.5 
60.3 
56.5 
64.8 

83.2 
-

88.6 
91.3 
90.3 
79.1 
81.4 
67.1 
75.7 
78.0 
77.5 

37.0 
-

47.4 
57.2 
64.4 
64.7 
66.7 
71.5 
67.1 
65.5 
70.6 

12.7 
-
-

24.5 
-

30.0 
26.5 
48.1 

-
-
-

74.3 
-
-

72.0 
-

47.9 
74.0 
30.4 

-
-
-

21.7 
-
-

36.6 
-

36.9 
39.0 
37.2 

-
-
-

20.7 
44.9 
35.4 

-
20.8 
40.3 
36.3 
31.7 
52.3 
41.9 
38.1 

36.4 
37.7 
27.2 

-
34.9 
32.3 
42.8 
44.0 
24.3 
34.0 
35.7 

26.4 
41.0 
30.8 

-
26.1 
35.9 
39.3 
36.8 
33.2 
37.6 
36.9 

DPPN 70.2 77.1 73.5 63.1 86.8 73.1 40.0 61.2 48.4 47.9 35.8 41.0 
Table 3: Results of GZSL on four classifcation benchmarks. Our DPPN belongs to embedding-based 
methods (EMB.). Generative methods (GEN.) utilize extra synthetic unseen domain data for training. 
The best result is bolded, and the second best is underlined. 

4.3 Comparison with State-of-the-Art Methods 

We compare DPPN with the state-of-the-art GZSL methods, of which the results are given in Table 3. 

Among the existing methods, APN [47] is the most related method which also utilizes visual 
prototypes to localize visual parts. Different from APN that counts on only sharing prototypes for all 
images, our DPPN adjusts attribute prototypes dynamically according to the target image and exploits 
category prototypes to enhance category discrimination. Thus, DPPN learns specifc and distinctive 
visual representations and surpasses APN by a large margin, i.e., 6.3%, 7.6%, and 3.4% for H on 
CUB, AWA2, and SUN datasets, respectively. APN does not provide codes and is approximately 
similar to PAL with K = 1. As shown in Fig. 3, it qualitatively implies that progressive updating 
attribute prototypes can learn visual representations with better attribute localization ability. Besides, 
DAZLE [20] uses dense attribute attention to focus on relevant regions, which is inferior to DPPN by 
15.4%, 6.0%, and 7.8% on CUB, AWA2, and SUN, respectively. This proves the effectiveness of 
designing progressive attribute and category prototypes in GZSL. 

Compared to other embedding-based methods, our method surpasses the best one by respectively 
3.1%, 1.6%, and 9.4% for H on CUB, AWA2, aPY datasets, and obtains comparable best H 
performance on SUN dataset. The results demonstrate that progressively exploring attribute-region 
correspondence and category discrimination can effectively enhance cross-domain transferability and 
category discriminability of visual representations. The reason for relatively small improvement on 
SUN may be that #categories is large while #images in each category is small in SUN, leading to 
diffculties for DPPN to learn accurate attribute localization and category discrimination. 

Compared to generative methods that utilize additional unseen category labels during training, DPPN 
can achieve comparable, even better results, especially on CUB and AWA2 datasets. This reveals 
that with the assistance of progressive attribute localization and category discrimination, DPPN can 
surpass generative methods without complex GAN training. 
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5 Conclusion 

In this paper, we propose a Dual Progressive Prototype Network (DPPN) to progressively explore both 
attribute-region correspondence and category discrimination for GZSL. Specifcally, DPPN constructs 
progressive prototypes for both attributes and categories. DPPN alternatively localizes attribute-
related visual regions and adjusts attribute prototypes towards target images, which improves attribute 
localization ability and cross-domain transferability of visual representations. Along with progressive 
attribute prototypes, DPPN progressively projects category prototypes to multiple spaces to enforce 
visual representations away from different categories, thus enhancing category discriminability. 
Extensive experimental results on four public datasets demonstrate the effectiveness of our DPPN. 

Acknowledgments and Disclosure of Funding 

This work was supported by National Natural Science Foundation of China (NSFC) under Grants 
61632006 and 62076230. 

References 
[1] Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classifcation. 

IEEE Transactions on Pattern Analysis and Machine Intelligence 38(7), 1425–1438 (2016) 

[2] Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for 
fne-grained image classifcation. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition. pp. 2927–2936 (2015) 

[3] Annadani, Y., Biswas, S.: Preserving semantic relations for zero-shot learning. In: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7603–7612 (2018) 

[4] Atzmon, Y., Chechik, G.: Adaptive confdence smoothing for generalized zero-shot learning. 
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 
11671–11680 (2019) 

[5] Ba, J.L., Swersky, K., Fidler, S., salakhutdinov, R.: Predicting deep zero-shot convolutional 
neural networks using textual descriptions. In: Proceedings of the IEEE International Conference 
on Computer Vision. pp. 4247–4255 (2015) 

[6] Bucher, M., Herbin, S., Jurie, F.: Improving semantic embedding consistency by metric learning 
for zero-shot classiffcation. In: Proceedings of the European Conference on Computer Vision. 
pp. 730–746 (2016) 

[7] Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifers for zero-shot learning. 
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 
5327–5336 (2016) 

[8] Chao, W.L., Changpinyo, S., Gong, B., Sha, F.: An empirical study and analysis of generalized 
zero-shot learning for object recognition in the wild. In: Proceedings of the European Conference 
on Computer Vision. pp. 52–68 (2016) 

[9] Chen, L., Zhang, H., Xiao, J., Liu, W., Chang, S.F.: Zero-shot visual recognition using 
semantics-preserving adversarial embedding network. In: Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition. pp. 1043–1052 (2018) 

[10] Chen, X., Lan, X., Sun, F., Zheng, N.: A boundary based out-of-distribution classifer for 
generalized zero-shot learning. In: Proceedings of the European Conference on Computer 
Vision. pp. 572–588 (2020) 

[11] Chou, Y.Y., Lin, H.T., Liu, T.L.: Adaptive and generative zero-shot learning. In: International 
Conference on Learning Representations (2021) 

[12] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical 
image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. pp. 248–255 (2009) 

10 



[13] Ding, Z., Liu, H.: Marginalized latent semantic encoder for zero-shot learning. In: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6191–6199 (2019) 

[14] Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1778– 
1785 (2009) 

[15] Ferrari, V., Zisserman, A.: Learning visual attributes. Advances in Neural Information Process-
ing Systems 20, 433–440 (2007) 

[16] Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al.: Devise: A deep 
visual-semantic embedding model. In: Advances in Neural Information Processing Systems. pp. 
2121–2129 (2013) 

[17] Han, Z., Fu, Z., Chen, S., Yang, J.: Contrastive embedding for generalized zero-shot learning. 
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 
2371–2381 (2021) 

[18] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778 
(2016) 

[19] Huang, H., Wang, C., Yu, P.S., Wang, C.D.: Generative dual adversarial network for generalized 
zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. pp. 801–810 (2019) 

[20] Huynh, D., Elhamifar, E.: Fine-grained generalized zero-shot learning via dense attribute-based 
attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
pp. 4483–4493 (2020) 

[21] Jiang, H., Wang, R., Shan, S., Chen, X.: Transferable contrastive network for generalized 
zero-shot learning. In: Proceedings of the IEEE International Conference on Computer Vision. 
pp. 9765–9774 (2019) 

[22] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference 
on Learning Representations (2015) 

[23] Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3174–3183 (2017) 

[24] Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by 
between-class attribute transfer. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition. pp. 951–958 (2009) 

[25] Li, K., Min, M.R., Fu, Y.: Rethinking zero-shot learning: A conditional visual classifcation 
perspective. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 
3583–3592 (2019) 

[26] Li, Y., Wang, D., Hu, H., Lin, Y., Zhuang, Y.: Zero-shot recognition using dual visual-semantic 
mapping paths. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. pp. 3279–3287 (2017) 

[27] Liu, L., Zhou, T., Long, G., Jiang, J., Dong, X., Zhang, C.: Isometric propagation network 
for generalized zero-shot learning. In: International Conference on Learning Representations 
(2021) 

[28] Liu, S., Long, M., Wang, J., Jordan, M.I.: Generalized zero-shot learning with deep calibration 
network. In: Advances in Neural Information Processing Systems. pp. 2005–2015 (2018) 

[29] Liu, Y., Guo, J., Cai, D., He, X.: Attribute attention for semantic disambiguation in zero-
shot learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 
6698–6707 (2019) 

11 



[30] Liu, Y., Zhou, L., Bai, X., Huang, Y., Gu, L., Zhou, J., Harada, T.: Goal-oriented gaze estimation 
for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. pp. 3794–3803 (2021) 

[31] Min, S., Yao, H., Xie, H., Wang, C., Zha, Z.J., Zhang, Y.: Domain-aware visual bias eliminating 
for generalized zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition. pp. 12664–12673 (2020) 

[32] Min, S., Yao, H., Xie, H., Zha, Z.J., Zhang, Y.: Domain-specifc embedding network for 
zero-shot recognition. In: Proceedings of ACM International Conference on Multimedia. pp. 
2070–2078 (2019) 

[33] Min, S., Yao, H., Xie, H., Zha, Z.J., Zhang, Y.: Domain-oriented semantic embedding for 
zero-shot learning. IEEE Transactions on Multimedia 23, 3919–3930 (2020) 

[34] Narayan, S., Gupta, A., Khan, F.S., Snoek, C.G., Shao, L.: Latent embedding feedback and 
discriminative features for zero-shot classifcation. In: Proceedings of the European Conference 
on Computer Vision. pp. 1–23 (2020) 

[35] Patterson, G., Hays, J.: Sun attribute database: Discovering, annotating, and recognizing scene 
attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
pp. 2751–2758 (2012) 

[36] Rahman, S., Khan, S., Porikli, F.: A unifed approach for conventional zero-shot, generalized 
zero-shot, and few-shot learning. IEEE Transactions on Image Processing 27, 5652–5667 (2018) 

[37] Reed, S., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fne-grained 
visual descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. pp. 49–58 (2016) 

[38] Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: 
International Conference on Machine Learning. pp. 2152–2161 (2015) 

[39] Shen, Y., Qin, J., Huang, L.: Invertible zero-shot recognition fows. In: Proceedings of the 
European Conference on Computer Vision. pp. 614–631 (2020) 

[40] Shigeto, Y., Suzuki, I., Hara, K., Shimbo, M., Matsumoto, Y.: Ridge regression, hubness, 
and zero-shot learning. In: Joint European Conference on Machine Learning and Knowledge 
Discovery in Databases. pp. 135–151 (2015) 

[41] Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-modal 
transfer. In: Advances in Neural Information Processing Systems. pp. 935–943 (2013) 

[42] Tong, B., Wang, C., Klinkigt, M., Kobayashi, Y., Nonaka, Y.: Hierarchical disentanglement of 
discriminative latent features for zero-shot learning. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. pp. 11467–11476 (2019) 

[43] Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 
dataset. In: California Institute of Technology. pp. 1–8 (2011) 

[44] Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B.: Latent embeddings for 
zero-shot classifcation. In: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition. pp. 69–77 (2016) 

[45] Xie, G.S., Liu, L., Jin, X., Zhu, F., Zhang, Z., Qin, J., Yao, Y., Shao, L.: Attentive region em-
bedding network for zero-shot learning. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. pp. 9384–9393 (2019) 

[46] Xie, G.S., Liu, L., Zhu, F., Zhao, F., Zhang, Z., Yao, Y., Qin, J., Shao, L.: Region graph 
embedding network for zero-shot learning. In: Proceedings of the European Conference on 
Computer Vision. pp. 562–580 (2020) 

[47] Xu, W., Xian, Y., Wang, J., Schiele, B., Akata, Z.: Attribute prototype network for zero-shot 
learning. In: Advances in Neural Information Processing Systems. pp. 21969–21980 (2020) 

12 



[48] Ye, M., Guo, Y.: Progressive ensemble networks for zero-shot recognition. In: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 11728–11736 (2019) 

[49] Yu, Y., Ji, Z., Fu, Y., Guo, J., Pang, Y., Zhang, Z.: Stacked semantic-guided attention model 
for fne-grained zero-shot learning. In: Advances in Neural Information Processing Systems. p. 
5998–6007 (2018) 

[50] Yu, Y., Ji, Z., Han, J., Zhang, Z.: Episode-based prototype generating network for zero-shot 
learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
pp. 14035–14044 (2020) 

[51] Yue, Z., Wang, T., Zhang, H., Sun, Q., Hua, X.S.: Counterfactual zero-shot and open-set 
visual recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. pp. 15404–15414 (2021) 

[52] Zhang, H., Long, Y., Guan, Y., Shao, L.: Triple verifcation network for generalized zero-shot 
learning. IEEE Transactions on Image Processing 28(1), 506–517 (2019) 

[53] Zhang, H., Koniusz, P.: Zero-shot kernel learning. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. pp. 7670–7679 (2018) 

[54] Zhang, L., Xiang, T., Gong, S.: Learning a deep embedding model for zero-shot learning. 
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 
2021–2030 (2017) 

[55] Zhu, P., Wang, H., Saligrama, V.: Generalized zero-shot recognition based on visually se-
mantic embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. pp. 2995–3003 (2019) 

13 


	Introduction
	Related Work
	Dual Progressive Prototype Network
	Problem Formulation
	Progressive Attribute Localization
	 Progressive Category Classification
	Overall Objective
	Discussion

	Experiments
	Experimental Settings
	Ablation Study
	Comparison with State-of-the-Art Methods

	Conclusion
	Acknowledgements

