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Abstract: General-purpose pre-trained models (“foundation models”) have en-
abled practitioners to produce generalizable solutions for individual machine
learning problems with datasets that are significantly smaller than those required
for learning from scratch. Such models are typically trained on large and diverse
datasets with weak supervision, consuming much more training data than is avail-
able for any individual downstream application. In this paper, we describe the
Visual Navigation Transformer (VINT), a foundation model that aims to bring
the success of general-purpose pre-trained models to vision-based robotic navi-
gation. ViNT is trained with a general goal-reaching objective that can be used
with any navigation dataset, and employs a flexible Transformer-based architec-
ture to learn navigational affordances and enable efficient adaptation to a variety
of downstream navigational tasks. ViNT is trained on a number of existing naviga-
tion datasets, comprising hundreds of hours of robotic navigation from a variety of
different robotic platforms, and exhibits positive transfer, outperforming special-
ist models trained on narrower datasets. ViNT can be augmented with diffusion-
based goal proposals to explore novel environments, and can solve kilometer-scale
navigation problems when equipped with long-range heuristics. ViNT can also be
adapted to novel task specifications with a technique inspired by prompt-tuning,
where the goal encoder is replaced by an encoding of another task modality (e.g.,
GPS waypoints or turn-by-turn directions) embedded into the same space of goal
tokens. This flexibility and ability to accommodate a variety of downstream prob-
lem domains establish ViNT as an effective foundation model for mobile robotics.
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Figure 1: Overview of the VINT foundation model. ViNT generalizes zero-shot across environments and
robot embodiments, and can be directly applied to tasks including exploration and navigation around humans.
ViNT can also be fine-tuned with a small amount of data to expand its capabilities to new tasks.

1 Introduction

Recently, machine learning methods have achieved broad success in natural language processing [1],
visual perception [2—4], and other domains [5, 6] by leveraging Internet-scale data to train general-
purpose “foundation” models that can be adapted to new tasks by zero-shot transfer, prompt-tuning,
or fine-tuning on target data [7—10]. Although this paradigm has been successful in many domains,
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it is difficult to apply in robotics due to the sheer diversity of environments, platforms, and applica-
tions. In this paper we ask the question: what is required of a foundation model for mobile robotics?

In this paper, we define a robot foundation model as a pre-trained model that can be (i) deployed
zero-shot in novel, useful settings (e.g., different sensors, robot embodiments, environments etc.),
and (ii) adapted to a downstream task of choice (e.g., different objectives, goal specification types,
behaviors etc.). We specifically consider the problem of visual navigation, where the robot must
navigate its environment solely using egocentric visual observations. A general pre-trained robot
navigation model should enable a wide range of navigation applications, readily allow fine-tuning
to downstream tasks, and generalize to a broad range of environments and robotic platforms. Such
a model should provide a broadly capable navigation policy on top of which applications to specific
domains can be constructed, giving a base level of generalization and capabilities to new robotic
platforms in zero shot that can be further improved after fine-tuning with a small amount of data.

To this end, we propose the Visual Navigation Transformer, or VINT: a cross-embodiment foun-
dation model for visual navigation with strong zero-shot generalization. We train VINT to reach
goals specified by camera images, providing a very general pre-training objective that can be ap-
plied to almost any mobile robot dataset. We propose a novel exploration algorithm for the visual
navigation paradigm using a diffusion model to propose short-horizon goals, and demonstrate that it
enables VINT to navigate in novel environments. ViNT can control new robots in zero-shot, explore
previously unseen environments, perform indoor mapping, and navigate kilometer-scale outdoor
environments without interventions. Furthermore, we show that VINT can be fine-tuned on a small
amount of data to achieve high performance with new task specification modalities — such as GPS
waypoints or high-level routing commands — allowing ViNT to serve as a foundation for a wide va-
riety of navigation applications. Lastly, we qualitatively analyze some emergent behaviors exhibited
by ViNT, such as implicit preferences and navigation around dynamic pedestrians.

We hope that VINT represents a step towards such general-purpose robot foundation models that can
be deployed on a wide range of robots, and on a wide range of tasks, and serve as a foundation for
diverse mobile robotic applications. Model weights for VINT as well as training and deployment
code will be released on our project page: general-navigation-models.github.io.

2 Related Work

Learning from large, diverse robotic datasets has been studied for various robotic applications where
data sharing across similar robots provides a larger training set for more generalizable models [11-
13]. However, for applications in mobile robotics, with varying dynamics and camera configurations
(e.g., focal length, field of view, and extrinsics), current approaches tend to rely on learning either
from small real-world datasets, which are only representative of a single robotic platform, or from
simulation, with paired robot and environment models to transfer learned policies [14—16]. Instead,
our paper follows the paradigm of learning navigation behavior from data collected across multiple
different real-world robotic systems [17—-19], while focusing on training a foundation model that can
be adapted for a variety of downstream tasks in zero shot or with small amounts of data.

Our goal is to train an effective visual navigation policy that can solve a range of downstream tasks,
such as navigating to GPS goals [20], goal images [21], and skill-conditioned driving [22].Following
a large body of research in visual navigation, we use a combination of topological graphs for main-
taining a spatial representation of the environment and learned policies for low-level control [23—
28], and use learned heuristics to guide the robot in novel environments [15, 29]. But unlike these
works, our goal is to train a single generalist model rather than specialist solutions to each of these
problems, showing how a single high-capacity model can be adapted for diverse tasks.

The closest related works to VINT are RT-1, 120, and GNM [15, 19, 30], which study broad gen-
eralization across environments and embodiments for robots deployed in real-world settings. While
RT-1 demonstrates impressive performance in following diverse instructions, our focus is on adapt-
ing a single model across many robots to solve different tasks, by fine-tuning with small amounts of
data. 120 and related efforts [15, 16] show impressive transfer from simulation to real-world envi-
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Figure 2: VINT Model Architecture. ViNT uses two EfficientNet encoders v, ¢ to generate input tokens to a
Transformer decoder. The resulting sequence is concatenated and passed through a fully-connected network to
predict (temporal) distance to the goal as well as a sequence of H = 5 future actions.

ronments, but we emphasize that our aim is orthogonal to the specific choice of algorithm: we focus
on learning a capable navigation policy that can be efficiently adapted to solve different downstream
tasks. GNM [19] demonstrates policy learning from heterogeneous RGB datasets, but focuses on the
singular task of reaching image goals in the zero-shot setting. Instead, ViNT trains a single generalist
policy with an emphasis on adaptation to new embodiments and tasks in downstream applications,
though it can also be used zero-shot to great effect (Sec. 6.1).

3 The ViNT Model

Our model is trained for image-goal navigation, providing general navigational capabilities that can
then either be utilized directly, or serve as a pre-trained foundation for downstream fine-tuning with
other task specifications. In the image-goal navigation task, the robot is tasked with navigating to
a subgoal specified by an image observation s (i.e., the robot’s observation at the goal). Unlike
alternative mechanisms for goal specification such as PointGoal [31], GPS navigation, or semantic
objectives [32], a model can be trained for image-goal navigation with minimal assumptions, uti-
lizing any data that contains videos and actions, without requirements on ground-truth localization,
semantic labels, or other metadata. This makes it practical to train on a large and diverse dataset
sourced from many different robots, facilitating broad generalization.

ViNT takes as input current and past visual observations o;_ p.; and a subgoal image o, and predicts
(i) the number of time steps needed to reach the subgoal (the dynamical distance), and (ii) a sequence
with length H of future actions leading towards the subgoal. Our 31M-parameter model, ViNT, is
built on the Transformer architecture [33] and is optimized for: (i) fast and efficient inference on
resource-constrained robots, and (ii) the ability to prompt and fine-tune for downstream tasks. We
initialize all networks from scratch and train them end-to-end with a maximum likelihood objective.
The model architecture is summarized in Figure 2, and described in detail in Appendix A.

Tokenization: The ViNT architecture (Fig. 2) first tokenizes its inputs into an embedding of size
dmodel = 512. VINT independently tokenizes current and P = 5 past visual observations by encod-
ing them with an EfficientNet-BO [34] model, which takes 85 x 64 x 3 images as input and outputs
a flattened feature vector ¢ (o;) from the final convolutional layer [30].

Goal fusion: We found that naively extracting features from the goal image ¢(o,) using an Effi-
cientNet encoder ¢ led to poor performance, often ignoring the goal entirely (see Appendix A). We
hypothesize that effective features for image-based goal-reaching tasks are often relative, encoding
the difference between the current observation and the goal rather than an absolute representation of
the goal itself. Hence, we use a separate goal fusion encoder ¢(o;, 05) to jointly encode the current
and goal observations. We stack the two images along their channel dimensions, pass them through
a second EfficientNet-B0 encoder, and flatten to obtain the goal token.

Transformer: The P + 2 observation and goal tokens are combined with a positional encoding and
fed into a Transformer backbone f. We use a decoder-only Transformer with n;, = 4 multi-headed
attention blocks, each with ny = 4 heads and drg = 2048 hidden units.
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Figure 3: Long-horizon navigation in unseen environments with VINT. We use physical search with a
topological graph-based planner to explore the environment. An image-to-image diffusion model proposes
diverse exploration targets which are spatially grounded using ViNT (yellow), and scored using a goal-directed
heuristic h. Subgoals are added to the topological graph M and executed using the VINT policy.

Diffusion

Training data: We train ViNT using a large-scale dataset of heterogeneous navigation trajectories
from a diverse set of environments and robotic platforms with varying dynamics, camera parame-
ters, and behaviors. The training dataset contains over 100 hours of real-world trajectories sourced
entirely from existing datasets, spanning 8 distinct robotic platforms with varying speeds and dy-
namics. For more details about the dataset, see Appendix C.

Embodiment-agnostic action space: To effectively train a single model across robots of varying
sizes, speeds, and dynamics, we follow Shah et al. [19] and choose an embodiment-agnostic action
space for ViINT. To abstract away low-level control, ViNT uses relative waypoints as its action space
a; to account for the large variance in speeds and sizes of the robots, we normalize these waypoints
by scaling them according to the robot’s top speed. During deployment, a robot-specifc controller is
used to un-normalize and frack these waypoints using low-level control.

4 Long-Horizon Navigation with VINT

While the goal-conditioned policy learned by ViNT captures a general understanding of navigational
affordances and obstacles, it has limited applicability on its own. Many practical tasks are either not
defined by goal images, or require a much longer horizon than what ViNT directly supports. We
apply ViNT to several downstream applications by combining it with an episodic memory formed
by a topological graph, which provides short-horizon subgoals for reaching faraway locations. In
previously unseen environments, we can further augment this graph-based planner with exploratory
subgoal proposals, which can drive VINT to explore a new environment and discover a path to
the goal. We consider multiple such proposal mechanisms and find that maximum performance is
attained by an image diffusion model that samples diverse future subgoal candidates conditioned on
the current observation.

These subgoals are scored with a goal-directed heuristic to identify the best subgoal that makes
progress towards the goal using a process akin to physical A* search [29]. Past observations and
unexplored frontiers are stored as nodes in a topological graph, with their connectivity determined
by the distances predicted by ViNT. During exploration, we build this topological graph on-the-fly
as the robot explores the environment. During later deployments it may be used for discovering
shortcuts to arbitrary goals in the environment. We first describe the high-level algorithm that plans
on top of subgoal candidates, and then discuss the process for obtaining these subgoal candidates.

4.1 High-Level Planning and Exploration

Let’s assume that we have access to subgoal candidates o5, € S available to VINT for planning. We
incorporate these subgoal candidates into an exploration framework for goal-directed exploration in
novel environments, where the user provides a high-level goal G, which may be arbitrarily far away.
We largely follow prior work [29], but swap out the learned models with VINT and the diffusion
model. We summarize the system here, and provide a more complete discussion in Appendix B.3.

We construct a topological graph M online to act as episodic memory, with each node as an in-
dividual subgoal observation and edges representing paths between two subgoals, added when the
path is taken by the robot, or the model predicts a subgoal to be reachable from another node. We
frame goal-directed exploration as a search problem, where the robot incrementally builds M while
searching for the goal. To guide search towards the goal, the robot uses a goal-directed heuristic



h(ot, 0s,, G, M, C) to score subgoal candidates according to their likelihood of reaching the goal,
given additional context C' — for example, a floor plan or satellite imagery [15, 29]. This heuristic
may be geometric (e.g., Euclidean distance) or learned (see Appendix B.3).

During deployment in a new environment, the robot uses the diffusion model to generate subgoal
candidates S from o, spatially grounds them using ViNT, and scores them using the goal-directed
heuristic A(.). The robot then selects the best subgoal o+ according to this heuristic using an A*-like
planner, adds it to M, and drives towards it using ViNT (Figure 3). During subsequent deployments
in the same environment, the robot can use M to discover shortcuts to arbitrary goals in the environ-
ment. Please see Appendix B.3 for more details about the planner and heuristics. In our experiments,
we consider two candidate search heuristics: a geometric heuristic based on positions of the robot
and the goal, and a learned heuristic based on additional context in the form of a satellite image.

4.2 Subgoal Generation with Diffusion

The physical search algorithm presented above relies on the ability to propose subgoal candidates
S that are both diverse and reachable from the current observation of the robot o;. This amounts to
sampling from a high-dimensional, multimodal distribution of RGB images.

To do so, we train a conditional generative model g(o,|o:) on the VINT training data. Specifically,
we apply an image-to-image diffusion model [35, 36], a generative model class that is well-suited for
producing diverse samples over high-dimensional spaces such as RGB images. We train the model
using randomly-sampled future observations from trajectories in the ViNT dataset (Appendix B.2),
and sample K subgoal candidates S = {s1, ..., sk} from the model at inference time.

However, these subgoal generations are not spatially grounded: they do not include an actionable re-
lationship to o;. We ground these candidates by using ViNT to compute temporal distances d(s;, 0;)
and action rollouts a(s;, 0;), yielding a set of grounded subgoals as in Fig. 14. While the samples
generated by the diffusion model do not necessarily match any real observation (see Figure 3), they
preserve sufficient relative features from o; to be plausible, and we find that VINT generalizes well
to generated subgoals. We further study the behavior of this diffusion model in Section F.

5 YVINT: A Foundation Model For Downstream Tasks

Beyond its core functionality as an image goal-conditioned model, we show that the strong naviga-

tional priors learned by VINT can be adapted to a variety of downstream tasks, beyond image goals,

by fine-tuning part or all of the model in novel environments or with new modalities of data.

Full model fine-tuning: While VINT demonstrates strong zero-shot general- T &

ization to new environments and robots, we can further improve on-task perfor- I"Hﬁ “turn left”

mance by fine-tuning the entire model with the same objective but using on-task —
qb —

data. This allows ViINT to quickly learn new skills, forming a continually im-
proving model. ViNT can master new environments and embodiments with as

little as 1 hour of navigation data, transferring the capabilities of the original

model to a new setting without retraining from scratch. © o [
Adapting to new modalities: While specifying image goals gives a general g ]
pre-training objective, VINT can easily be adapted to other forms of goal- T;:]

specification by learning a “soft prompt” mapping from the desired goal modality

to the ViNT goal token [10]. We build on the Transformer architecture’s ability to  Figure 4: Adapt-
attend to multimodal inputs projected into a shared token space [37, 38]. Givena 11 VINT to differ-
subgoal o in a new modality (such as 2D coordinates or routing directions [22]), f;iaﬁﬁa a;)alfstglli nﬁ
we train a small neural network ¢ that maps the subgoal to this shared token space as shown in
Figure 4, and replace ¢(o¢, 0s). This allows adaptation to new tasks with minimal data, while still

leveraging the performance and generalization of ViINT. Appendix B.4 includes additional details.
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Table 1: ViNT paired with our physical search algorithm consistently outperforms baselines for the task of
undirected goal-reaching in indoor and outdoor environments (leff). By effectively planning over diffusion
subgoal proposals, ViNT is able to find an efficient path to the goal. Other baselines struggle to explore large
indoor environments, shown by trajectories overlaid on an indoor floor plan (right).

6 Real-world Evaluation

We deployed our VINT foundation model on five distinct robotic platforms, including a drone, a
quadruped, and two other novel robots which are not present in the training data. We designed our
experiments to answer the following questions:

Q1. Can ViNT efficiently explore previously unseen environments and incorporate heuristics?
Q2. Does ViNT generalize to novel robots, environments, and obstacles?
Q3. Can ViNT be fine-tuned to improve performance in out-of-distribution environments?

Q4. Can the ViNT policy be adapted to handle new task specification and modalities?

Please see Appendix D for more details on platforms used in the training data and in evaluation.

6.1 Navigation Performance

Towards understanding Q1, we deploy our full graph-based navigation pipeline (Section 4.1) in a
variety of challenging indoor and outdoor environments, previously unseen in the training data. We
evaluate the performance of VINT on two challenging tasks: (i) coverage exploration, where the
objective is maximally explore an environment in search of a goal whose location is unknown, and
(ii) guided exploration, where the objective is to reach a goal using contextual information such
as GPS coordinates or a satellite image (see Figure 11 for task examples). We compare VINT
to a variety of baselines, including end-to-end policies trained with imitation or RL [15, 39], a
prior graph-based approach using a VIB for exploration [40], and an ablation of ViNT that samples
random images from the training set to use as goals rather than generating subgoals with a diffusion
model. See Appendix E.1 for details about the experimental setup.

For the coverage exploration task, the agent is placed in an unknown environment and tasked with
exploring the environment maximally in search of the goal without any additional cues. Table 1
summarizes the success rates for this task in indoor and outdoor environments. We find that, while
end-to-end baselines avoid collisions with their surroundings, they fail to explore new areas and
often get stuck in small areas of the environment. Graph-based methods avoid this trap by explic-
itly reasoning about coverage with the search objective, leading to a high success rate for ViNT.
Qualitative analysis (Table 1-right) shows that planning over the diverse subgoals proposed using
diffusion leads to more efficient paths, whereas other baselines take winding paths while exploring.
Figure 11 illustrates the egocentric rollouts of the coverage exploration task in challenging indoor
environments. VINT-R performs respectably despite the lack of valid subgoal proposals.

This observation extends to the position-guided navigation task (Table 9), where the robots are
tasked with reaching a 2D goal position in a previously unseen environment. The robots have ac-
cess to onboard wheel odometry (indoors), GPS coordinates (outdoors), or passive satellite imagery
(outdoors), to track their position and use as a goal-directed heuristic. Compared to a baseline of the
previous state of the art [29], we find that the various sub-goal predictions from the diffusion model



paired with the graph-based scoring scheme lead to a higher success rate and a greater distance trav-
eled without collisions. ViNT is also more effective at avoiding collisions in crowded indoor spaces,
and more efficient at reaching goals in outdoor spaces (captured by the SPL metric), owing to the
implicit affordances and preferences learned by the large-scale pre-training (see further analysis in
Section F. VINT also requires fewer interventions, observed by the larger distance before observed
collisions. Figure 12 illustrates a rollout of physical search in an outdoor environment with ViINT
using satellite image as context (also see Figure 11).

6.2 Zero-Shot Generalization: a Single Policy to Drive Any Robot

Towards answering Q2, we deploy the same pre-trained ViINT policy on four distinct robotic plat-
forms without any fine-tuning for the task of undirected exploration. We report the maximum dis-
placement of the robot (in meters) from its starting position, without interventions, as a proxy for
reaching arbitrarily distant goals in complex environments in Table 2. Most notably, VINT success-
fully generalizes zero-shot to control a Go 1 quadruped, which does not appear during training.

We compare ViINT trained across all the com-

bined datasets and robots to the best single-robot MOdel LoCoBot Gol Vizbot Jackal
baseline — a model trained using data only from éllf\lf‘lé\ze‘[lfg]'f"’t 28 182 ‘2‘8 ‘1‘2‘71
the target environment — as well as the GNM VINT 120 45 110 438

model [19] trained on all datasets. We observe that
policies trained across robot embodiments can not Table 2: In coverage tasks, VINT drives dif-
only match, but also outperform, single-robot mod- ferent robots for 100s of meters (reported maxi-
els across all the embodiments we studied. We Mum displacement without intervention), beating
also find that the larger capacity of VINT leads to lower-capacity models (GNM) and specialist mod-
. R els trained on a single robot dataset.

improved generalization compared to the smaller

GNM model, especially on robots that do not appear in the training dataset (e.g., Go 1). Crucially,
we also find that VINT demonstrates positive transfer for in-domain robots (Vizbot), greatly outper-
forming a specialist model trained on only the target robot and setting, an emergent phenomenon
not present in smaller models. This indicates that the model generalizes between tasks to improve
performance, a key property of a foundation model.

6.3 Broader Generalization via Fine-Tuning

To answer Q3, we consider the problem of fine-tuning ViNT in the low data regime. In this setting,
the entire VINT model is fine-tuned end-to-end with a reduced learning rate of 1 x 10~* over ne, = 5
epochs (Section 5). We assume access to a small amount of on-task data (at most 5 hours, with
successful results in 1-2 hours of data), and study the the efficiency of learning from subsets of this
data using ViNT. We study fine-tuning for the task of autonomous driving in the CARLA simulator
for two reasons: (i) the simulated CARLA environment is perceptually distinct from the real-world
data used to train VINT (Fig. 13), and (ii) the on-road driving task requires very specific semantic
behavior, i.e., driving in a lane and making smooth turns, that is not present in our real-world training
data. We show that ViINT can be fine-tuned on a small amount of data (under 1 hour) to achieve
strong performance by effectively leveraging the navigational priors encoded in the model.

Table 3 summarizes our findings. We report fractional progress towards the goal as “success”, and
the fraction of trajectories where the agent drives within the driving lane as “in lane”. While pre-
trained visual representations significantly improve task performance over a policy trained entirely
from scratch, we observe that the learned policies suffer from frequent collisions and poor perfor-
mance. GNM [19] outperforms these baselines due to its strong navigation prior, but the lower-
capacity model is unable to generalize fully to the task. ViNT, on the other hand, is able to achieve
strong performance, achieving substantially higher success rate than other baselines. Sweeping over
fine-tuning dataset size (Table 3-right) shows that VINT achieves strong performance with under 1
hour of fine-tuning data, demonstrating its ability to efficiently generalize to new environments.
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ImageNet 0.22 0.71 0.59 0.45 b
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VINT 0.82 0.82 0.89 0.72 o = M &) %0 100

Fine-tuning Data (%)

Table 3: Left: VINT can be fine-tuned end-to-end (Images) or adapted to downstream tasks (Positions and
Routing), and outperforms training from scratch and other pre-training methods. Right: VINT can transfer
navigational affordances to novel tasks (40% success without fine-tuning), and efficiently masters the task
(80% success) with less than 1 hour of fine-tuning data.

6.4 Adapting ViNT to Downstream Tasks

To evaluate Q4, we investigate whether ViINT can serve as a foundation model for a broader range
of downstream tasks by considering goal modalities beyond subgoal images (see Section 6.4). We
consider the same CARLA driving task but with two different high-level planners: (i) a position-
based planner that commands a sequence of GPS waypoints, and (ii) a routing planner with similar
functionality to Google Maps that commands high-level navigation directions (left/right/straight) to
the policy [22]. We compare the pre-trained navigational priors learned by ViNT to the baselines
discussed earlier, corresponding to pre-trained visual representations and policies, each adapted to
the downstream task using the same on-task data (see Appendix E.3 for more details).

Table 3 summarizes our results for the two tasks. We again find that general pre-trained visual rep-
resentations, such as ImageNet or VC-1, are not sufficient to extract navigational affordances for
challenging downstream tasks, suggesting that effective generalization requires more than general
visual representations [41, 42]. We also find that unlike fine-tuning, GNM struggles with the adap-
tation task, suggesting that the architecture and increased capacity of ViINT are essential for broad
generalization and adaptation.

7 Discussion

We presented ViNT, a robot foundation model that is trained for a generic image-goal navigation task
on diverse data from many different robots, and can then support different navigation functionalities.
ViINT can be deployed for long-horizon navigation in combination with a high-level planner, explore
new environments with goals proposed by a diffusion model, be fine-tuned to new domains (such as
autonomous driving), and be adapted to new task specification methods, such as turn-by-turn routing
commands. Our results show that ViNT can successfully generalize across robots and environments,
outperforms prior navigational models, can be efficiently fine-tuned to new domains and tasks, and
shows promising emergent behaviors such as navigating through dynamic pedestrians.

Limitations and Future Work

As with many large-scale models, ViINT carries a heavier computational burden at inference time,
which can present a challenge for power-constrained platforms such as quadcopters. While our de-
sign aims to enable efficient inference, our Transformer-based model is still significantly costlier to
run at deployment time than simpler feedforward convolutional networks. Additionally, although
ViNT generalizes effectively across robots in our experiments, it assumes a degree of structural sim-
ilarity. More broadly, while ViNT illustrates the promise of a general-purpose and broadly reusable
navigational foundation model, we believe that the most exciting developments for general-purpose
cross-robot models are still ahead: as larger and larger multi-robot datasets are assembled, perhaps
we will see even broader generalization and more flexible specification with increasingly powerful
and general-purpose robotic models. We hope that ViNT represents a step in this direction.
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Appendix

A VINT Model Architecture

Table 4 shows the VINT model architecture in detail. We use all 18 layers of the EfficientNet-BO
convolutional encoder [34], initialized from scratch, to tokenize the observation and subgoal images
into 512-dimensional embeddings each. We utilize an observation encoder to tokenize the past
and current observation images and a joint observation and goal encoder to tokenize the subgoal
image fused with the current observation image channel-wise. For tokenizing the joint observation
and subgoal token, images o, and og are concatenated along their channel dimension, yielding a
6 x 85 x 64 tensor per training data point.

Layer Input [Dimensions] Output [Dimensions]  Layer Details

1 o¢, 05 [64, 85, 3] 17 (64, 85, 6] Concatenate observations and goal
2 17 [64, 85, 6] E; [1,1000] Goal EfficientNet encoder

3 ort—p [P+1, 64, 85, 3] Eyi.i—p [P+1,1000] Context EfficientNet encoder

4 E; [1, 1000] Ef/ [1,512] Goal embedding compression

5 FE:.ip [P+1, 1000] E;:t_ p [P+1,512] Context embedding compression
6 E,, p[P+1,512], E{ [1,512] S [P+2,512] Concatenate

7 S [P+2, 512] S1,32] Feed into Transformer f

8 S [1,32] d Predict temporal distance d

9 S [1, 32] a, [1, T, 4] Predict future actions a

Table 4: Architectural Details of VINT The inputs to the model are RGB images 04.4—p € [0, 1]7*3x85%64
and o5 € [0, 1)3%8%%64 representing the current, past, and goal images. We seek to predict a H future actions
@ and the temporal distance d.

A.1 Goal-Conditioning Architectures

We considered different mechanisms for conditioning ViNT with features from the subgoal image,
as illustrated in Figure 5.

1. Late Fusion: Extract the observation and goal features independently and fuse them in
the multi-head attention layers. To achieve this effect, we avoid any channel-wise con-
catenation between any of the observation and goal images before inputting them into the
model.

2. Early Fusion: Jointly extract observation (context) and goal features and fuse the observa-
tion and goal features before we tokenize them. We achieve this by concatenating the goal
image with every observation image along the channel dimension. We remove the goal
token in this setup since information about the goal is already in every observation token.

3. FiLM (RT-1): Following the FiILM+EfficientNet encoder (Brohan et al. [30]), encode each
observation image separately. For conditioning on visual goals, we replace the “Universal
Sentence Encoder” with an EfficientNet encoder. We remove the goal token in this setup
since information about the goal is already in every observation token.

Our observations are summarized in Table 5. While FILM works well for language, we found that
training was unstable for image-based navigation tasks. Instead, we directly encode each observa-
tion independently and pass them to a Transformer. Ideally, the goal would be encoded separately
and then combined with the observations in the Transformer layers, allowing the entire goal encoder
to later be swapped out for different goal modalities. Unfortunately, we found that this approach
(which we term “late fusion”, as the goal and observations are not fused until after encoding them)
performs poorly: in image-based navigation, it is the relative features between the observation and
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Figure 5: Different goal-conditioning architectures considered for ViNT.

Method Performance  Adaptation
Late Fusion X v
Early Fusion v X
FiLM (RT-1) [30] X v
VINT 4 v

Table 5: Comparing merits (v') and demerits (X) of different goal-conditioning architectures. While “Early
Fusion” works the best for the core navigation task, it does not support downstream adaptation (Section 5).
“Late Fusion” is ideal for adaptation, but does not perform well for our tasks. Our goal fusion architecture is
able to closely match the performance of early fusion, while also supporting adaptation.

goal images that are important, rather than absolute goal features. An “early fusion” architecture
would fuse the goal image with all the past and current observation images immediately, which
allows for learning joint features between the goal image and current state. However, this architec-
ture is inflexible as the observation encoder would have to be learned entirely from scratch when
adapting to a new goal modality. ViNT avoids this issue by using two distinct types of encoders:
an observation-only encoder used to tokenize each observation image, and a joint observation and
goal encoder that should extract relative goal features. This latter encoder can be replaced to allow
alternative goal specifications in downstream tasks, as described in Appendix B.4. Specifically, we
adapt to new tasks by learning the final token conditioned on the new task goal information in place
of the joint observation/goal encoder.

B Implementation Details

B.1 Training VINT

See Table 6 for a detailed list of hyperparameters for training the ViNT foundation model.!

B.2 Subgoal Diffusion

For generating subgoals, we use an image-to-image diffusion model. It takes an image o; as input
and produces samples from g(os, | o), where o, are candidate subgoal images reachable from o;.
To produce training pairs for the diffusion model, we first select o; uniformly at random from the
training data and then select o, to fall between 5 and 20 timesteps in the future from o;.

Following Saharia et al. [36], we implement image conditioning as simple channel-wise concatena-
tion to the U-Net input. We use the Flax U-Net implementation from the diffusers library [45] with
textual cross-attention removed since we do not condition on text inputs.

We use the continuous-time diffusion formulation from Kingma et al. [46] with a fixed linear noise
schedule rather than a learned one. Also unlike Kingma et al. [46], we use the unweighted training
objective, called Lgmpie in Ho et al. [35, Equation 14] and Kingma et al. [46, Appendix K]. We

"We used a variety of workstations equipped with different GPU configurations over the course of this
research, including 2x4090, 3x Titan Xp, 4xP100, 8 x 1080Ti, 8 x V100, and 8 x A100. With the model archi-
tecture fixed, the batch size and training time varies significantly across these devices, and the entry in Table 6
is representative of our most common training configuration.
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Noise Schedule

linear

Hyperparameter Value Hyperparameter Value
VINT Model Diffusion Training
# Parameters 31M Dropout 0.1
RGB Resolution 85 x 64 Batch Size 128
Encoder EfficientNet-BO Optimizer AdamW
Token Dimension 512 Warmup Steps 1000
Attn. hidden dim. 2048 Learning Rate le-4
# Attention Layers nr, 4 LR Schedule Cosine
# Attention Heads ngy 4 Adam (1 0.95
Temporal Context P 5 Adam [ 0.999
Prediction Horizon H 5 Adam € le-8
MLP layers (256, 128, 64, 32) Weight Decay 0.001
ViINT Training EMA Inv. Gamma 1.0
# Epochs nep 30 EMA Power 0.75
Batch Size 300! EMA Max Decay 0.9999
Learning Rate 5x 1074 CFG Mask Proportion 0.2
Optimizer AdamW [43] Train Steps 250,000
Warmup Epochs 4 Training Time 30 hours
LR Schedule Cosine Compute Resources v4-8 TPU board
Scheduler Period 10 Diffusion Sampling
Compute Resources 8x V100 ' Sampler DDIM [44]
Training Time 30 hours ! SD;?rIlI;/lIir?g Steps ;)0%
3 . —4 S
Dt LR 1> 10 Guidance Weight 1.0
# Parameters 318M Other . .
Resolution 128x128 Max1mum distance 20
# Up/Down Blocks 4 Distance tradeoff A 0.01
Attn. Resolutions 32,16, 8
Layers per Block 2
Attn. Head Dim 8
Channels (128, 128, 256, 512, 640)
Diffusion Type continuous time

Table 6: Hyperparameters for training ViNT and the diffusion model.

employ classifier-free guidance [47] and find that it helps produce subgoals with better visual fidelity,
which is consistent with prior work [48].

B.3 Long-Horizon Physical Search via Topological Graphs

As in Shah and Levine [29], we implement physical search similarly to a standard A* algorithm, by
keeping track of an open set {2 of possible unvisited subgoals (generated by our diffusion model)
and following Alg. 1.

Nodes are visited according to a costing function f(s) that depends on the distance from the current
state o; to the parent node s~ (measured along the graph), the predicted distance from s~ to s, and
a heuristic function A (similar to that of A*) providing long-horizon navigation hints:

f(8) =dm(os,87) + dprea(s™,8) + h(s, G, C)

In general, the heuristic can be any function providing a notion of distance between a subgoal s and
the long-horizon goal G, optionally with some context C'. For our experiments, we considered three
heuristics to demonstrate the flexibility of our approach:

» Coverage exploration: We have no long-horizon guidance for coverage exploration, and
thus, use i(s) = 0.

* Position-guided: For long-horizon GPS goals (outdoors) and 2D position goals (indoors),
we use Euclidean distance h(s) = ||s — G|.
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= ResNet + Downsample/Upsample
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= Skip Connection (Concatenate)

Figure 6: Subgoal diffusion model U-Net architecture. Each ResNet consists of 2 residual blocks. Downsam-
pling and upsampling is done with strided convolutions.

Algorithm 1: Long-Horizon Navigation via Topological Graph

1: while goal G not reached do
2: s+ ming(Q);

3: P < ShortestPath(M, o;, s7)
4:  for (s,s') in P do

5: VINT.GoToGoal(s");

6: end for

7:  VINT.GoToGoal(s)

8:

o4 + Observe();

9:  AddNode(M, o, parent: s7);
10:  Sample s; ~ g(s;|o¢);

11:  Add(Q, s;);

12: end while

 Satellite-guided: In the context-guided experiments, we train a learned heuristic function
that uses the satellite image as an input to learn a a heuristic for “good” subgoals. We train
a convolutional neural network on the overhead image to predict the probability that the
subgoal s is included on a trajectory from o; to G, trained using a contrastive objective [49].
Additional information can be found in Shah and Levine [29].

B.4 Fine-tuning VINT

In all CARLA fine-tuning experiments, on-task data was collected using a rule-based oracle agent,
with start and end locations sampled randomly up to 900 meters apart. We collect 181 training
trajectories (roughly 4 hours) in CARLA’s Town 01 environment, and a further 52 trajectories (1
hour) in the held-out Town 02 environment. Inspired by Codevilla et al. [22], we further augment
this dataset by allowing the rule-based agent to correct its position and re-center to the lane after a
perturbation.

Image Fine-tuning:
* Architecture: We utilize the exact same architecture as ViNT with no changes.

* Training: For fine-tuning the image-goal directed model, we utilize the same training
process for VINT with a learning rate of 0.0001, AdamW optimizer, but no warmup or
cosine scheduler. We do not mix any prior data for fine-tuned training.

GPS-Adaptation:
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Figure 7: Adaptation architectures for VINT. Left: GPS-adaptation architecture. The local coordinates of the
goal are concatenated to the fixed latent z. Right: command-adaptation architecture, using latent z; selected by
command label index <.

 Architecture: To adapt to GPS-style goals, we cut off the goal encoder block from ViNT.
We then learn a fixed tensor of size 3000 and concatenate it to the GPS-command goal in
ego-centric coordinates. We then pass this into a 2-layer MLP which outputs the prediction
of the final token for the transformer. The architecture is shown in Figure 7.

* Training: During training, instead of randomly sampling future images to serve as goals,
we sample goals from future odometry information. Once we have a future goal coordinate
for self-supervision, we convert to local coordinates and pass into our architecture, fine-
tuning with the same objective as VINT. We use a cosine scheduler with a learning rate
warmup to 0.0001 for 4 epochs. We also sample goal points from between 1.25s and 1.75s
rather than from 0.5s to 2.5s.

Command-Adaptation:

 Architecture: For discrete command goals, we adopt a similar approach for GPS-style
goals. We learn a fixed tensor for each discrete command and use the command index to
select the corresponding latent to pass into a 2-layer MLP for predicting the final token. In
this way, we learn a dictionary of latents, each corresponding to a distinct command. This
architecture is illustrated in Figure 7.

» Training: For our experiments, we use “left”, “right”, and “straight” as our discrete com-
mands. We assume training data is not labelled with the discrete command, so we label
dataset trajectories with the corresponding commands retroactively by sampling a future
position (as in GPS-Adaptation) and then selecting a command based on its lateral devia-
tion. For our experiments we bin samples with lateral coordinate greater than 0.05 as “left”
or “right” and label the remaining samples as “straight”. We again use a cosine scheduler
with a learning rate warmup to 0.0001 for 4 epochs.

C Training Dataset

The ViNT training dataset contains over 100 hours of real-world navigation trajectories, sourced
entirely from existing datasets. The dataset consists of a combination of tele-operated and au-
tonomous navigation behaviors collected across 8 distinct robotic platforms, including 4 commer-
cially available platforms (TurtleBot, Clearpath Jackal, Warthog and Spot) and several custom plat-
forms (Yamaha Viking ATV, RC Car, passenger automobiles). The trajectories contain widely vary-
ing robot dynamics and top speeds, ranging between 0.2 and 10m/s, operating in a diverse set of
environments (e.g., office buildings, hallways, suburban, off-road trails, university campuses, etc.).
All data is either publicly available, or collected by other researchers for past projects; no additional
training data was collected specifically for training ViNT.
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Dataset Platform Speed  Total Hrs. Hrs. Used Environment

1 GoStanford [28]  TurtleBot2  0.5m/s 17h 14h office
2 RECON [40] Jackal 1m/s 25h 25h off-road
3 CoryHall [39] RC Car 1.2m/s 2h 2h hallways
4 Berkeley [29] Jackal 2m/s 4h 4h suburban
5 SCAND-S [50] Spot 1.5m/s 8h 4h sidewalks
6  SCAND-J [50] Jackal 2m/s 1h 1h sidewalks
7  Seattle [51] Warthog Sm/s 1h 1h off-road
8  TartanDrive [52] ATV 10m/s Th 5h off-road
9  NeBula [53] ATV 10m/s 10h 10h off-road
10  SACSoN [54] TurtleBot2  0.5m/s 75h 10h office
11 BDD [13] Car(s) 20m/s 10h 4h on-road
Total 160h 80h

Table 7: The ViNT training dataset contains over 150 hours of navigation data in challenging indoor, outdoor,
and off-road environments across 8 different robots of varying sizes, speeds, and capabilities.

Remember to mention: total size, number of robots, conversion to number of frames and so on.

D Robotic Platforms for Evaluating VINT

Vizbot: A custom-built robot platform inspired by the design of Niwa et al. [55], based on a
Roomba. It is equipped with an off-the-shelf PCB-mounted fisheye camera.

Unitree Go 1: A commercially available quadruped robot equipped with the original forward-facing
camera. There is no training data from a Go 1 in the training dataset. Athough SCAND includes
data collected on a Boston Dynamics Spot, which is also a quadrupedal robot, the two platforms
practically have very different characteristics.

Clearpath Jackal UGV: A commercially available off-road platform equipped with an off-the-
shelf PCB-mounted fisheye camera. This system resembles the data collection platform used for the
RECON, Berkeley, and SCAND-J datasets, but has a different camera and mounting height.

LoCoBot: A popular open-source platform based on a Kobuki equipped with an off-the-shelf PCB-
mounted fisheye camera. This robot is not present in the training dataset, although GS was collected
on a similar TurtleBot2 with a different spherical camera at a lower height.

E Evaluation Setup and Details

E.1 Navigation Performance
E.1.1 Indoor Experiments

For setting up the indoor coverage exploration experiments, we use the LoCoBot and Vizbot robotic
platforms. We choose a random starting point and goal in an enclosed environment, and keep these
locations consistent across all baselines we test. For the coverage exploration task, we ensure that
the environments are “enclosed” and block any glass walls and stairwells, which are beyond the
capabilities of the robots. Experiments are terminated when either (i) the robot is unable to reach
the goal within a pre-specified time limit of 10 minutes, or (ii) the robot becomes physically stuck
(e.g., collides and is unable to recover).

For setting up the indoor guidance exploration experiments on the LoCoBot, we mark the start and
goal locations in a large office building and note their 2D positions. The goal location is conveyed
to the robot as the context, and is available to the search algorithm. The system uses the robot’s
onboard wheel odometry to track position.
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E.1.2 Outdoor Experiments

For the coverage exploration experiments, we follow the setup of Shah et al. [40] and use the
Clearpath Jackal UGV. We choose a random start and goal location in confined outdoor environ-
ments and obtain a goal image observation for the robot to seek. Experiments are terminated either
when (i) the robot is unable to reach the goal within a pre-specified time limit of 20 minutes, or (ii)
the robot collides with an obstacle in the environment.

For the guided exploration experiments, we closely follow the setup of Shah and Levine [29]. For
the GPS guided experiments, the robot has access to the GPS location of the goal, in addition to a
goal image. For the satellite-guided experments, the robot further has access to an overhead satellite
image centered at its current location and a learned heuristic funtion h.

E.1.3 Baselines

For experiments presented in Section 6.1, we evaluate 4 baselines against our method.

1. End-to-End BC: A modified VINT model with no goal token, trained end-to-end for the
task of only predicting future actions. This represents a typical undirected BC baseline with
similar model capacity as the other baselines.

2. End-to-End GCG: A model-based algorithm that uses a predictive model to plan a se-
quence of actions that reach the goal without causing collisions [39]. Since this model
requires collision labels for training, it is only trained on a subset of the training data (RE-
CON, CoryHall, Berkeley) that has these labels; hence, this baseline is only evaluated
outdoors.

3. RECON: A variant of the physical search algorithm RECON [40], which uses a latent goal
model to represent reachable goals and plans over sampled subgoals to explore the environ-
ment in a similar manner to ours. This baseline uses a variational information bottleneck
to sample latent subgoals, rather than a diffusion model sampling subgoal images.

4. VINT-R: An ablation of our method that uses subgoals randomly sampled from the training
data, instead of samples from a conditional diffusion model, as subgoal candidates.

E.2 Multi-robot Generalization Experiments

The setup for the multi-robot generalization experiment is same as the coverage exploration experi-
ments. The only differences are the baselines we evaluate.

E.2.1 Baselines

For experiments presented in Section 6.2, we test three baseline low-level policies on each robot.
Each baseline uses the graph-based exploration scheme described in Section 4.1. We use the follow-
ing baselines:

1. Single-Robot: We train a single-dataset policy model (ViNT architecture) and diffusion
model on the two largest datasets (RECON for outdoor, and SACSoN for indoor), and
evaluate them on each of our robots to identify the best single-dataset model for each robot.
Note that we do not have comparable magnitudes of training data of visual locomotion on
the Go 1.

2. GNM: We use the pre-trained model checkpoint from the authors of GNM [19] coupled
with our diffusion model (since GNM is not compatible with the exploration task) to eval-
uate each robot.

3. ViNT: We use our pre-trained ViNT policy and image diffusion model (no fine-tuning) to
evaluate each robot.
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E.3 Fine-tuning and Adaptation

This section describes the setup and implementation details for VINT fine-tuning and adaptation
experiments in the CARLA autonomous driving simulator, as presented in Sections 6.3 and 6.4.

E.3.1 CARLA Data Collection

We collect expert trajectories with an oracle rule-based self-driving agent and gather odometry and
RGB information across the trajectory at 4 Hz. These trajectories have random spawn points and
random destination points up to to 900 meters in length. We collect 52 trajectories in the CARLA
Town 02 for held-out testing, and collect 181 trajectories in Town 01 for training. This makes
for a dataset size of 5 hours for the autopilot control data. Inspired by [22], we also collect short
trajectories of the agent correcting back onto the right lane after drifting off course in Town 01
and Town 02 for training and testing, respectively. This data is 4 hours long, and we add it to the
autopilot data for training.

E.3.2 Fine-tuning Experiments

To test the fine-tuning system which trains VINT with the same goal specification but in new do-
mains, we utilize the collected test trajectories as sequences of goal images to follow. Each Town 02
test trajectory creates a graph in which every node is a timestamped odometry point corresponding
to an image. To evaluate a model on a test trajectory, we spawn it at the same start point and localize
it on the trajectory’s map. We then query the image for the goal node which corresponds to node
1.5s after the current node. This goal image is sent to VINT along with the 4Hz image context to
compute a short-range trajectory. This is tracked by a simple PID controller. The average progress
towards the goal before collision is collected and reported across all trials. Table 3 summarizes the
results of these experiments with multiple baselines and data sizes.

E.3.3 Adaptation Experiments

To test the new tasks, we adopt a similar evaluation setup to the fine-tuning experiments, but rely on
the odometry position for the selected goal node rather than the image. For positional-adaptation,
we move the goal coordinates into a local frame and send it to ViNT. For routing-adaptation, we de-
termine the difference in lateral coordinates between the current node and the goal node. We choose
the current node as reference to ensure an open-loop experiment and to allow for pre-computation
of the command signals to be sent. We then apply the same binning strategy during training using a
0.05 normalized distance as the boundary between “left”, “right”, and “straight”. The control system
downstream of this is identical to image fine-tuning and the experiment terminates when at the goal
or when colliding. The progress towards the goal before collision is collected and averaged across
all trials in Table 3.

E.3.4 Baselines

We have the following baselines for the CARLA experiments:

1. Scratch: VINT trained from scratch on the CARLA on-task dataset.
2. Pre-trained Visual Representations

(a) ImageNet: VINT initialized with the EfficientNet-BO weights pre-trained on Ima-
geNet, other parameters initialized from scratch, and fine-tuned with the CARLA on-
task dataset.

(b) SimCLR: ViNT initialized with the EfficientNet-BO weights pre-trained with Sim-
CLR [7] on the training data described in Section C, other parameters initialized from
scratch, and fine-tuned with the CARLA on-task dataset.

(¢c) VC-1: ViNT initialized with a pre-trained ViT-B model checkpoint from the authors
of VC-1 [41] and frozen, other parameters initialized from scratch, and fine-tuned
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Figure 8: Samples from the diffusion model may be invalid subgoals, but ViNT is robust to such proposals.

with the CARLA on-task dataset. The VC-1 encoder is pre-trained on a combina-
tion of Ego4D, manipulation, navigation, and ImageNet images using Masked Auto-
Encoding [56, 57].

3. GNM: The pre-trained embodiment-agnostic model checkpoint from the authors of
GNM [19], fine-tuned with the CARLA on-task dataset. Note that GNM has 8.7M trainable
parameters, compared to ViNT’s 31M.

We note that the VC-1 baseline’s weak per-
formance in Section 6.4 may be explained by
the fact that it is frozen, while all other visual VC-1[41] 0.19 0.49
encoders were free to fine-tune. This is rep- VAN 057 orfs
. . VINT 0.82 0.89

resentative of typical downstream usage [41].
Despite training on multiple, diverse datasets,
the visual representation’s general-purpose fea- Table 8: Evaluation of ViNT fine-tuning with and with-
tures are not optimized for the navigation task, out a frozen encoder, as compared to a general-purpose
hamperine zero-shot transfer to out-of-domain visual encoder. Even when frozen, ViNT’s navigation-

pering . . . relevant features appear to transfer more readily to out-
Fasks. To prOYlde a falr comparison of the qual- o gistribution inputs than general-purpose features.
ity of pre-trained visual features, we compare
this performance to VINT-FE (a pre-trained
ViNT model that has it’s visual encoder frozen). VINT-FE has an equal number of trainable pa-
rameters to the VC-1 baseline, and frozen visual representations (see Table 8).

Method Images Positions

F Emergent Behaviors

One of the most exciting aspects of large-scale machine learning is the potential for emergent be-
havior that arises from the training of large models on diverse datasets. Despite the simple self-
supervised training objective used by ViNT, it shows a number of emergent behaviors, which we
describe qualitatively in this section and present as examples on the project page and supplemental
videos: general-navigation-models.github.io.

Implicit navigation affordances: Ideally, we would like a robot foundation model to exhibit some
desirable “default” behavior, while providing a mechanism for downstream applications to adapt
this behavior as needed. We find that VINT has this property vis-a-vis collision-avoidance. One
piece of evidence is its behavior when provided with random subgoals from locations that are not
reachable by the robot, studied quantatively via the VINT-R baseline in Table 1. In this case, despite
the subgoals being invalid and out-of-distribution (ViNT was only trained to reach subgoals), VINT
succeeds at exploring the environment and reaches the goal 80% of the time, outperforming all
baselines. This suggests that VINT takes collision-free actions when provided with meaningless
goals (i.e. the above “default”), while still attempting to follow reachable subgoals.

Indeed, although the “full” version of our method augmented with the diffusion model performs bet-
ter, the subgoals generated by this model are often of low quality with many artifacts, and sometimes
do not match any real reachable state (Figure 8). Nonetheless, because of this “default” behavior,
ViNT is able to successfully leverage the valid subgoals, while ignoring the bad ones, and demon-
strate collision-free navigation in previously unseen environments.
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Figure 10: Robustness to dynamic pedestrians. ViNT can successfully navigate around a crowd of dynamic
pedestrians and reach the goal behind them, despite its simple self-supervised training objective.

Position-Guided
(100m)

Coverage o
(142m) | ¥

Figure 11: VINT accomplishes long-horizon navigation with a variety of objectives in indoor and outdoor
environments; example trajectories between start (orange) and goal (green) visualized here. Goal-reaching
behavior can be achieved with a goal-directed heuristic (optionally guided by satellite imagery), while removing
this heuristic allows for undirected exploration to maximally cover a workspace.

Implicit navigation preferences: Yet another
interesting property exhibited by ViNT is its
implicit preference to follow paved roads (out-
doors), and drive smoothly in the middle of
hallways (indoors), as demonstrated in Figure 9
and in the supplemental video. This is particu-
larly interesting since a large chunk of the pre-
training dataset contains suboptimal, weavy tra-  Figure 9: ViNT exhibits an implicit preference for fol-
jectories, and suggests that VINT can learn lowing paved roads (left) and hallways (right).

“good” default behavior from the diverse train-

ing behaviors. This preference helps ViNT efficiently explore previously unseen environments,
where other baselines tend to explore the environment haphazardly (see Table 1 (right)).

Robustness to dynamic pedestrians: While ViNT is trained only on offline data with a simple, self-
supervised training objective, we find that its collision avoidance capabilities generalize to dynamic
obstacles and pedestrians. Figure 10 exhibits an instance where the robot is tasked with navigating
to a goal behind two pedestrians. ViNT selects actions that avoid the pedestrians and recovers to the
original path, successfully reaching the goal.

G Additional Results

Please see Table 9, and Figures 11 and 12 for more experiment rollouts.

Indoor: Position Outdoor: GPS Outdoor: Satellite
Method Success Distance  Success SPL  Distance Success SPL  Distance
ViKiNG [29] 0.60 56m 0.64 0.42 720m 0.77 0.68 780m
VINT 0.90 91m 0.95 0.84 1270m 1.00 0.94 1040m

Table 9: VINT can effectively utilize goal-directed heuristics, such as 2D goal positions and satellite images,
to explore novel kilometer-scale environments successfully and without interventions.
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Figure 12: Satellite-guided physical search with VINT. We visualize a 765m rollout of VINT with a satellite
image-based heuristic from start (orange) to goal (green). The future action samples & obtained by spatially
grounding the subgoal candidates for five instances in the trajectory are shown in yellow. An A*-like planner
uses the heuristic to pick the best subgoal (corresponding @ marked in blue), guiding the robot to the goal.

Figure 13: The CARLA test environment (fop), and a bird’s eye view showing high-level routing commands
for the routing task.

Figure 14: Visualizing VINT exploration rollouts in challenging indoor environments using the Vizbot (top)
and LoCoBot (bottom) robotic platforms. Future action samples a obtained by spatially grounding the subgoal
candidates are shown in yellow, with the best actions corresponding to the best candidate marked in blue.
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