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Abstract

Unsupervised dependency parsing is a funda-001
mental task in understanding syntactic depen-002
dency structures of natural language. Previous003
parameter-free methods for probing the depen-004
dency structure recover a non-trivial amount005
of dependencies by assuming a correlation be-006
tween the syntactic dependency (a word-to-007
word relation) and bi-lexical dependence scores008
(a metric measuring one word’s influence on009
the other word). However, these studies as-010
sume the correlation without verifying the exis-011
tence of the correlation. Furthermore, previous012
studies failed to utilize grammatical constraints013
that are beneficial to parsing performance in014
grammar-based unsupervised parsing methods.015
In this paper, we investigate the correlation016
between the syntactic dependency and Condi-017
tional Mutual Information (CMI) scores, a bi-018
lexical statistical dependence metric. We pro-019
pose delta-energy, an unbiased estimate of the020
CMI, and apply it to unsupervised dependency021
parsing. We further assist the parsing model022
with three grammatical constraints. We found023
the delta-energy score capable of effectively024
separating syntactic dependencies from non-025
dependencies. Our unsupervised parsing model026
outperforms baseline parameter-free probing027
models in parsing performance, excelling in028
recovering semantically-related dependencies.029
The ablation study shows that the three gram-030
matical constraints contribute to the recovery of031
dependencies that are semantically related and032
that have strong Part-Of-Speech requirements.033

1 Introduction034

Syntactic dependency structures are important to035

downstream Natural Language Processing tasks,036

such as Information Extraction (Tian et al.,037

2021; Gamallo et al., 2012), Machine Transla-038

tion (Bugliarello and Okazaki, 2020; Ma et al.,039

2020), and Question Answering (Lyu et al., 2021).040

However, training a supervised dependency parser041

requires expensive human-annotated dependency042
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Long lines on the weekend but worth it

Statistical Dependence Score

Syntactic Dependency

Figure 1: The correlation between syntactic dependen-
cies and conditional mutual information scores. The
lower part plots the dependency structure, and the upper
part plots the conditional mutual information score. The
blue box in the heatmap indicates a syntactic depen-
dency between the corresponding words.

structures, which are only available for some lan- 043

guages and domains. Parameter-free probing meth- 044

ods (Hoover et al., 2021; Wu et al., 2020; Zhang 045

and Hashimoto, 2021) directly extract the depen- 046

dency structure from pre-trained language models 047

without the structure annotation (a.k.a. unsuper- 048

vised parsing). These methods predict the depen- 049

dency structure by finding a set of dependencies 050

that form a tree-shaped structure and that have max- 051

imum bi-lexical dependence scores. 052

Fig.11 illustrates the syntactic dependency struc- 053

ture and Conditional Mutual Information (CMI) 054

scores, a bi-lexical statistical dependence metric. 055

The syntactic dependency, represented as a word 056

pair, encodes a word-to-word grammatical relation. 057

For example, the dependency (“long”, “line”) with 058

the label amod indicates that “long” serves as an 059

1Conditional mutual information is a symmetric score. We
study the undirected syntactic dependency to put the condi-
tional mutual information and other dependence scores on an
equal footing.
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adjective modifier to “line”. On the other hand, the060

CMI score is a metric measuring one word’s influ-061

ence on the other word. The higher the CMI score,062

the stronger the influence. For example, the CMI063

score for the word pair (“long”, “line”) is high, in-064

dicating a strong bi-lexical dependence. The above065

example shows a correlation between syntactic de-066

pendencies and high CMI scores. Such correlation067

is the cornerstone of the parameter-free probing068

method.069

Despite the cornerstone role of the correlation,070

the parameter-free probing method assumes the071

correlation without verifying it. Whether and how072

much their dependence scores separate the syntac-073

tic dependency from non-dependencies (i.e., word074

pairs that are not connected by a syntactic depen-075

dency) remains a question. Furthermore, the prob-076

ing method failed to incorporate grammatical con-077

straints that have been shown beneficial to parsing078

performance by grammar-based unsupervised pars-079

ing methods (Noji et al., 2016; Naseem et al., 2010;080

Xu et al., 2021).081

In this paper, we present a study on the corre-082

lation between the syntactic dependency and the083

CMI score. Our contributions are three-fold:084

1. We propose delta-energy, an unbiased esti-085

mate of the CMI score, and derive an unsu-086

pervised parsing model from the delta-energy087

score. We further enhance the parsing model088

with three grammatical constraints: a Part-Of-089

Speech (POS) constraint, an adjacent-connect090

constraint, and a function word head con-091

straint.092

2. We verify the correlation between the syntac-093

tic dependency and the delta-energy score and094

show that the delta-energy score is an effective095

metric for separating syntactic dependencies096

from non-dependencies.097

3. We build a state-of-the-art parameter-free un-098

supervised parsing model that excels at re-099

covering semantically-related dependencies.100

Ablation analysis shows that the grammati-101

cal constraint has a significant contribution to102

the recovery of dependencies that are semanti-103

cally related and that tend to have strong POS104

requirements.105

2 Background 106

2.1 Conditional Mutual Information 107

In this paper, we measure bi-lexical statistical de- 108

pendence scores using Conditional Mutual Infor- 109

mation (Eq. 1). Given a sentence x = (x1, ..., xn), 110

CMI measures one word’s (Xi) influence on the 111

other word’s (Xj) distribution under side infor- 112

mation c. The side information can include var- 113

ious types of information, contextual or gram- 114

matical. For example, the two words’ context 115

x−ij = (x1, ..., xi−1, xi+1, ..., xj−1, xj+1, ..., xn) 116

can be the side information. CMI computes the ex- 117

pected log probability ratio between the joint prob- 118

ability p(xi, xj |c) and the product of the marginal 119

probabilities p(xi|c)p(xj |c). CMI measures the 120

distance between the joint distribution from the 121

marginal product distribution. The higher the CMI 122

score, the further the joint and the marginal product 123

distribution are, the stronger the statistical depen- 124

dence is between Xi and Xj . 125

I(Xi;Xj |c) := E
XiXj |c

[
log

p(xi, xj |c)
p(xi|c)p(xj |c)

]
(1) 126

2.2 Extracting Syntactic Dependency via 127

Measuring Bi-Lexical Dependence 128

Hoover et al. (2021); Wu et al. (2020) measure the 129

bi-lexical dependence score of word pairs (Xi, Xj) 130

under the context x−ij . They define the depen- 131

dence score as the difference between the informed 132

probability p(xj |xi, x−ij) and the null probability 133

p(xj |Xi = [MASK], x−ij) given by a masked lan- 134

guage model. The informed probability measures 135

the probability of xj given the content of xi, while 136

the null probability measures the probability of 137

xj without knowing the content of xi. The null 138

probability can serve as an approximation to the 139

marginal probability p(xj |x−ij) (Xu et al., 2020). 140

After obtaining the dependence score for all word 141

pairs, the probing method selects a dependency tree 142

that maximizes the sum of the dependence scores 143

using Maximum Spanning Tree algorithms (Prim, 144

1957; Eisner, 1997; Edmonds, 1967). 145

Hoover et al. (2021) uses a log ratio of the in- 146

formed and the null probability (pmi, Eq. 2) as the 147

dependence score. The pmi score is a single-point 148

estimate of the CMI score, and the single-point es- 149

timation is well-known to have a high estimation 150

variance. Moreover, the pmi score uses the null 151

probability to approximate the marginal probabil- 152

ity, which adds further bias to the estimation. The 153
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two issues of the pmi score make it an unreliable154

estimate of the CMI score. On the other hand, Wu155

et al. (2020) uses the Euclidean distance between156

the embedding generating the informed probability157

einformed_prob and the embedding generating the null158

probability enull_prob (Eq. 3). This method operates159

in the embedding space instead of the probabilis-160

tic space and is not directly comparable with our161

method.162

Ipmi
ij := log

p(xj |xi, x−ij)

p(xj |Xi = [MASK], x−ij)
(2)163

Ipertij := ∥einformed_prob − enull_prob∥2 (3)164

2.3 Sampling from Language Models165

Monte Carlo estimation is the standard approach166

to estimating the CMI score reliably. Goyal et al.167

(2022) proposes a Metroplis-Hastings (MH) algo-168

rithm to sample from language models. Starting169

with a sentence x with arbitrary content on the word170

Xi and Xj , the MH method iteratively performs171

the following steps over the two words:172

1. samples a proposal word x′i from a proposal173

distribution q(x′i|x). In this case, the proposal174

distribution would be a mask language model175

distribution with Xi set to [MASK].176

2. computes the acceptance probability based177

on the proposal probability and the tar-178

get probability p(x′). Here, p is the lan-179

guage model distribution of choice and x′ =180

(x1, ..., xi−1, x
′
i, xi+1, ..., xn)181

3. accepts or rejects the proposal word accord-182

ing to the acceptance probability. If accepted,183

x← x′. Otherwise, x← x.184

The (xi, xj) samples produced by the MH algo-185

rithm are guaranteed to converge to the target dis-186

tribution p(xi, xj |x−ij) as long as the target distri-187

bution is irreducible and aperiodic (Besag, 2004).188

Common language model distributions satisfy the189

irreducibility and aperiodicity conditions (Goyal190

et al., 2022).191

Nonetheless, the convergence speed of the MH192

algorithm can be slow in practice. Multi-try MH193

algorithms (Martino, 2018) mitigate the slow con-194

vergence problem by independently proposing n195

samples and accepting the sample with the highest196

probability in the target distribution. This approach197

enables the multi-try MH algorithm to explore the198

high-probability region of the target distribution199

more efficiently than the original MH algorithm, 200

leading to faster convergence. 201

3 Method 202

Our method consists of two stages: inducing CMI 203

scores and decoding syntactic dependency struc- 204

ture from the CMI score. We incorporate the POS 205

constraint in the induction stage and incorporate 206

the adjacent-connect and the function word head 207

constraint in the decoding stage. 208

3.1 Inducing CMI Scores 209

We define the bi-lexical dependence score as the 210

CMI between two words Xi and Xj under side in- 211

formation c. The side information includes, manda- 212

torily, the context x−ij and, optionally, the POS 213

constraint yi and yj for Xi and Xj . We compute the 214

CMI with Eq. 4 and use a causal language model 215

(CLM) distribution for p. Our experiments show 216

that CLMs provide higher-quality samples than 217

masked language models. Eq. 4 is an equivalent 218

form of Eq. 1 that is more suitable for the sampling- 219

based estimation of the CMI score. The first term is 220

the expected probability of samples from the joint 221

distribution XiXj |c, whereas the second term is the 222

expected probability of samples from the marginal 223

product distribution Xi|c⊗Xj |c. 224

Iij(x) = E
(xi,xj)∼XiXj |c

[log p(xi, xj , c)] 225

− E
(x′

i,x
′
j)∼Xi|c⊗Xj |c

[
log p(x′

i, x
′
j , c)

]
(4) 226

3.1.1 Sampling with the POS Constraint 227

Directly applying the MH algorithm to the CLM 228

could not incorporate the POS constraint into the 229

CMI score because the CLM predicts the next word 230

based on its preceding context without consider- 231

ing any POS constraint. We incorporate the POS 232

constraint by applying a mask over the CLM’s out- 233

put distribution. Rijkhoff (2007) points out that 234

POS is a set of words with the same grammati- 235

cal properties. By the definition, we can impose 236

a POS constraint yi for the word Xi by masking 237

out words that do not have the grammatical prop- 238

erty specified by the POS. We translate the idea 239

into Eq.5. Eq.5 defines the conditional distribu- 240

tion p(xi|xj , x−ij , yi) by renormalizing the CLM 241

probability of a word p(xi|xj , x−ij) with the total 242

probability of all words satisfying the POS con- 243

straint
∑

Xi
p(xi|xj , x−ij)1(Y (Xi)=yi) 244
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p(xi|xj , x−ij , yi)

:=
p(xi|xj , x−ij)1(Y (Xi)=yi)∑
Xi

p(xi|xj , x−ij)1(Y (Xi)=yi)

(5)245

3.1.2 Estimating with the POS constraint246

Estimating the CMI requires computing the joint247

probability of the sentence (xi, xj , x−ij) and the248

POS constraint (yi, yj). Unfortunately, one can249

not compute the joint probability straightforwardly250

as the CLM does not model the POS constraint.251

We propose delta-energy (Eq.6), an unbiased es-252

timate of the CMI score, to overcome this issue.253

Compared to the CMI score, the delta-energy score254

eliminates the POS constraint yi and yj inside the255

expectation, enabling straightforward computation256

of the probability using CLM. We prove that the257

elimination is safe such that the delta-energy score258

is equivalent to the CMI score when the side infor-259

mation c contains only the POS constraint and the260

remaining context (Appendix A.1)261

IDE
ij (x) = E

(xi,xj)∼XiXj |c
[log p(xi, xj , x−ij)]262

− E
(x′

i,x
′
j)∼Xi|c⊗Xj |c

[
log p(x′

i, x
′
j , x−ij)

]
(6)

263

3.2 Decoding Syntactic Dependency from264

Delta-Energy Scores265

We apply Prim’s algorithm (Prim, 1957) to decode266

an undirected dependency tree from the symmet-267

ric delta-energy score. We additionally apply two268

grammatical constraints at this stage: the adjacent-269

connect constraint and the function-word head con-270

straint.271

The adjacent-connect constraint is a default strat-272

egy when a word is not statistically dependent on273

the rest of the sentence (i.e., ∀j, Iij(x) ≈ 0). In274

that case, we default the word to be connected275

with its right neighbor, inspired by the high pars-276

ing performance of a trivial baseline that connects277

adjacent words (Klein and Manning, 2004). We278

set a threshold τ such that a word is automatically279

connected to its right neighbor if the accumulative280

delta-energy score between the word and the rest281

of the sentence is below τ .282

The function-word head constraint (Noji et al.,283

2016) prevents function words from being a syn-284

tactic head in the decoded structure. In the context285

of undirected dependencies, the constraint prevents286

function words from having more than one connec-287

tion to other words. We enforce the constraint by288

gradually decreasing delta-energy scores related to 289

the function word that violates the constraint. As 290

we will see in Section 4, the two constraints are 291

effective in improving the parsing performance. 292

4 Experiment 293

4.1 Experiment Setup 294

We use three datasets for experiments: EWT-10, 295

WSJ-10 (Klein and Manning, 2004), and PUD. 296

Among the three, the EWT-10 and the WSJ-10 297

dataset contain sentences shorter than 10 words 298

(excluding punctuations) from the English Web 299

Treebank (Bies, Ann et al., 2012) and the Penn 300

Treebank (Marcus, Mitchell P. et al., 1999) respec- 301

tively. The main reason for using the EWT-10 302

and the WSJ-10 datasets is the high computational 303

cost of the delta-energy estimation. For example, 304

running the delta-energy estimation on the develop- 305

ment section of EWT-10 takes 48 GPU hours on a 306

single A100 GPU. In addition, the WSJ-10 dataset 307

is widely used for unsupervised dependency pars- 308

ing (Klein and Manning, 2004; Cohen and Smith, 309

2009). The PUD dataset contains the full English 310

section of the Parallel Universal Dependency tree- 311

bank (Zeman et al., 2018). The EWT-10 and the 312

PUD dataset contain dependencies annotated in the 313

universal dependency format (Nivre et al., 2020) 314

while the WSJ-10 contains dependencies annotated 315

in the Stanford dependency format (de Marneffe 316

and Manning, 2008). We use the development sec- 317

tion of the EWT-10 dataset (i.e., EWT-DEV-10) to 318

analyze the correlation between the syntactic de- 319

pendency and the delta-energy score and to evalu- 320

ate the parsing model derived from the delta-energy 321

score. We use the test section of the EWT-10 322

dataset, the WSJ-10 dataset, and the PUD dataset 323

to evaluate the models’ parsing performance on 324

universal dependencies, on Stanford dependencies, 325

and on long sentences, respectively. The parsing 326

performance is measured in Unlabelled Undirected 327

Attachment Score (UUAS) (Nivre and Fang, 2017) 328

due to the symmetricity of the delta-energy score. 329

We compute the UUAS score for syntactic depen- 330

dencies that connect actual words for all experi- 331

ments (i.e., we exclude the root dependency from 332

the evaluation). 333

We use the bert-large-cased model (Devlin 334

et al., 2019) for the proposal distribution and the 335

gpt2-large model (Radford et al., 2019) for the 336

target distribution when sampling for the EWT-10 337

and the WSJ-10 datasets. For the PUD dataset, we 338
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Dependence Scores P-Value (↓) Cohen’s d (↑)
delta-energy 0.00E+00 1.14
pmi 2.38E-214 0.69
perturbed-masking 0.00E+00 1.11

Table 1: P-value and Cohen’s d value for the three scores
in separating the syntactic dependency from the non-
dependency. The p-value indicates whether the score
can separate the two dependencies, and the d value
indicates the separation effect. A low p-value and a high
d value indicate a good separation score.

alternatively use the opt-125m model (Zhang et al.,339

2022) for the target distribution to speed up the340

sampling process. We take one sample for every341

12 sampling steps to avoid correlation between sub-342

sequent samples. In total, we collect 128 samples343

for every word pair. We limit words that can be344

sampled from the bert-large-cased model to the345

vocabulary of the bert model to reduce the compu-346

tational and implementation complexity. We use347

the POS tag provided in the dataset for implement-348

ing the POS constraint and the function word head349

constraint. We run each experiment once because350

our method is parameter-free and also because of351

the high computational cost.352

We use three baselines for analyses: the pmi353

baseline (Hoover et al., 2021), the perturbed-354

masking baseline 2 (Wu et al., 2020), and the355

adjacent-connect baseline (Klein and Manning,356

2004).357

4.2 Correlation between Syntactic358

Dependencies and Dependence Scores359

The core question we seek to answer in this pa-360

per is: whether and to what degree does the syn-361

tactic dependency correlate with bi-lexical depen-362

dence scores? We answer this question by studying363

whether and how much the dependence score can364

separate the syntactic dependency from the non-365

dependency. We compare the delta-energy score366

with the dependence score derived from the pmi367

and the score derived from the perturbed-masking368

baseline. The experiment shows that the delta-369

energy score can separate and separates the syn-370

tactic and the non-dependency well.371

The first column in Table 1 shows the p-value372

for the t-test with a null hypothesis that the syn-373

tactic dependency and the non-dependency have374

the same mean dependence score. All three scores375

2we use the released code for the experiment but corrected
an implementation bug. See Appendix.A.3

Figure 2: Cohen’s d value by linear dependency lengths

have a p-value of 0 or close to 0, suggesting that all 376

dependence scores can separate the syntactic and 377

the non-dependency as two statistical populations. 378

The second column shows Cohen’s d value, 379

which measures the separation effect of the de- 380

pendence score. The delta-energy score has the 381

highest d value of 1.14 3 among the three depen- 382

dence scores. The perturbed-masking score has a 383

medium d value of 1.11, and the pmi score has the 384

lowest d value of 0.69. This result indicates that 385

the delta-energy score is the best score for separat- 386

ing the dependency and the non-dependency group. 387

The high d value suggests that the delta-energy 388

model could perform better than the two baseline 389

models in parsing performance, as we will see in 390

the next section. 391

However, syntactic dependencies are not uni- 392

formly distributed across all dependency lengths. 393

The syntactic dependency, on average, has shorter 394

lengths than the non-dependency. The discrepancy 395

creates a concern that the above analysis is not only 396

measuring the separation of the syntactic depen- 397

dency and the non-dependency but also the effect 398

of the short and the long dependency. To counteract 399

the concern, Fig. 2 breaks down the d value by the 400

linear dependency length (i.e., the number of words 401

between the word pair). The delta-energy score has 402

the highest d value for most dependency lengths. 403

The result reinforces the observation derived from 404

Table 1 that the delta-energy score is the best score 405

in separating the syntactic dependency from the 406

non-dependency. 407

4.3 Parsing Performance of the Delta-Energy 408

Model 409

Table 2 shows the parsing performance of the delta- 410

energy model and the baseline parsing models on 411

3A d value of 0.5 indicates a medium effect, 0.8 a large
effect, and 1.2 a very large effect (Sawilowsky, 2009)
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Dependence Score UUAS
delta-energy 0.631
pmi 0.559
perturbed-masking 0.586
adjacent-connect 0.497

Table 2: UUAS scores of the delta-energy and the base-
line models on the EWT-DEV-10 dataset

Figure 3: UUAS scores for syntactic dependencies of
different lengths on the EWT-DEV-10 dataset

the EWT-DEV-10 dataset. The delta-energy model412

performs the best, leading the perturbed-masking413

model (the second-best model) by 0.046. The delta-414

energy, the perturbed-masking, and the pmi model415

outperform the adjacent-connect baseline by a large416

margin. The result confirms that the delta-energy417

score is the best score for separating the syntactic418

dependency from the non-dependency. The high419

performance of the delta-energy, the perturbed-420

masking, and the pmi model indicates that one421

can recover a non-trivial amount of syntactic de-422

pendencies by measuring the bi-lexical dependence423

score.424

Fig. 3 plots the UUAS scores of the delta-energy425

model and the baseline models for recovering the426

syntactic dependency of different lengths. The427

delta-energy model performs the best for the syn-428

tactic dependency with lengths up to 3, performs429

similarly to the perturbed-masking model for the430

syntactic dependency with a length of 4, and per-431

forms the worst for the syntactic dependency with432

lengths 5 and 6. The result reveals the source of433

the delta-energy model’s improvement: the short-434

length dependency, which makes up the majority of435

the syntactic dependency. For example, the EWT-436

DEV-10 dataset has 484 dependencies of lengths437

greater or equal to 4 while containing 4036 depen-438

dencies of lengths less than 4.439

Fig. 4 shows the UUAS scores for relations440

Figure 4: UUAS of relations where the performance
difference between the delta-energy and the perturbed-
masking model is greater than 0.1. The left part plots
the relations where the delta-energy model performs
better, and the right part plots the relations where the
perturbed-masking model performs better.

where the performance difference between the 441

delta-energy and the perturbed-masking model is 442

more than 0.1. The delta-energy model outper- 443

forms the perturbed-masking model in recovering 444

the semantically-related dependencies while un- 445

derperforming in recovering functionally-related 446

dependencies. The result indicates that the delta- 447

energy model is more sensitive to semantically- 448

related dependencies than functionally-related de- 449

pendencies. 450

4.4 Ablation Study 451

model UUAS (% loss) Precision (% loss)
+UPOS, +ADJC, +FNWH 0.6313 (0.00%) 0.6332 (0.00%)
+UPOS, +ADJC, -FNWH 0.6064 (-3.94%) 0.6064 (-4.23%)
+UPOS, -ADJC, +FNWH 0.5518 (-12.59%) 0.5934 (-6.29%)
+UPOS, -ADJC, -FNWH 0.5319 (-15.75%) 0.5712 (-9.79%)
-UPOS, +ADJC, +FNWH 0.5937 (-5.96%) 0.5966 (-5.78%)
-UPOS, +ADJC, -FNWH 0.5544 (-12.18%) 0.5544 (-12.44%)
-UPOS, -ADJC, +FNWH 0.5403 (-14.41%) 0.58 (-8.40%)
-UPOS, -ADJC, -FNWH 0.4992 (-20.93%) 0.535 (-15.51%)

Table 3: Ablation analysis for the delta-energy model.
+UPOS indicates the use of the POS constraint, +ADJC
indicates the adjacent-connect constraint, and +FNWH
indicates the function word head constraint.

Table 3 presents an ablation study for the three 452

grammatical constraints. The UPOS, ADJC, and 453

FNWH represent the POS, the adjacent-connect, 454

and the function word head constraint, respectively. 455

The +/- sign indicates whether the model uses the 456

constraint. The Table shows that removing the 457

POS or the FNWH constraint equally decreases 458

the UUAS and the precision score. On the other 459
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hand, removing the ADJC constraint decreases the460

UUAS score more than the precision score. This461

is because, in some cases, the delta-energy score462

measures a 0 dependence score between one word463

and the rest of the sentence. The 0 dependence464

score creates an orphan problem in that the word465

is statistically disconnected from the rest of the466

sentence, resulting in an underprediction of the467

syntactic dependency. The ADJC constraint miti-468

gates the orphan problem by forcibly connecting469

the word to its right neighbor. The ablation study470

with the UUAS score indicates that all grammati-471

cal constraints benefit the parsing performance and472

that the adjacent-connect constraint is important in473

resolving the orphan problem.474

Fig. 5 analyzes which relation the grammati-475

cal constraint helps the most. The figures plot476

the UUAS for the relation where removing the re-477

spective grammatical constraint causes more than478

0.1 loss in UUAS. Fig. 5a shows that the ADJC479

constraint improves performance for a wide range480

of dependencies. Fig. 5b shows that the POS481

constraint improves performance for dependen-482

cies with strong POS requirements. For example,483

the conj relation requires two words to have the484

same POS tag. The parataxis relation also includes485

cases where the two words have the same POS tag486

(Nivre et al., 2020). Fig. 5c shows that the FNWH487

constraint improves performance for semantically-488

related dependencies. The nsubj, obl, and advcl489

dependencies connect words with their semantic490

arguments. The nmod and acl relation connect491

words with their modifiers. These dependencies492

contribute to the semantics of the sentence. The493

result suggests that grammatical constraints are im-494

portant for decoding syntactic dependencies from495

language models.496

4.5 Comparison with State-of-the-Arts in497

Unsupervised Parsing498

Type Models EWT-TEST-10 WSJ-10 PUD

Parameter-free
Probing Models

delta-energy 0.615 0.592 0.525
perturbed-masking 0.591 0.584 0.507
mlmbias 0.352 0.586 0.495

Grammar-based
Models

dmv 0.611 0.597 0.484
lcdmv 0.659 0.614 0.554

Table 4: Comparison of the delta-energy model with
unsupervised parsing models. The best score for the
parameter-free probing models is in bold.

Table 4 compares the delta-energy model with499

two parameter-free probing models (perturbed-500

masking and mlmbias (Zhang and Hashimoto,501

2021)) and two parametric grammar-based mod- 502

els (dmv (Klein and Manning, 2004) and lcdmv 503

(Noji et al., 2016)) 4. The dmv model has the 504

same grammatical constraint as the delta-energy 505

model, while the lcdmv model has an additional 506

constraint that the sentence can not have a deep 507

recursive center-embedding structure (Noji et al., 508

2016). Table 4 shows that the delta-energy model 509

performs the best among the parameter-free prob- 510

ing models. Compared to the dmv model, the delta- 511

energy model performs better on the PUD dataset 512

and performs similarly on the EWT-TEST-10 and 513

the WSJ-10 datasets. The better performance on 514

the PUD dataset highlights the strength of the delta- 515

energy model in comparison with the dmv model, a 516

grammar-based model using the same grammatical 517

constraint. Nonetheless, the delta-energy model 518

falls behind the lcdmv model because the lcdmv 519

model has access to additional grammatical con- 520

straints. The result again reinforces the importance 521

of the grammatical constraint in recovering syntac- 522

tic dependencies from language models. 523

5 Related Works 524

5.1 Parameter-free Probing Methods 525

The pmi score (Hoover et al., 2021) measures the 526

bi-lexical dependence score using the log-ratio be- 527

tween the informed and the null probability given 528

by the BERT model. Besides the estimation prob- 529

lem mentioned in Section 2, the pmi score failed 530

to utilize the POS information. In comparison, our 531

method can utilize the POS information as a con- 532

straint and improves parsing performance with the 533

information. 534

The perturbed-masking score (Wu et al., 2020) 535

measures the bi-lexical dependence score using the 536

Euclidean distance of the embedding that generates 537

the informed and the null probability. Despite the 538

simple approach, the perturbed-masking score per- 539

forms well in recovering the syntactic dependency. 540

However, the perturbed-masking score operates 541

in the embedding space, making it difficult to es- 542

tablish a direct connection between the syntactic 543

dependency and the language modeling objective. 544

In contrast, our delta-energy score operates in the 545

probabilistic space and, consequently, can establish 546

a more direct connection with the language model- 547

ing objective. Furthermore, the perturbed masking 548

score cannot utilize the POS information like the 549

4We use the code released by Noji et al. (2016) for the dmv
and the lcdmv model
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(a) adjacent-connect constraint (b) POS constraint (c) function word head constraint

Figure 5: Ablation analysis by dependency relations where removing the respective constraint causes more than 0.1
loss in UUAS score

pmi score, whereas our delta-energy score can uti-550

lize the POS information for better performance.551

Zhang and Hashimoto (2021) measures the bi-552

lexical dependence score using their formulation553

of the “conditional mutual information”. However,554

their formulation has two theoretical issues. Firstly,555

their formulation has an upper bound of 0, in con-556

trast to the widely-known CMI, which is a strictly557

non-negative metric. Secondly, two statistically in-558

dependent variables can obtain the maximum value559

under their formulation. The two issues disqualify560

their formulation as a valid dependence score. We561

present the proof in Appendix A.2.562

5.2 Parametric Grammar-based Methods563

The Grammar-based parametric method (Klein and564

Manning, 2004; Noji et al., 2016) induces gram-565

mar by maximizing the likelihood of observed sen-566

tences. While the method can theoretically avoid567

the data availability problem of lacking depen-568

dency annotations, most studies assume the POS569

information (Han et al., 2020). Effectively, the570

grammar-based method is still constrained by the571

availability of the POS information. On the other572

hand, our method can utilize the POS informa-573

tion as supplementary information. Moreover, the574

grammar-based method requires a special initializa-575

tion (Klein and Manning, 2004; Yang et al., 2020)576

or grammatical constraints (Noji et al., 2016) to577

induce grammar successfully. As shown in Sec.4,578

our method can benefit from the constraint but does579

not require the constraint to extract the dependency580

properly.581

6 Conclusions582

In this paper, we studied the correlation between583

syntactic dependencies and CMI scores derived584

from causal language models and the application585

of the CMI score on unsupervised parsing. We 586

proposed delta-energy, an unbiased estimate of 587

the CMI score that allows the incorporation of 588

POS constraints. We verified that syntactically 589

connected words are more statistically dependent 590

under causal language model distributions. The 591

delta-energy score is the best metric for separat- 592

ing syntactic dependencies from non-dependencies. 593

We found that the unsupervised parsing model in- 594

duced by the delta-energy score outperforms base- 595

line models by a large margin. The delta-energy 596

model outperforms baseline models in recovering 597

semantically-related dependencies but underper- 598

forms in recovering functionally-related dependen- 599

cies. Our ablation study shows that the POS, the 600

adjacent-connect, and the function word head con- 601

straint benefit the parsing performance. The POS 602

constraint contributes to the recovery of dependen- 603

cies with strong POS requirements. The adjacent- 604

connect constraint boosts the performance in re- 605

covering a wide range of dependencies. The func- 606

tion word head constraint significantly contributes 607

to recovering semantically related dependencies. 608

The result indicates the importance of grammati- 609

cal constraints in extracting syntactic dependencies 610

from language models. The delta-energy model per- 611

forms strongly against state-of-the-art parameter- 612

free probing models and matches the performance 613

of the grammar-based parametric model using sim- 614

ilar grammatical constraints. 615

7 Limitations 616

A concern we have is the high computational cost 617

of the MH algorithm. At every sampling step, the 618

MH algorithm has to evaluate the probability of the 619

sentence x′ = (x1, ..., xi−1, x
′
i, xi+1, ..., xn) with 620

the proposal sample x′i. Since we collect 128 sam- 621

8



ples and take one sample for every 12 sampling622

steps, we have to evaluate the sentence probability623

1536 times to estimate the CMI score for a word624

pair. The above is for the constant factor of the625

computational complexity. The total computational626

complexity for a sentence with n words is O(n5)627

considering that the CLM model has a computa-628

tional complexity of O(n3) (O(n2) complexity for629

one pass through the transformer model and O(n)630

steps to obtain the probability for each word in631

the sentence). The high computational cost pre-632

vents us from conducting a large-scale multilingual633

experiment for languages that have dependency634

annotations (Nivre et al., 2020) available.635
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A Appendix840

A.1 Equivalence of Delta-Energy and CMI841

Proposition 1. IDE
ij is equivalent with Iij when842

the side information c contains only the POS infor-843

mation (yi, yj) and the remaining context x−ij .844

We first look at the definition of CMI. Let c =845
(x−ij , yi, yj)846

Iij(x) (7)847

:= EXiXj |c

[
log

p(xi, xj |c)
p(xi|c)p(xj |c)

]
(8)848

= EXiXj |c

[
log

p(xi, xj , c)

p(xi|c)p(xj , c)

]
(9)849

= E (xi,xj)∼XiXj |c
(x′

i,x
′
j)∼Xi|c⊗Xj |c

[
log

p(xi, xj , c)

p(x′
i|c)p(x′

j , c)

]
(10)850

= E (xi,xj)∼XiXj |c
(x′

i,x
′
j)∼Xi|c⊗Xj |c

[
log

p(xi, xj , c)

p(x′
i, x

′
j , c)

]
(11)851

= E (xi,xj)∼XiXj |c
(x′

i,x
′
j)∼Xi|c⊗Xj |c

[
log

p(xi, xj , x−ij)1Y (xi,xj)=yi,yj

p(x′
i, x

′
j , x−ij)1Y (x′

i,x
′
j)=yi,yj

]
(12)

852

= E (xi,xj)∼XiXj |c
(x′

i,x
′
j)∼Xi|c⊗Xj |c

[
log

p(xi, xj , x−ij)

p(x′
i, x

′
j , x−ij)

]
(13)853

= IDE
ij (x) (14)854

The key to the proof lies in that the samples al-855

ways satisfy the condition Y (xi, xj) = yi, yj and856

Y (x′i, x
′
j) = yi, yj . Consequently, the indicator857

function will always return 1 and enables us to858

safely remove the POS information inside the ex-859

pectation.860

A.2 Theoretical Issues of Zhang and861

Hashimoto (2021)862

They proposed a formulation of “conditional mu-863

tual information” (Eq.15)864

IZH
ij (x) = E

XiXj |x−ij

[
log p(xi|xj , x−ij)865

− log E
Xj |xi,x−ij

p(xi|xj , x−ij)

]
(15)866

We prove the following propositions867

Proposition 2. The upper bound of IZH
ij is 0.868

Proof.

(15) = E
Xi|x−ij

[
E

Xj |xi,x−ij

log p(xi|xj , x−ij) 869

− log E
Xj |xi,x−ij

p(xi|xj , x−ij)

]
(16) 870

≤ E
Xi|x−ij

[
E

Xj |xi,x−ij

[
log p(xi|xj , x−ij) 871

− E
Xj |xi,x−ij

log p(xi|xj , x−ij)

]]
(17) 872

= 0 (18) 873

874

Proposition 3. Two statistically independent can 875

reach the maximum value of 0 under IZH
ij . 876

Proof. Let the two random variables be defined 877

over a two-value set Xi, Xj = {0, 1}. Each value 878

has a probability of 0.5. Consequently, we have the 879

joint and the marginal probability as shown in the 880

following table.

Xi 0 1
Xj Prob 0.5 0.5
0 0.5 0.25 0.25
1 0.5 0.25 0.25

881

IZH(Xi;Xj) = (2 ∗ 0.5)
[
(0.5 ∗ 2) log 0.5 (19) 882

− log(0.5 ∗ 2 ∗ 0.5)
]

(20) 883

= 0 (21) 884

885

A.3 Implementation bug in Wu et al. (2020) 886

Datasets Released Corrected
EWT-DEV-10 0.626 0.586
EWT-TEST-10 0.581 0.591
WSJ-10 0.572 0.584
PUD 0.501 0.507

Table 5: UUAS of the released implementation vs. our
corrected implementation on four datasets

Wu et al. (2020) applies a softmax normalizing 887

the dependence score Iij based on all dependence 888

scores Ii· related to the word Xi. However, we 889

found that their implementation produces a normal- 890

ized score with a value far greater than 1, which 891

11



is impossible as the softmax function produces re-892

sults in the range of [0, 1]. We fix the bug using893

the implementation provided in the scipy (Virta-894

nen et al., 2020) package. Table 5 compares the895

performance of the released implementation and896

our corrected implementation. We see that, except897

for the EWT-DEV-10 dataset, the corrected imple-898

mentation outperforms the released implementa-899

tion. This suggests that our implementation does900

not artificially lower the method’s performance in901

any way.902
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