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Abstract

Unsupervised dependency parsing is a funda-
mental task in understanding syntactic depen-
dency structures of natural language. Previous
parameter-free methods for probing the depen-
dency structure recover a non-trivial amount
of dependencies by assuming a correlation be-
tween the syntactic dependency (a word-to-
word relation) and bi-lexical dependence scores
(a metric measuring one word’s influence on
the other word). However, these studies as-
sume the correlation without verifying the exis-
tence of the correlation. Furthermore, previous
studies failed to utilize grammatical constraints
that are beneficial to parsing performance in
grammar-based unsupervised parsing methods.
In this paper, we investigate the correlation
between the syntactic dependency and Condi-
tional Mutual Information (CMI) scores, a bi-
lexical statistical dependence metric. We pro-
pose delta-energy, an unbiased estimate of the
CMLI, and apply it to unsupervised dependency
parsing. We further assist the parsing model
with three grammatical constraints. We found
the delta-energy score capable of effectively
separating syntactic dependencies from non-
dependencies. Our unsupervised parsing model
outperforms baseline parameter-free probing
models in parsing performance, excelling in
recovering semantically-related dependencies.
The ablation study shows that the three gram-
matical constraints contribute to the recovery of
dependencies that are semantically related and
that have strong Part-Of-Speech requirements.

1 Introduction

Syntactic dependency structures are important to
downstream Natural Language Processing tasks,
such as Information Extraction (Tian et al.,
2021; Gamallo et al., 2012), Machine Transla-
tion (Bugliarello and Okazaki, 2020; Ma et al.,
2020), and Question Answering (Lyu et al., 2021).
However, training a supervised dependency parser
requires expensive human-annotated dependency
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Figure 1: The correlation between syntactic dependen-
cies and conditional mutual information scores. The
lower part plots the dependency structure, and the upper
part plots the conditional mutual information score. The
blue box in the heatmap indicates a syntactic depen-
dency between the corresponding words.

structures, which are only available for some lan-
guages and domains. Parameter-free probing meth-
ods (Hoover et al., 2021; Wu et al., 2020; Zhang
and Hashimoto, 2021) directly extract the depen-
dency structure from pre-trained language models
without the structure annotation (a.k.a. unsuper-
vised parsing). These methods predict the depen-
dency structure by finding a set of dependencies
that form a tree-shaped structure and that have max-
imum bi-lexical dependence scores.

Fig.1! illustrates the syntactic dependency struc-
ture and Conditional Mutual Information (CMI)
scores, a bi-lexical statistical dependence metric.
The syntactic dependency, represented as a word
pair, encodes a word-to-word grammatical relation.
For example, the dependency (“long”, “line”) with
the label amod indicates that “long” serves as an

! Conditional mutual information is a symmetric score. We
study the undirected syntactic dependency to put the condi-
tional mutual information and other dependence scores on an
equal footing.



adjective modifier to “line”. On the other hand, the
CMI score is a metric measuring one word’s influ-
ence on the other word. The higher the CMI score,
the stronger the influence. For example, the CMI
score for the word pair (“long”, “line”) is high, in-
dicating a strong bi-lexical dependence. The above
example shows a correlation between syntactic de-
pendencies and high CMI scores. Such correlation
is the cornerstone of the parameter-free probing
method.

Despite the cornerstone role of the correlation,
the parameter-free probing method assumes the
correlation without verifying it. Whether and how
much their dependence scores separate the syntac-
tic dependency from non-dependencies (i.e., word
pairs that are not connected by a syntactic depen-
dency) remains a question. Furthermore, the prob-
ing method failed to incorporate grammatical con-
straints that have been shown beneficial to parsing
performance by grammar-based unsupervised pars-
ing methods (Noji et al., 2016; Naseem et al., 2010;
Xu et al., 2021).

In this paper, we present a study on the corre-
lation between the syntactic dependency and the
CMI score. Our contributions are three-fold:

1. We propose delta-energy, an unbiased esti-
mate of the CMI score, and derive an unsu-
pervised parsing model from the delta-energy
score. We further enhance the parsing model
with three grammatical constraints: a Part-Of-
Speech (POS) constraint, an adjacent-connect
constraint, and a function word head con-
straint.

2. We verify the correlation between the syntac-
tic dependency and the delta-energy score and
show that the delta-energy score is an effective
metric for separating syntactic dependencies
from non-dependencies.

3. We build a state-of-the-art parameter-free un-
supervised parsing model that excels at re-
covering semantically-related dependencies.
Ablation analysis shows that the grammati-
cal constraint has a significant contribution to
the recovery of dependencies that are semanti-
cally related and that tend to have strong POS
requirements.

2 Background

2.1 Conditional Mutual Information

In this paper, we measure bi-lexical statistical de-
pendence scores using Conditional Mutual Infor-
mation (Eq. 1). Given a sentence x = (z1, ..., Tp),
CMI measures one word’s (X;) influence on the
other word’s (X;) distribution under side infor-
mation c. The side information can include var-
ious types of information, contextual or gram-
matical. For example, the two words’ context
T—jj = (xl, ey L1y L1y eeey Tj—15 i1y ooy Q}n)
can be the side information. CMI computes the ex-
pected log probability ratio between the joint prob-
ability p(z;, zj|c) and the product of the marginal
probabilities p(x;|c)p(xj|c). CMI measures the
distance between the joint distribution from the
marginal product distribution. The higher the CMI
score, the further the joint and the marginal product
distribution are, the stronger the statistical depen-
dence is between X; and X ;.
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2.2 Extracting Syntactic Dependency via
Measuring Bi-Lexical Dependence

Hoover et al. (2021); Wu et al. (2020) measure the
bi-lexical dependence score of word pairs (X, X)
under the context x_;;. They define the depen-
dence score as the difference between the informed
probability p(x;j|z;, £_;;) and the null probability
p(x;|X; = [MASK], z_;;) given by a masked lan-
guage model. The informed probability measures
the probability of x; given the content of x;, while
the null probability measures the probability of
x; without knowing the content of x;. The null
probability can serve as an approximation to the
marginal probability p(x;|z_;;) (Xu et al., 2020).
After obtaining the dependence score for all word
pairs, the probing method selects a dependency tree
that maximizes the sum of the dependence scores
using Maximum Spanning Tree algorithms (Prim,
1957, Eisner, 1997; Edmonds, 1967).

Hoover et al. (2021) uses a log ratio of the in-
formed and the null probability (pmi, Eq. 2) as the
dependence score. The pmi score is a single-point
estimate of the CMI score, and the single-point es-
timation is well-known to have a high estimation
variance. Moreover, the pmi score uses the null
probability to approximate the marginal probabil-
ity, which adds further bias to the estimation. The



two issues of the pmi score make it an unreliable
estimate of the CMI score. On the other hand, Wu
et al. (2020) uses the Euclidean distance between
the embedding generating the informed probability
€informed_prob and the embedding generating the null
probability equii_prob (Eq. 3). This method operates
in the embedding space instead of the probabilis-
tic space and is not directly comparable with our
method.
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2.3 Sampling from Language Models

Monte Carlo estimation is the standard approach
to estimating the CMI score reliably. Goyal et al.
(2022) proposes a Metroplis-Hastings (MH) algo-
rithm to sample from language models. Starting
with a sentence x with arbitrary content on the word
X; and X, the MH method iteratively performs
the following steps over the two words:

1. samples a proposal word z, from a proposal
distribution g(z}|x). In this case, the proposal
distribution would be a mask language model
distribution with X; set to [MASK].

2. computes the acceptance probability based
on the proposal probability and the tar-
get probability p(z’). Here, p is the lan-
guage model distribution of choice and =’ =
(.%'1, ey Lj—1, Hf;, Lijgly eey .Z‘n)

3. accepts or rejects the proposal word accord-
ing to the acceptance probability. If accepted,
x + z'. Otherwise, < z.

The (z;,2;) samples produced by the MH algo-
rithm are guaranteed to converge to the target dis-
tribution p(z;, x|z _;;) as long as the target distri-
bution is irreducible and aperiodic (Besag, 2004).
Common language model distributions satisfy the
irreducibility and aperiodicity conditions (Goyal
et al., 2022).

Nonetheless, the convergence speed of the MH
algorithm can be slow in practice. Multi-try MH
algorithms (Martino, 2018) mitigate the slow con-
vergence problem by independently proposing n
samples and accepting the sample with the highest
probability in the target distribution. This approach
enables the multi-try MH algorithm to explore the
high-probability region of the target distribution

more efficiently than the original MH algorithm,
leading to faster convergence.

3 Method

Our method consists of two stages: inducing CMI
scores and decoding syntactic dependency struc-
ture from the CMI score. We incorporate the POS
constraint in the induction stage and incorporate
the adjacent-connect and the function word head
constraint in the decoding stage.

3.1 Inducing CMI Scores

We define the bi-lexical dependence score as the
CMI between two words X; and X ; under side in-
formation c. The side information includes, manda-
torily, the context x_;; and, optionally, the POS
constraint y; and y; for X; and X ;. We compute the
CMI with Eq. 4 and use a causal language model
(CLM) distribution for p. Our experiments show
that CLMs provide higher-quality samples than
masked language models. Eq. 4 is an equivalent
form of Eq. 1 that is more suitable for the sampling-
based estimation of the CMI score. The first term is
the expected probability of samples from the joint
distribution X; X |c, whereas the second term is the
expected probability of samples from the marginal
product distribution X;|c ® Xj|c.
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3.1.1 Sampling with the POS Constraint

Directly applying the MH algorithm to the CLM
could not incorporate the POS constraint into the
CMI score because the CLM predicts the next word
based on its preceding context without consider-
ing any POS constraint. We incorporate the POS
constraint by applying a mask over the CLM’s out-
put distribution. Rijkhoff (2007) points out that
POS is a set of words with the same grammati-
cal properties. By the definition, we can impose
a POS constraint y; for the word X; by masking
out words that do not have the grammatical prop-
erty specified by the POS. We translate the idea
into Eq.5. Eq.5 defines the conditional distribu-
tion p(z;|xj, x_;;,y;) by renormalizing the CLM
probability of a word p(z;|z;, x—;;) with the total
probability of all words satisfying the POS con-
straint ZXi p(z; ‘xﬁ x_ij) 1(Y(X¢)=y¢)
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3.1.2 Estimating with the POS constraint

Estimating the CMI requires computing the joint
probability of the sentence (x;,x;,z_;;) and the
POS constraint (y;,y;). Unfortunately, one can
not compute the joint probability straightforwardly
as the CLM does not model the POS constraint.
We propose delta-energy (Eq.6), an unbiased es-
timate of the CMI score, to overcome this issue.
Compared to the CMI score, the delta-energy score
eliminates the POS constraint y; and y; inside the
expectation, enabling straightforward computation
of the probability using CLM. We prove that the
elimination is safe such that the delta-energy score
is equivalent to the CMI score when the side infor-
mation c contains only the POS constraint and the
remaining context (Appendix A.1)
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3.2 Decoding Syntactic Dependency from
Delta-Energy Scores

We apply Prim’s algorithm (Prim, 1957) to decode
an undirected dependency tree from the symmet-
ric delta-energy score. We additionally apply two
grammatical constraints at this stage: the adjacent-
connect constraint and the function-word head con-
straint.

The adjacent-connect constraint is a default strat-
egy when a word is not statistically dependent on
the rest of the sentence (i.e., Vj, I;j(x) ~ 0). In
that case, we default the word to be connected
with its right neighbor, inspired by the high pars-
ing performance of a trivial baseline that connects
adjacent words (Klein and Manning, 2004). We
set a threshold 7 such that a word is automatically
connected to its right neighbor if the accumulative
delta-energy score between the word and the rest
of the sentence is below 7.

The function-word head constraint (Noji et al.,
2016) prevents function words from being a syn-
tactic head in the decoded structure. In the context
of undirected dependencies, the constraint prevents
function words from having more than one connec-
tion to other words. We enforce the constraint by

gradually decreasing delta-energy scores related to
the function word that violates the constraint. As
we will see in Section 4, the two constraints are
effective in improving the parsing performance.

4 Experiment

4.1 Experiment Setup

We use three datasets for experiments: EWT-10,
WSJ-10 (Klein and Manning, 2004), and PUD.
Among the three, the EWT-10 and the WSJ-10
dataset contain sentences shorter than 10 words
(excluding punctuations) from the English Web
Treebank (Bies, Ann et al., 2012) and the Penn
Treebank (Marcus, Mitchell P. et al., 1999) respec-
tively. The main reason for using the EWT-10
and the WSJ-10 datasets is the high computational
cost of the delta-energy estimation. For example,
running the delta-energy estimation on the develop-
ment section of EWT-10 takes 48 GPU hours on a
single A100 GPU. In addition, the WSJ-10 dataset
is widely used for unsupervised dependency pars-
ing (Klein and Manning, 2004; Cohen and Smith,
2009). The PUD dataset contains the full English
section of the Parallel Universal Dependency tree-
bank (Zeman et al., 2018). The EWT-10 and the
PUD dataset contain dependencies annotated in the
universal dependency format (Nivre et al., 2020)
while the WSJ-10 contains dependencies annotated
in the Stanford dependency format (de Marneffe
and Manning, 2008). We use the development sec-
tion of the EWT-10 dataset (i.e., EWT-DEV-10) to
analyze the correlation between the syntactic de-
pendency and the delta-energy score and to evalu-
ate the parsing model derived from the delta-energy
score. We use the test section of the EWT-10
dataset, the WSJ-10 dataset, and the PUD dataset
to evaluate the models’ parsing performance on
universal dependencies, on Stanford dependencies,
and on long sentences, respectively. The parsing
performance is measured in Unlabelled Undirected
Attachment Score (UUAS) (Nivre and Fang, 2017)
due to the symmetricity of the delta-energy score.
We compute the UUAS score for syntactic depen-
dencies that connect actual words for all experi-
ments (i.e., we exclude the root dependency from
the evaluation).

We use the bert-large-cased model (Devlin
et al., 2019) for the proposal distribution and the
gpt2-large model (Radford et al., 2019) for the
target distribution when sampling for the EWT-10
and the WSJ-10 datasets. For the PUD dataset, we



Dependence Scores | P-Value ({) | Cohen’s d (1)
delta-energy 0.00E+00 1.14
pmi 2.38E-214 | 0.69
perturbed-masking | 0.00E+00 1.11

Table 1: P-value and Cohen’s d value for the three scores
in separating the syntactic dependency from the non-
dependency. The p-value indicates whether the score
can separate the two dependencies, and the d value
indicates the separation effect. A low p-value and a high
d value indicate a good separation score.

alternatively use the opt-125m model (Zhang et al.,
2022) for the target distribution to speed up the
sampling process. We take one sample for every
12 sampling steps to avoid correlation between sub-
sequent samples. In total, we collect 128 samples
for every word pair. We limit words that can be
sampled from the bert-1large-cased model to the
vocabulary of the bert model to reduce the compu-
tational and implementation complexity. We use
the POS tag provided in the dataset for implement-
ing the POS constraint and the function word head
constraint. We run each experiment once because
our method is parameter-free and also because of
the high computational cost.

We use three baselines for analyses: the pmi
baseline (Hoover et al., 2021), the perturbed-
masking baseline 2 (Wu et al., 2020), and the
adjacent-connect baseline (Klein and Manning,
2004).

4.2 Correlation between Syntactic
Dependencies and Dependence Scores

The core question we seek to answer in this pa-
per is: whether and to what degree does the syn-
tactic dependency correlate with bi-lexical depen-
dence scores? We answer this question by studying
whether and how much the dependence score can
separate the syntactic dependency from the non-
dependency. We compare the delta-energy score
with the dependence score derived from the pmi
and the score derived from the perturbed-masking
baseline. The experiment shows that the delta-
energy score can separate and separates the syn-
tactic and the non-dependency well.

The first column in Table 1 shows the p-value
for the t-test with a null hypothesis that the syn-
tactic dependency and the non-dependency have
the same mean dependence score. All three scores

%we use the released code for the experiment but corrected
an implementation bug. See Appendix.A.3
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Figure 2: Cohen’s d value by linear dependency lengths

have a p-value of O or close to 0, suggesting that all
dependence scores can separate the syntactic and
the non-dependency as two statistical populations.

The second column shows Cohen’s d value,
which measures the separation effect of the de-
pendence score. The delta-energy score has the
highest d value of 1.14 3 among the three depen-
dence scores. The perturbed-masking score has a
medium d value of 1.11, and the pmi score has the
lowest d value of 0.69. This result indicates that
the delta-energy score is the best score for separat-
ing the dependency and the non-dependency group.
The high d value suggests that the delta-energy
model could perform better than the two baseline
models in parsing performance, as we will see in
the next section.

However, syntactic dependencies are not uni-
formly distributed across all dependency lengths.
The syntactic dependency, on average, has shorter
lengths than the non-dependency. The discrepancy
creates a concern that the above analysis is not only
measuring the separation of the syntactic depen-
dency and the non-dependency but also the effect
of the short and the long dependency. To counteract
the concern, Fig. 2 breaks down the d value by the
linear dependency length (i.e., the number of words
between the word pair). The delta-energy score has
the highest d value for most dependency lengths.
The result reinforces the observation derived from
Table 1 that the delta-energy score is the best score
in separating the syntactic dependency from the
non-dependency.

4.3 Parsing Performance of the Delta-Energy
Model

Table 2 shows the parsing performance of the delta-
energy model and the baseline parsing models on

3A d value of 0.5 indicates a medium effect, 0.8 a large
effect, and 1.2 a very large effect (Sawilowsky, 2009)



Dependence Score | UUAS
delta-energy 0.631
pmi 0.559
perturbed-masking | 0.586
adjacent-connect 0.497

Table 2: UUAS scores of the delta-energy and the base-
line models on the EWT-DEV-10 dataset
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Figure 3: UUAS scores for syntactic dependencies of
different lengths on the EWT-DEV-10 dataset

the EWT-DEV-10 dataset. The delta-energy model
performs the best, leading the perturbed-masking
model (the second-best model) by 0.046. The delta-
energy, the perturbed-masking, and the pmi model
outperform the adjacent-connect baseline by a large
margin. The result confirms that the delta-energy
score is the best score for separating the syntactic
dependency from the non-dependency. The high
performance of the delta-energy, the perturbed-
masking, and the pmi model indicates that one
can recover a non-trivial amount of syntactic de-
pendencies by measuring the bi-lexical dependence
score.

Fig. 3 plots the UUAS scores of the delta-energy
model and the baseline models for recovering the
syntactic dependency of different lengths. The
delta-energy model performs the best for the syn-
tactic dependency with lengths up to 3, performs
similarly to the perturbed-masking model for the
syntactic dependency with a length of 4, and per-
forms the worst for the syntactic dependency with
lengths 5 and 6. The result reveals the source of
the delta-energy model’s improvement: the short-
length dependency, which makes up the majority of
the syntactic dependency. For example, the EWT-
DEV-10 dataset has 484 dependencies of lengths
greater or equal to 4 while containing 4036 depen-
dencies of lengths less than 4.

Fig. 4 shows the UUAS scores for relations
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Figure 4: UUAS of relations where the performance
difference between the delta-energy and the perturbed-
masking model is greater than 0.1. The left part plots
the relations where the delta-energy model performs
better, and the right part plots the relations where the
perturbed-masking model performs better.

where the performance difference between the
delta-energy and the perturbed-masking model is
more than 0.1. The delta-energy model outper-
forms the perturbed-masking model in recovering
the semantically-related dependencies while un-
derperforming in recovering functionally-related
dependencies. The result indicates that the delta-
energy model is more sensitive to semantically-
related dependencies than functionally-related de-
pendencies.

4.4 Ablation Study

model

UUAS (% loss)

Precision (% loss)

+UPOS, +ADIJC, +FNWH

0.6313 (0.00%)

0.6332 (0.00%)

+UPOS, +ADIJC, -FNWH

0.6064 (-3.94%)

0.6064 (-4.23%)

+UPOS, -ADJC, +FNWH

0.5518 (-12.59%)

0.5934 (-6.29%)

+UPOS, -ADJC, -FNWH

0.5319 (-15.75%)

0.5712 (-9.79%)

-UPOS, +ADJC, +FNWH

0.5937 (-5.96%)

0.5966 (-5.78%)

-UPOS, +ADIJC, -FNWH

0.5544 (-12.18%)

0.5544 (-12.44%)

-UPOS, -ADJC, +FNWH

0.5403 (-14.41%)

0.58 (-8.40%)

-UPOS, -ADJC, -FNWH

0.4992 (-20.93%)

0.535 (-15.51%)

Table 3: Ablation analysis for the delta-energy model.
+UPOS indicates the use of the POS constraint, +ADJC
indicates the adjacent-connect constraint, and +FNWH
indicates the function word head constraint.

Table 3 presents an ablation study for the three
grammatical constraints. The UPOS, ADJC, and
FNWH represent the POS, the adjacent-connect,
and the function word head constraint, respectively.
The +/- sign indicates whether the model uses the
constraint. The Table shows that removing the
POS or the FNWH constraint equally decreases
the UUAS and the precision score. On the other



hand, removing the ADJC constraint decreases the
UUAS score more than the precision score. This
is because, in some cases, the delta-energy score
measures a 0 dependence score between one word
and the rest of the sentence. The 0 dependence
score creates an orphan problem in that the word
is statistically disconnected from the rest of the
sentence, resulting in an underprediction of the
syntactic dependency. The ADJC constraint miti-
gates the orphan problem by forcibly connecting
the word to its right neighbor. The ablation study
with the UUAS score indicates that all grammati-
cal constraints benefit the parsing performance and
that the adjacent-connect constraint is important in
resolving the orphan problem.

Fig. 5 analyzes which relation the grammati-
cal constraint helps the most. The figures plot
the UUAS for the relation where removing the re-
spective grammatical constraint causes more than
0.1 loss in UUAS. Fig. 5a shows that the ADJC
constraint improves performance for a wide range
of dependencies. Fig. 5b shows that the POS
constraint improves performance for dependen-
cies with strong POS requirements. For example,
the conj relation requires two words to have the
same POS tag. The parataxis relation also includes
cases where the two words have the same POS tag
(Nivre et al., 2020). Fig. 5c shows that the FNWH
constraint improves performance for semantically-
related dependencies. The nsubj, obl, and advcl
dependencies connect words with their semantic
arguments. The nmod and acl relation connect
words with their modifiers. These dependencies
contribute to the semantics of the sentence. The
result suggests that grammatical constraints are im-
portant for decoding syntactic dependencies from
language models.

4.5 Comparison with State-of-the-Arts in
Unsupervised Parsing

Type Models EWT-TEST-10 | WSJ-10 | PUD
Parameter-free delta-energy 0.615 0.592 | 0.525
Probing Models perturbed-masking 0.591 0.584 | 0.507
mlmbias 0.352 0.586 | 0.495

Grammar-based | dmv 0.611 0.597 | 0.484
Models ledmv 0.659 0.614 | 0.554

Table 4: Comparison of the delta-energy model with
unsupervised parsing models. The best score for the
parameter-free probing models is in bold.

Table 4 compares the delta-energy model with
two parameter-free probing models (perturbed-
masking and mlmbias (Zhang and Hashimoto,

2021)) and two parametric grammar-based mod-
els (dmv (Klein and Manning, 2004) and lcdmv
(Noji et al., 2016)) 4. The dmv model has the
same grammatical constraint as the delta-energy
model, while the lcdmv model has an additional
constraint that the sentence can not have a deep
recursive center-embedding structure (Noji et al.,
2016). Table 4 shows that the delta-energy model
performs the best among the parameter-free prob-
ing models. Compared to the dmv model, the delta-
energy model performs better on the PUD dataset
and performs similarly on the EWT-TEST-10 and
the WSJ-10 datasets. The better performance on
the PUD dataset highlights the strength of the delta-
energy model in comparison with the dmv model, a
grammar-based model using the same grammatical
constraint. Nonetheless, the delta-energy model
falls behind the lcdmv model because the lcdmv
model has access to additional grammatical con-
straints. The result again reinforces the importance
of the grammatical constraint in recovering syntac-
tic dependencies from language models.

5 Related Works

5.1 Parameter-free Probing Methods

The pmi score (Hoover et al., 2021) measures the
bi-lexical dependence score using the log-ratio be-
tween the informed and the null probability given
by the BERT model. Besides the estimation prob-
lem mentioned in Section 2, the pmi score failed
to utilize the POS information. In comparison, our
method can utilize the POS information as a con-
straint and improves parsing performance with the
information.

The perturbed-masking score (Wu et al., 2020)
measures the bi-lexical dependence score using the
Euclidean distance of the embedding that generates
the informed and the null probability. Despite the
simple approach, the perturbed-masking score per-
forms well in recovering the syntactic dependency.
However, the perturbed-masking score operates
in the embedding space, making it difficult to es-
tablish a direct connection between the syntactic
dependency and the language modeling objective.
In contrast, our delta-energy score operates in the
probabilistic space and, consequently, can establish
a more direct connection with the language model-
ing objective. Furthermore, the perturbed masking
score cannot utilize the POS information like the

*We use the code released by Noji et al. (2016) for the dmv
and the lcdmv model
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Figure 5: Ablation analysis by dependency relations where removing the respective constraint causes more than 0.1

loss in UUAS score

pmi score, whereas our delta-energy score can uti-
lize the POS information for better performance.

Zhang and Hashimoto (2021) measures the bi-
lexical dependence score using their formulation
of the “conditional mutual information”. However,
their formulation has two theoretical issues. Firstly,
their formulation has an upper bound of 0, in con-
trast to the widely-known CMI, which is a strictly
non-negative metric. Secondly, two statistically in-
dependent variables can obtain the maximum value
under their formulation. The two issues disqualify
their formulation as a valid dependence score. We
present the proof in Appendix A.2.

5.2 Parametric Grammar-based Methods

The Grammar-based parametric method (Klein and
Manning, 2004; Noji et al., 2016) induces gram-
mar by maximizing the likelihood of observed sen-
tences. While the method can theoretically avoid
the data availability problem of lacking depen-
dency annotations, most studies assume the POS
information (Han et al., 2020). Effectively, the
grammar-based method is still constrained by the
availability of the POS information. On the other
hand, our method can utilize the POS informa-
tion as supplementary information. Moreover, the
grammar-based method requires a special initializa-
tion (Klein and Manning, 2004; Yang et al., 2020)
or grammatical constraints (Noji et al., 2016) to
induce grammar successfully. As shown in Sec.4,
our method can benefit from the constraint but does
not require the constraint to extract the dependency

properly.
6 Conclusions

In this paper, we studied the correlation between
syntactic dependencies and CMI scores derived
from causal language models and the application

of the CMI score on unsupervised parsing. We
proposed delta-energy, an unbiased estimate of
the CMI score that allows the incorporation of
POS constraints. We verified that syntactically
connected words are more statistically dependent
under causal language model distributions. The
delta-energy score is the best metric for separat-
ing syntactic dependencies from non-dependencies.
We found that the unsupervised parsing model in-
duced by the delta-energy score outperforms base-
line models by a large margin. The delta-energy
model outperforms baseline models in recovering
semantically-related dependencies but underper-
forms in recovering functionally-related dependen-
cies. Our ablation study shows that the POS, the
adjacent-connect, and the function word head con-
straint benefit the parsing performance. The POS
constraint contributes to the recovery of dependen-
cies with strong POS requirements. The adjacent-
connect constraint boosts the performance in re-
covering a wide range of dependencies. The func-
tion word head constraint significantly contributes
to recovering semantically related dependencies.
The result indicates the importance of grammati-
cal constraints in extracting syntactic dependencies
from language models. The delta-energy model per-
forms strongly against state-of-the-art parameter-
free probing models and matches the performance
of the grammar-based parametric model using sim-
ilar grammatical constraints.

7 Limitations

A concern we have is the high computational cost
of the MH algorithm. At every sampling step, the
MH algorithm has to evaluate the probability of the
sentence &' = (1, ..., Ti—1, T}, Tit1, ..., Tpn) With
the proposal sample z/. Since we collect 128 sam-



ples and take one sample for every 12 sampling
steps, we have to evaluate the sentence probability
1536 times to estimate the CMI score for a word
pair. The above is for the constant factor of the
computational complexity. The total computational
complexity for a sentence with n words is O(n”)
considering that the CLM model has a computa-
tional complexity of O(n?) (O(n?) complexity for
one pass through the transformer model and O(n)
steps to obtain the probability for each word in
the sentence). The high computational cost pre-
vents us from conducting a large-scale multilingual
experiment for languages that have dependency
annotations (Nivre et al., 2020) available.
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A Appendix

A.1 Equivalence of Delta-Energy and CMI

Proposition 1. IZ-? Eis equivalent with I;; when
the side information c contains only the POS infor-
mation (y;, y;) and the remaining context x_;j.

We first look at the definition of CMI. Let ¢ =
(xfi]W Yi, y])

Li; (x) e
p(xi, xjc) }
X;Xjle |: p(.’L‘l|C)p(x]‘c)
p(I’UIJHC) :|
X XJ‘ [ p(l’i‘c)p(;rj7c)
I Ti,Tj,C
=E (zi,2)~X; X e logu} (10)
(z},2})~X;|e®X e p(aile)p( )
Tiy T,
=E (2;2;)~X:Xjlc logpg ot g] (11
(Z;vz;)NXHC@Xﬂc pﬂ,’“ﬂ,’ c
LiyLj, T—s 1 T,z
=E (Iinj)NXin|C logp( J J)]ly( J) YirYj
(z},25)~Xile®@Xjle | p(l’ Z’J7$ 17) Y (a)a)=vi v,
(12)
Ti, Tj, Tij
=E (;25)~x;x50c |lo M} (13)
(z;,z;)NX”g@X”C L p(wz,x],x 7.])
= 15" (@) 14

The key to the proof lies in that the samples al-
ways satisfy the condition Y (z;, ;) = v;,y; and
Y(j,2%) = yi,y;. Consequently, the indicator
function will always return 1 and enables us to
safely remove the POS information inside the ex-

pectation.

A.2 Theoretical Issues of Zhang and
Hashimoto (2021)

They proposed a formulation of “conditional mu-
tual information” (Eq.15)

I"(x)= E

X Xjlz

log p(wi|z;, v—i5)

—ij

E

Xjlzix—ij

—log p(ilzy, v—i5) 15)

We prove the following propositions

Proposition 2. The upper bound of I 5H is 0.
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Proof.

15 = _E

Xilz 45

[ E  logp(zilz;,z—i;)
Xjlwix_ij

E

X|zz]

< E E
Xilz_qj Xjlzi,x—ij

E

Xjles,x_s

—log $i|37j7$ij):| (]6)

[logp(fl?i-’ﬂj#ﬂ—ij)

log p(zs]z;, wij)] ] a7

(18)
O

Proposition 3. Two statistically independent can
reach the maximum value of 0 under I gH .

Proof. Let the two random variables be defined
over a two-value set X;, X; = {0, 1}. Each value
has a probability of 0.5. Consequently, we have the
joint and the marginal probability as shown in the
following table.

Xl Jo Jt |
X; [[Prob ] 05 |05
0 |05 [025]025
1 |05 |025]025

1M (X X;) = (2% 0.5) [(0.5 £2)10g0.5  (19)

~log(0.5 %2 % 0.5)}
-0

(20)
@n

O

A.3 Implementation bug in Wu et al. (2020)

Datasets Released | Corrected
EWT-DEV-10 0.626 0.586
EWT-TEST-10 0.581 0.591
WSIJ-10 0.572 0.584
PUD 0.501 0.507

Table 5: UUAS of the released implementation vs. our
corrected implementation on four datasets

Wau et al. (2020) applies a softmax normalizing
the dependence score I;; based on all dependence
scores I;. related to the word X;. However, we
found that their implementation produces a normal-
ized score with a value far greater than 1, which



is impossible as the softmax function produces re-
sults in the range of [0, 1]. We fix the bug using
the implementation provided in the scipy (Virta-
nen et al., 2020) package. Table 5 compares the
performance of the released implementation and
our corrected implementation. We see that, except
for the EWT-DEV-10 dataset, the corrected imple-
mentation outperforms the released implementa-
tion. This suggests that our implementation does
not artificially lower the method’s performance in
any way.
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