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Abstract—Existing work on Counterfactual Explanations (CE)
and Algorithmic Recourse (AR) has largely focused on single
individuals in a static environment: given some estimated model,
the goal is to find valid counterfactuals for an individual
instance that fulfill various desiderata. The ability of such
counterfactuals to handle dynamics like data and model drift
remains a largely unexplored research challenge. There has also
been surprisingly little work on the related question of how
the actual implementation of recourse by one individual may
affect other individuals. Through this work, we aim to close
that gap. We first show that many of the existing methodologies
can be collectively described by a generalized framework. We
then argue that the existing framework does not account for
a hidden external cost of recourse, that only reveals itself when
studying the endogenous dynamics of recourse at the group level.
Through simulation experiments involving various state-of-the-
art counterfactual generators and several benchmark datasets,
we generate large numbers of counterfactuals and study the
resulting domain and model shifts. We find that the induced
shifts are substantial enough to likely impede the applicability of
Algorithmic Recourse in some situations. Fortunately, we find
various strategies to mitigate these concerns. Our simulation
framework for studying recourse dynamics is fast and open-
sourced.

Index Terms—Algorithmic Recourse; Counterfactual Explana-
tions; Explainable AI; Dynamic Systems

I. INTRODUCTION

Recent advances in Artificial Intelligence (AI) have pro-
pelled its adoption in scientific domains outside of Computer
Science including Healthcare, Bioinformatics, Genetics and
the Social Sciences. While this has in many cases brought
benefits in terms of efficiency, state-of-the-art models like
Deep Neural Networks (DNN) have also given rise to a
new type of problem in the context of data-driven decision-
making. They are essentially black boxes: so complex, opaque
and underspecified in the data that it is often impossible

to understand how they actually arrive at their decisions
without auxiliary tools. Despite this shortcoming, black-box
models have grown in popularity in recent years and have at
times created undesirable societal outcomes [1]. The scientific
community has tackled this issue from two different angles:
while some have appealed for a strict focus on inherently
interpretable models [2], others have investigated different
ways to explain the behaviour of black-box models. These
two sub-domains can be broadly referred to as interpretable
AI and explainable AI (XAI), respectively.

Among the approaches to XAI that have recently grown
in popularity are Counterfactual Explanations (CE). They
explain how inputs into a model need to change for it to
produce different outputs. Counterfactual Explanations that
involve realistic and actionable changes can be used for the
purpose of Algorithmic Recourse (AR) to help individuals
who face adverse outcomes. An example relevant to the Social
Sciences is consumer credit: in this context, AR can be
used to guide individuals in improving their creditworthiness,
should they have previously been denied access to credit
based on an automated decision-making system. A meaningful
recourse recommendation for a denied applicant could be:
“If your net savings rate had been 10% of your monthly
income instead of the actual 8%, your application would
have been successful. See if you can temporarily cut down on
consumption.” In the remainder of this paper, we will use both
terminologies—recourse and counterfactual—interchangeably
to refer to situations where counterfactuals are generated with
the intent to provide individual recourse.

Existing work in this field has largely worked in a static
setting: various approaches have been proposed to generate
counterfactuals for a given individual that is subject to some
pre-trained model. More recent work has compared different



Fig. 1. Dynamics in Algorithmic Recourse: (a) we have a simple linear
classifier trained for binary classification where samples from the negative
class (y = 0) are marked in orange and samples of the positive class (y = 1)
are marked in blue; (b) the implementation of AR for a random subset of
individuals leads to a noticeable domain shift; (c) as the classifier is retrained
we observe a corresponding model shift; (d) as this process is repeated, the
decision boundary moves away from the target class.

approaches within this static setting [3]. In this work, we go
one step further and ask ourselves: what happens if recourse
is provided and implemented repeatedly? What types of dy-
namics are introduced and how do different counterfactual
generators compare in this context?

Research on Algorithmic Recourse has also so far typically
addressed the issue from the perspective of a single individual.
Arguably though, most real-world applications that warrant
AR involve potentially large groups of individuals typically
competing for scarce resources. Our work demonstrates that
in such scenarios, choices made by or for a single individual
are likely to affect the broader collective of individuals in ways
that many current approaches to AR fail to account for. More
specifically, we argue that a strict focus on minimizing the
private costs to individuals may be too narrow an objective.

Figure 1 illustrates this idea for a binary problem involving
a linear classifier and the counterfactual generator proposed by
Wachter et al. [4]: the implementation of AR for a subset of
individuals immediately leads to a visible domain shift in the
(blue) target class (b), which in turn triggers a model shift (c).
As this game of implementing AR and updating the classifier
is repeated, the decision boundary moves away from training
samples that were originally in the target class (d). We refer
to these types of dynamics as endogenous because they are
induced by the implementation of recourse itself. The term
macrodynamics is borrowed from the economics literature
and used to describe processes involving whole groups or
societies.

We think that these types of endogenous dynamics may be
problematic and deserve our attention. From a purely technical
perspective, we note the following: firstly, model shifts may
inadvertently change classification outcomes for individuals
who never received recourse. Secondly, we observe in Figure
1 that as the decision boundary moves in the direction of
the non-target class, counterfactual paths become shorter. We
think that in some practical applications, this can be expected
to generate costs for involved stakeholders. To follow our
argument, consider the following two examples:

Example I.1 (Consumer Credit). Suppose Figure 1 relates to
an automated decision-making system used by a retail bank
to evaluate credit applicants with respect to their creditworthi-
ness. Assume that the two features are meaningful in the sense

that creditworthiness decreases in the bottom-right direction.
Then we can think of the outcome in panel (d) as representing
a situation where the bank supplies credit to more borrowers
(blue), but these borrowers are on average less creditworthy
and more of them can be expected to default on their loan.
This represents a cost to the retail bank.

Example I.2 (Student Admission). Suppose Figure 1 relates to
an automated decision-making system used by a university in
its student admission process. Assume that the two features are
meaningful in the sense that the likelihood of students com-
pleting their degree decreases in the bottom-right direction.
Then we can think of the outcome in panel (b) as representing
a situation where more students are admitted to university
(blue), but they are more likely to fail their degree than
students that were admitted in previous years. The university
admission committee catches on to this and suspends its efforts
to offer Algorithmic Recourse. This represents an opportunity
cost to future student applicants, that may have derived utility
from being offered recourse.

Both examples are exaggerated simplifications of potential
real-world scenarios, but they serve to illustrate the point
that recourse for one single individual may exert negative
externalities on other individuals.

To the best of our knowledge, this is the first work investi-
gating endogenous macrodynamics in AR. Our contributions
to the state of knowledge are as follows: firstly, we posit
a compelling argument that calls for a novel perspective on
Algorithmic Recourse extending our focus from single individ-
uals to groups (Sections II and III). Secondly, we introduce an
experimental framework extending previous work by Altmeyer
[5], which enables us to study macrodynamics of Algorithmic
Recourse through simulations that can be fully parallelized
(Section IV). Thirdly, we use this framework to provide a first
in-depth analysis of endogenous recourse dynamics induced by
various popular counterfactual generators proposed in [4], [6],
[7], [8] and [9] (Sections V and VI). Fourthly, given that we
find a substantial impact of recourse, we propose and assess
various mitigation strategies (Section VII). Finally, we discuss
our findings in the broader context of the literature in Section
VIII, before pointing to some of the limitations of our work
as well as avenues for future research in Section IX. Section
X concludes.

II. BACKGROUND

In this section, we provide a review of the relevant literature.
First, Subsection II-A discusses the existing research within
the domain of Counterfactual Explanations and Algorithmic
Recourse. Then, Subsection II-B presents some of the previous
work on the measurement of data and model shifts.

A. Algorithmic Recourse

A framework for Counterfactual Explanations was first
proposed in 2017 by Wachter et al. [4] and has served as
the baseline for many methodologies that have been proposed
since then. Let M : X 7→ Y denote some pre-trained model



that maps from inputs X ∈ X to outputs Y ∈ Y . Then we
are interested in minimizing the cost1 C = cost(x′) incurred
by individual x when moving to a counterfactual state x′ such
that the predicted outcome M(x′) corresponds to some target
outcome y∗:

min
x′∈X

cost(x′) s. t. M(x′) = y∗ (1)

For implementation purposes, (1) is typically approximated
through regularization:

x′ = argmin
x′

yloss(M(x′), y∗) + λcost(x′) (2)

In the baseline work [4], the cost function is proxied
by some distance metric based on the simple intuition that
perturbations of x are costly to the individual. For models
that are differentiable and produce smooth predictions, (2)
can be solved through gradient descent. This summarizes the
approach followed in [4] which we refer to simply as Wachter,
the name of the first author, in the remainder of this paper.

Many approaches for the generation of Algorithmic Re-
course have been described in the literature since 2017. An
October 2020 survey by Karimi et al. laid out 60 algorithms
that have been proposed since 2014 [10]. Another survey
published around the same time by Verma et al. described 29
algorithms [11]. Different approaches vary primarily in terms
of the objective functions they impose, how they optimize said
objective (from brute force through gradient-based approaches
to graph traversal algorithms), and how they ensure that
certain requirements for CE are met. Regarding the latter,
the literature has produced an extensive list of desiderata
each addressing different needs. To name but a few, we are
interested in generating counterfactuals that are close [4],
actionable [12], realistic [6], sparse, diverse [8] and if possible
causally founded [13].

Efforts so far have largely been directed at improving the
quality of Counterfactual Explanations within a static context:
given some pre-trained classifier M : X 7→ Y , we are inter-
ested in generating one or multiple meaningful Counterfactual
Explanations for some individual characterized by x. The
ability of Counterfactual Explanations to handle dynamics like
data and model shifts remains a largely unexplored research
challenge at this point [11]. We have been able to identify
only one recent work by Upadhyay et al. that considers the
implications of exogenous domain and model shifts in the
context of AR [14]. Exogenous shifts are strictly of external
origin. For example, they might stem from data correction,
temporal shifts or geospatial changes [14]. Upadhyay et al.
[14] propose ROAR: a framework for Algorithmic Recourse
that evidently improves robustness to such exogenous shifts.

As mentioned earlier, research has so far also generally
focused on generating counterfactuals for single individuals
or instances. We have been able to identify only one existing
work that investigates black-box model behaviour towards a

1Equivalently, others have referred to this quantity as complexity or simply
distance.

group of individuals [15]. The authors propose an optimiza-
tion framework that generates collective counterfactuals. We
provide a motivation for doing so from the perspective of
endogenous macrodynamics of Algorithmic Recourse.

B. Domain and Model Shifts

Much attention has been paid to the detection of dataset
shifts – situations where the distribution of data changes over
time. Rabanser et al. suggest a framework to detect data drift
from a minimal number of samples through the application
of two-sample tests [16]. This task is a generalization of the
anomaly detection problem for large datasets, which aims to
answer the question if two sets of samples could have been
generated from the same probability distribution. Numerous
approaches to anomaly detection have been summarized [17].
Another well-established research topic is concept drift: situ-
ations where external variables influence the patterns between
the input and the output of a model [18]. For instance, Gama et
al. offer a review of the adaptive learning techniques which can
handle concept drift [19]. Less previous work is available on
the related topic of model drift: changes in model performance
over time. Nelson et al. review how resistant different machine
learning models are to model drift [20]. Ackerman et al. offer a
method to detect changes in model performance when ground
truth is not available [21].

In the context of Algorithmic Recourse, domain and model
shifts were first brought up by the authors behind ROAR
[14]. In their work, they refer to model shifts as simply any
perturbation ∆ to the parameters of the model in question: M .
While this also sets the baseline for our analysis here, it is
worth noting that in [14] these perturbations are mechanically
introduced. In contrast, we are interested in quantifying model
shifts that arise endogenously as part of a dynamic recourse
process. In addition to quantifying the magnitude of shifts ∆,
we aim to also analyse the characteristics of changes to the
model, such as the position of the decision boundary and the
overall decisiveness of the model. We have not been able to
identify previous work on this topic.

C. Benchmarking Counterfactual Generators

Despite the large and growing number of approaches
to counterfactual search, there have been surprisingly few
benchmark studies that compare different methodologies. This
may be partially due to limited software availability in
this space. Recent work has started to address this gap:
firstly, [22] run a large benchmarking study using differ-
ent algorithmic approaches and numerous tabular datasets;
secondly, [3] introduce a Python framework—CARLA—that
can be used to apply and benchmark different methodolo-
gies; finally, CounterfactualExplanations.jl [5]
provides an extensible and fast implementation in Ju-
lia. Since the experiments presented here involve exten-
sive simulations, we have relied on and extended the Ju-
lia implementation due to the associated performance ben-
efits. In particular, we have built a framework on top
of CounterfactualExplanations.jl that extends

https://github.com/pat-alt/CounterfactualExplanations.jl
https://github.com/pat-alt/CounterfactualExplanations.jl


the functionality from static benchmarks to simulation ex-
periments: AlgorithmicRecourseDynamics.jl2. The
core concepts implemented in that package reflect what is
presented in Section IV of this paper.

III. GRADIENT-BASED RECOURSE REVISITED

In this section, we first set out a generalized framework
for gradient-based counterfactual search that encapsulates the
various Individual Recourse methods we have chosen to use in
our experiments (Section III-A). We then introduce the notion
of a hidden external cost in Algorithmic Recourse and extend
the existing framework to explicitly address this cost in the
counterfactual search objective (Section III-B).

A. From Individual Recourse . . .

We have chosen to focus on gradient-based counterfactual
search for two reasons: firstly, they can be seen as direct
descendants of our baseline method (Wachter); secondly,
gradient-based search is particularly well-suited for differen-
tiable black-box models like deep neural networks, which we
focus on in this work. In particular, we include the following
generators in our simulation experiments below: REVISE [7],
CLUE [9], DiCE [8] and a greedy approach that relies on
probabilistic models [6]. Our motivation for including these
different generators in our analysis is that they all offer slightly
different approaches to generating meaningful counterfactuals
for differentiable black-box models. We hypothesize that gen-
erating more meaningful counterfactuals should mitigate the
endogenous dynamics illustrated in Figure 1 in Section I. This
intuition stems from the underlying idea that more meaningful
counterfactuals are generated by the same or at least a very
similar data-generating process as the observed data. All else
equal, counterfactuals that fulfil this basic requirement should
be less prone to trigger shifts.

As we will see next, all of them can be described by the
following generalized form of Equation (3):

s′ = arg min
s′∈S
{yloss(M(f(s′)), y∗) + λcost(f(s′))} (3)

Here s′ = {s′k}K is a K-dimensional array of counterfac-
tual states and f : S 7→ X maps from the counterfactual
state space to the feature space. In Wachter, the state space
is the feature space: f is the identity function and the num-
ber of counterfactuals K is one. Both REVISE and CLUE
search counterfactuals in some latent space S instead of the
feature space directly. The latent embedding is learned by a
separate generative model that is tasked with learning the data-
generating process (DGP) of X . In this case, f in Equation (3)
corresponds to the decoder part of the generative model, that
is the function that maps back from the latent space to inputs.
Provided the generative model is well-specified, traversing the
latent embedding typically yields meaningful counterfactuals
since they are implicitly generated by the (learned) DGP [7].

2The code has been released as a package: https://github.com/pat-alt/
AlgorithmicRecourseDynamics.jl.

CLUE distinguishes itself from REVISE and other coun-
terfactual generators in that it aims to minimize the predictive
uncertainty of the model in question, M . To quantify predictive
uncertainty, Antoran et al. [9] rely on entropy estimates for
probabilistic models. The greedy approach proposed by Schut
et al. [6], which we refer to as Greedy, also works with the
subclass of models M̃ ⊂ M that can produce predictive
uncertainty estimates. The authors show that in this setting
the cost function cost(·) in Equation (3) is redundant and
meaningful counterfactuals can be generated in a fast and
efficient manner through a modified Jacobian-based Saliency
Map Attack (JSMA). Schut et al. [6] also show that by
maximizing the predicted probability of x′ being assigned to
target class y∗, we also implicitly minimize predictive entropy
(as in CLUE). In that sense, CLUE can be seen as equivalent to
REVISE in the Bayesian context and we shall therefore refer
to both approaches collectively as Latent Space generators3.

Finally, DiCE [8] distinguishes itself from all other gen-
erators considered here in that it aims to generate a diverse
set of K > 1 counterfactuals. Wachter et al. [4] show that
diverse outcomes can in principle be achieved simply by
rerunning counterfactual search multiple times using stochastic
gradient descent (or by randomly initializing the counterfac-
tual)4. In [8] diversity is explicitly proxied via Determinantal
Point Processes (DDP): the authors introduce DDP as a
component of the cost function cost(s′) and thereby produce
counterfactuals s1, ..., sK that look as different from each
other as possible. The implementation of DiCE in our library
of choice—CounterfactualExplanations.jl—uses
that exact approach. It is worth noting that for k = 1, DiCE
reduces to Wachter since the DDP is constant and therefore
does not affect the objective function in Equation (3).

B. . . . towards Collective Recourse

All of the different approaches introduced above tackle the
problem of Algorithmic Recourse from the perspective of
one single individual5. To explicitly address the issue that
Individual Recourse may affect the outcome and prospect
of other individuals, we propose to extend Equation (3) as
follows:

s′ = arg min
s′∈S
{yloss(M(f(s′)), y∗)

+ λ1cost(f(s′)) + λ2extcost(f(s′))}
(4)

Here cost(f(s′)) denotes the proxy for private costs faced
by the individual as before and λ1 governs to what extent

3In fact, there are several other recently proposed approaches to counterfac-
tual search that also broadly fall in this same category. They largely differ with
respect to the chosen generative model: for example, the generator proposed
by Dombrowski et al. [23] relies on normalizing flows.

4Note that (3) naturally lends itself to that idea: setting K to some value
greater than one and using the Wachter objective essentially boils down to
computing multiple counterfactuals in parallel. Here, yloss(·) is first broad-
casted over elements of s′ and then aggregated. This is exactly how counter-
factual search is implemented in CounterfactualExplanations.jl.

5DiCE recognizes that different individuals may have different objective
functions, but it does not address the interdependencies between different
individuals.

(https://github.com/pat-alt/AlgorithmicRecourseDynamics.jl)
https://github.com/pat-alt/AlgorithmicRecourseDynamics.jl
https://github.com/pat-alt/AlgorithmicRecourseDynamics.jl
https://github.com/pat-alt/CounterfactualExplanations.jl
https://github.com/pat-alt/CounterfactualExplanations.jl


that private cost ought to be penalized. The newly introduced
term extcost(f(s′)) is meant to capture and address external
costs incurred by the collective of individuals in response to
changes in s′. The underlying concept of private and external
costs is borrowed from Economics and well-established in that
field: when the decisions or actions by some individual market
participant generate external costs, then the market is said to
suffer from negative externalities and is considered inefficient
[24]. We think that this concept describes the endogenous
dynamics of algorithmic recourse observed here very well. As
with Individual Recourse, the exact choice of extcost(·) is not
obvious, nor do we intend to provide a definitive answer in
this work, if such even exists. That being said, we do propose
a few potential mitigation strategies in Section VII.

IV. MODELLING ENDOGENOUS MACRODYNAMICS IN
ALGORITHMIC RECOURSE

In the following, we describe the framework we propose
for modelling and analyzing endogenous macrodynamics in
Algorithmic Recourse. We introduce this framework with the
ambition to shed light on the following research questions:

Research Question IV.1 (Endogenous Shifts). Does the re-
peated implementation of recourse provided by state-of-the-art
generators lead to shifts in the domain and model?

Research Question IV.2 (Costs). If so, are these dynamics
substantial enough to be considered costly to stakeholders
involved in real-world automated decision-making processes?

Research Question IV.3 (Heterogeneity). Do different coun-
terfactual generators yield significantly different outcomes in
this context? Furthermore, is there any heterogeneity concern-
ing the chosen classifier and dataset?

Research Question IV.4 (Drivers). What are the drivers of
endogenous dynamics in Algorithmic Recourse?

Below we first describe the basic simulations that were gen-
erated to produce the findings in this work and also constitute
the core of AlgorithmicRecourseDynamics.jl—the
Julia package we introduced earlier. The remainder of this
section then introduces various evaluation metrics that can
be used to benchmark different counterfactual generators with
respect to how they perform in the dynamic setting.

A. Simulations

The dynamics illustrated in Figure 1 were generated through
a simple experiment that aims to simulate the process of
Algorithmic Recourse in practice. We begin in the static setting
at time t = 0: firstly, we have some binary classifier M that
was pre-trained on data D = D0 ∪ D1, where D0 and D1

denote samples in the non-target and target class, respectively;
secondly, we generate recourse for a random batch of B
individuals in the non-target class (D0). Note that we focus our

attention on classification problems since classification poses
the most common use-case for recourse6.

In order to simulate the dynamic process, we suppose that
the model M is retrained following the actual implementation
of recourse in time t = 0. Following the update to the model,
we assume that at time t = 1 recourse is generated for yet
another random subset of individuals in the non-target class.
This process is repeated for a number of time periods T . To
get a clean read on endogenous dynamics we keep the total
population of samples closed: we allow existing samples to
move from factual to counterfactual states but do not allow any
entirely new samples to enter the population. The experimental
setup is summarized in Algorithm 1.

Algorithm 1 Simulation Experiment
1: procedure EXPERIMENT(M,D, G)
2: E ← ∅ ▷ Initialize evaluation E.
3: t← 0
4: while t < T do
5: batch ⊂ D0 ▷ Sample from D0 (assignment).
6: batch← G(batch) ▷ Generate counterfactuals.
7: M ←M(D) ▷ Retrain model.
8: E ← eval(M,D) ∪ E ▷ Update evaluation.
9: t← t+ 1 ▷ Increment t.

10: end while
11: return E,M,D
12: end procedure

Note that the operation in line 4 is an assignment, rather than
a copy operation, so any updates to ‘batch’ will also affect D.
The function eval(M,D) loosely denotes the computation of
various evaluation metrics introduced below. In practice, these
metrics can also be computed at regular intervals as opposed
to every round.

Along with any other fixed parameters affecting the counter-
factual search, the parameters T and B are assumed as given
in Algorithm 1. Still, it is worth noting that the higher these
values, the more factual instances undergo recourse throughout
the entire experiment. Of course, this is likely to lead to
more pronounced domain and model shifts by time T . In our
experiments, we choose the values such that the majority of the
negative instances from the initial dataset receive recourse. As
we compute evaluation metrics at regular intervals throughout
the procedure, we can also verify the impact of recourse when
it is implemented for a smaller number of individuals.

Algorithm 1 summarizes the proposed simulation experi-
ment for a given dataset D, model M and generator G, but
naturally, we are interested in comparing simulation outcomes
for different sources of data, models and generators. The
framework we have built facilitates this, making use of multi-
threading in order to speed up computations. Holding the
initial model and dataset constant, the experiments are run for

6To keep notation simple, we have also restricted ourselves to binary
classification here, but AlgorithmicRecourseDynamics.jl can also
be used for multi-class problems.

https://anonymous.4open.science/r/AlgorithmicRecourseDynamics/README.md


all generators, since our primary concern is to benchmark dif-
ferent recourse methods. To ensure that each generator is faced
with the same initial conditions in each round t, the candidate
batch of individuals from the non-target class is randomly
drawn from the intersection of all non-target class individuals
across all experiments {EXPERIMENT(M,D, G)}Jj=1 where J
is the total number of generators.

B. Evaluation Metrics

We formulate two desiderata for the set of metrics used
to measure domain and model shifts induced by recourse.
First, the metrics should be applicable regardless of the
dataset or classification technique so that they allow for the
meaningful comparison of the generators in various scenarios.
As knowledge of the underlying probability distribution is
rarely available, the metrics should be empirical and non-
parametric. This further ensures that we can also measure
large datasets by sampling from the available data. Moreover,
while our study was conducted in a two-class classification
setting, our choice of metrics should remain applicable in
future research on multi-class recourse problems. Second, the
set of metrics should allow capturing various aspects of the
previously mentioned magnitude, path, and pace of changes
while remaining as small as possible.

1) Domain Shifts: To quantify the magnitude of domain
shifts we rely on an unbiased estimate of the squared popula-
tion Maximum Mean Discrepancy (MMD) given as:

MMD(X ′, X̃ ′) =
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj)

+
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(x̃i, x̃j)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, x̃j)

(5)

where X = {x1, ..., xm}, X̃ = {x̃1, ..., x̃n} represent
independent and identically distributed samples drawn from
probability distributions X and X̃ respectively [25]. MMD is a
measure of the distance between the kernel mean embeddings
of X and X̃ in a Reproducing Kernel Hilbert Space, H [26].
An important consideration is the choice of the kernel function
k(·, ·). In our implementation, we make use of a Gaussian
kernel with a constant length-scale parameter of 0.5. As the
Gaussian kernel captures all moments of distributions X and
X̃ , we have that MMD(X, X̃) = 0 if and only if X = X̃ .
Conversely, larger values MMD(X, X̃) > 0 indicate that it
is more likely that X and X̃ are different distributions. In our
context, large values, therefore, indicate that a domain shift
indeed seems to have occurred.

To assess the statistical significance of the observed shifts
under the null hypothesis that samples X and X̃ were drawn
from the same probability distribution, we follow [27]. To
that end, we combine the two samples and generate a large
number of permutations of X+X̃ . Then, we split the permuted

data into two new samples X ′ and X̃ ′ having the same
size as the original samples. Under the null hypothesis, we
should have that MMD(X ′, X̃ ′) be approximately equal
to MMD(X, X̃). The corresponding p-value can then be
calculated by counting how often these two quantities are not
equal.

We calculate the MMD for both classes individually based
on the ground truth labels, i.e. the labels that samples were
assigned in time t = 0. Throughout our experiments, we
generally do not expect the distribution of the negative class
to change over time – application of recourse reduces the size
of this class, but since individuals are sampled uniformly the
distribution should remain unaffected. Conversely, unless a
recourse generator can perfectly replicate the original prob-
ability distribution, we expect the MMD of the positive class
to increase. Thus, when discussing MMD, we generally mean
the shift in the distribution of the positive class.

2) Model Shifts: As our baseline for quantifying model
shifts, we measure perturbations to the model parameters
at each point in time t following [14]. We define ∆ =
||θt+1−θt||2, that is the euclidean distance between the vectors
of parameters before and after retraining the model M . We
shall refer to this baseline metric simply as Perturbations.

We extend the metric in Equation (5) to quantify model
shifts. Specifically, we introduce Predicted Probability MMD
(PP MMD): instead of applying Equation (5) to features
directly, we apply it to the predicted probabilities assigned
to a set of samples by the model M . If the model shifts, the
probabilities assigned to each sample will change; again, this
metric will equal 0 only if the two classifiers are the same. We
compute PP MMD in two ways: firstly, we compute it over
samples drawn uniformly from the dataset, and, secondly, we
compute it over points spanning a mesh grid over a subspace of
the entire feature space. For the latter approach, we bound the
subspace by the extrema of each feature. While this approach
is theoretically more robust, unfortunately, it suffers from the
curse of dimensionality, since it becomes increasingly difficult
to select enough points to overcome noise as the dimension
D grows.

As an alternative to PP MMD, we use a pseudo-distance
for the Disagreement Coefficient (Disagreement). This metric
was introduced in [28] and estimates p(M(x) ̸= M ′(x)), that
is the probability that two classifiers disagree on the predicted
outcome for a randomly chosen sample. Thus, it is not relevant
whether the classification is correct according to the ground
truth, but only whether the sample lies on the same side of the
two respective decision boundaries. In our context, this metric
quantifies the overlap between the initial model (trained before
the application of AR) and the updated model. A Disagreement
Coefficient unequal to zero is indicative of a model shift. The
opposite is not true: even if the Disagreement Coefficient is
equal to zero, a model shift may still have occurred. This is
one reason why PP MMD is our preferred metric.

We further introduce Decisiveness as a metric that quantifies
the likelihood that a model assigns a high probability to its
classification of any given sample. We define the metric simply



as 1
N

∑N
i=0(σ(M(x))−0.5)2 where M(x) are predicted logits

from a binary classifier and σ denotes the sigmoid function.
This metric provides an unbiased estimate of the binary
classifier’s tendency to produce high-confidence predictions in
either one of the two classes. Although the exact values for
this metric are not important for our study, they can be used
to detect model shifts. If decisiveness changes over time, then
this is indicative of the decision boundary moving towards
either one of the two classes. A potential caveat of this metric
in the context of our experiments is that it will to some degree
get inflated simply through retraining the model.

Finally, we also take a look at the out-of-sample Perfor-
mance of our models. To this end, we compute their F-score
on a test sample that we leave untouched throughout the
experiment.

V. EXPERIMENT SETUP

This section presents the exact ingredients and parameter
choices describing the simulation experiments we ran to
produce the findings presented in the next section (VI). For
convenience, we use Algorithm 1 as a template to guide us
through this section. A few high-level details upfront: each
experiment is run for a total of T = 50 rounds, where in each
round we provide recourse to five per cent of all individuals
in the non-target class, so Bt = 0.05 ∗ ND0

t . All classifiers
and generative models are retrained for 10 epochs in each
round t of the experiment. Rather than retraining models from
scratch, we initialize all parameters at their previous levels
(t−1) and backpropagate for 10 epochs using the new training
data as inputs into the existing model. Evaluation metrics are
computed and stored every 10 rounds. To account for noise,
each individual experiment is repeated five times.7

A. M—Classifiers and Generative Models

For each dataset and generator, we look at three differ-
ent types of classifiers, all of them built and trained using
Flux.jl [29]: firstly, a simple linear classifier—Logistic
Regression—implemented as a single linear layer with sig-
moid activation; secondly, a multilayer perceptron (MLP); and
finally, a Deep Ensemble composed of five MLPs following
[30] that serves as our only probabilistic classifier. We have
chosen to work with deep ensembles both for their simplicity
and effectiveness at modelling predictive uncertainty. They are
also the model of choice in [6]. The network architectures are
kept simple (top half of Table I), since we are only marginally
concerned with achieving good initial classifier performance.

The Latent Space generator relies on a separate generative
model. Following the authors of both REVISE and CLUE
we use Variational Autoencoders (VAE) for this purpose. As
with the classifiers, we deliberately choose to work with fairly
simple architectures (bottom half of Table I). More expressive
generative models generally also lead to more meaningful

7In the current implementation, we use the same train-test split each time to
only account for stochasticity associated with randomly selecting individuals
for recourse. An interesting alternative may be to also perform data splitting
each time, thereby adding an additional layer of randomness.

TABLE I
NEURAL NETWORK ARCHITECTURES AND TRAINING PARAMETERS.

Data Hidden Dim. Latent Dim. Hidden Layers Batch Dropout Epochs

MLP
Synthetic 32 - 1 - - 100

Real-World 64 - 2 500 0.1 100

VAE
Synthetic 32 2 1 - - 100

Real-World 32 8 1 - - 250

Fig. 2. Synthetic classification datasets used in our experiments. Samples
from the negative class (y = 0) are marked in blue while samples of the
positive class (y = 1) are marked in orange.

counterfactuals produced by Latent Space generators. But in
our view, this should simply be considered as a vulnerability
of counterfactual generators that rely on surrogate models to
learn realistic representations of the underlying data.

B. D—Data

We have chosen to work with both synthetic and real-
world datasets. Using synthetic data allows us to impose
distributional properties that may affect the resulting recourse
dynamics. Following [14], we generate synthetic data in R2 to
also allow for a visual interpretation of the results. Real-world
data is used in order to assess if endogenous dynamics also
occur in higher-dimensional settings.

1) Synthetic data: We use four synthetic binary classifica-
tion datasets consisting of 1000 samples each: Overlapping,
Linearly Separable, Circles and Moons (Figure 2).

Ex-ante we expect to see that by construction, Wachter
will create a new cluster of counterfactual instances in the
proximity of the initial decision boundary as we saw in Figure
1. Thus, the choice of a black-box model may have an impact
on the counterfactual paths. For generators that use latent space
search (REVISE [7], CLUE [9]) or rely on (and have access
to) probabilistic models (CLUE [9], Greedy [6]) we expect
that counterfactuals will end up in regions of the target domain
that are densely populated by training samples. Of course, this
expectation hinges on how effective said probabilistic models
are at capturing predictive uncertainty. Finally, we expect to
see the counterfactuals generated by DiCE to be diversely
spread around the feature space inside the target class8. In
summary, we expect that the endogenous shifts induced by
Wachter outsize those of all other generators since Wachter is
not explicitly concerned with generating what we have defined
as meaningful counterfactuals.

8As we mentioned earlier, the diversity constraint used by DiCE is only
effective when at least two counterfactuals are being generated. We have
therefore decided to always generate 5 counterfactuals for each generator and
randomly pick one of them.



2) Real-world data: We use three different real-world
datasets from the Finance and Economics domain, all of which
are tabular and can be used for binary classification. Firstly,
we use the Give Me Some Credit dataset which was open-
sourced on Kaggle for the task to predict whether a borrower
is likely to experience financial difficulties in the next two
years [31], originally consisting of 250,000 instances with 11
numerical attributes. Secondly, we use the UCI defaultCredit
dataset [32], a benchmark dataset that can be used to train
binary classifiers to predict the binary outcome variable of
whether credit card clients default on their payment. In its
raw form, it consists of 23 explanatory variables: 4 categorical
features relating to demographic attributes and 19 continuous
features largely relating to individuals’ payment histories and
amount of credit outstanding. Both datasets have been used in
the literature on AR before (see for example [3], [7] and [12]),
presumably because they constitute real-world classification
tasks involving individuals that compete for access to credit.

As a third dataset, we include the California Housing
dataset derived from the 1990 U.S. census and sourced through
scikit-learn [34]. It consists of 8 continuous features that can
be used to predict the median house price for California
districts. The continuous outcome variable is binarized as ỹ =
Iy>median(Y ) indicating whether or not the median house price
of a given district is above the median of all districts. While
we have not seen this dataset used in the previous literature on
AR, others have used the Boston Housing dataset in a similar
fashion [6]. We initially also conducted experiments on that
dataset, but eventually discarded it due to surrounding ethical
concerns [35].

Since the simulations involve generating counterfactuals for
a significant proportion of the entire sample of individuals, we
have randomly undersampled each dataset to yield balanced
subsamples consisting of 5,000 individuals each. We have
also standardized all continuous explanatory features since our
chosen classifiers are sensitive to scale.

C. G—Generators

All generators introduced earlier are included in the ex-
periments: Wachter [4], REVISE [7], CLUE [9], DiCE [8]
and Greedy [6]. In addition, we introduce two new generators
in Section VII that directly address the issue of endogenous
domain and model shifts. We also test to what extent it may be
beneficial to combine ideas underlying the various generators.

VI. EXPERIMENTS

Below, we first present our main experimental findings
regarding these questions. We conclude this section with a
brief recap providing answers to all of these questions.

A. Endogenous Macrodynamics

We start this section off with the key high-level observa-
tions. Across all datasets (synthetic and real), classifiers and
counterfactual generators we observe either most or all of the
following dynamics at varying degrees:

• Statistically significant domain and model shifts as mea-
sured by MMD.

• A deterioration in out-of-sample model performance as
measured by the F-Score evaluated on a test sample. In
many cases this drop in performance is substantial.

• Significant perturbations to the model parameters as well
as an increase in the model’s decisiveness.

• Disagreement between the original and retrained model,
in some cases large.

There is also some clear heterogeneity across the results:
• The observed dynamics are generally of the highest

magnitude for the linear classifier. Differences in results
for the MLP and Deep Ensemble are mostly negligible.

• The reduction in model performance appears to be most
severe when classes are not perfectly separable or the
initial model performance was weak, to begin with.

• Except for the Greedy generator, all other generators gen-
erally perform somewhat better overall than the baseline
(Wachter) as expected.

Focusing first on synthetic data, Figure 3 presents our
findings for the dataset with overlapping classes. It shows the
resulting values for some of our evaluation metrics at the end
of the experiment, after all T = 50 rounds, along with error
bars indicating the variation across folds.

The top row shows the estimated domain shifts. While it is
difficult to interpret the exact magnitude of MMD, we can see
that the values are different from zero and there is essentially
no variation across our five folds. For the domain shifts, the
Greedy generator induces the smallest shifts. In general, we
have observed the opposite.

The second row shows the estimated model shifts, where
here we have used the grid approach explained earlier. As with
the domain shifts, the observed values are clearly different
from zero and variation across folds is once again small. In
this case, the results for this particular dataset very much
reflect the broader patterns we have observed: Latent Space
(LS) generators induce the smallest shifts, followed by DiCE,
then Wachter and finally Greedy.

The same broad pattern also emerges in the third row: we
observe the smallest deterioration in model performance for
LS generators, albeit we still find a reduction in the F-Score of
around 5-10 percentage points on average. Related to this, the
bottom two rows indicate that the retrained classifiers disagree
with their initial counterparts on the classification of up to
nearly 25 per cent of the individuals. We also note that the
final classifiers are more decisive, although as we noted earlier
this may to some extent just be a byproduct of retraining the
model throughout the experiment.

Figure 3 also indicates that the estimated effects are
strongest for the simplest linear classifier, a pattern that we
have observed fairly consistently. Conversely, there is virtually
no difference in outcomes between the deep ensemble and the
MLP. It is possible that the deep ensembles simply fail to
capture predictive uncertainty well and hence counterfactual
generators like Greedy, which explicitly addresses this quan-
tity, fail to work as expected.



Fig. 3. Results for synthetic data with overlapping classes. The shown model
MMD (PP MMD) was computed over a mesh grid of 1,000 points. Error bars
indicate the standard deviation across folds.

The findings for the other synthetic datasets are broadly
consistent with the observations above. For the Moons data,
the same broad patterns emerge, although in this case, the
Greedy generator induces comparably strong shifts in some
cases. For the Circles data, model shifts and performance
deterioration are quantitatively much smaller than what we can
observe in Figure 3 and in many cases insignificant. For the
Linearly Separable data we also find substantial domain and
model shifts, but almost no reduction in model performance.9

Finally, it is also worth noting that the observed dynamics
and patterns are consistent throughout the experiment. That
is to say that we start observing shifts already after just a
few rounds and these tend to increase proportionately for the
different generators over the course of the experiment.

Turning to the real-world data we will go through the
findings presented in Figure 4, where each column corresponds
to one of the three data sets. The results shown here are for
the deep ensemble, which once again largely resemble those
for the MLP. Starting from the top row, we find significant
domain shifts of varying magnitudes. Latent Space search
induces shifts that are orders of magnitude higher than for
the other generators, which generally induce significant but
small shifts.

Model shifts are shown in the middle row of Figure 4: the

9You can find a granular overview of all results including
bootstraps in our online companion: https://www.paltmeyer.com/
endogenous-macrodynamics-in-algorithmic-recourse/.

Fig. 4. Results for deep ensemble using real-world datasets. The shown model
MMD (PP MMD) was computed over actual samples, rather than a mesh grid.
Error bars indicate the standard deviation across folds.

estimated PP MMD is statistically significant across the board
and in some cases much larger than in others. We find no
evidence that LS search helps to mitigate model shifts, as
we did before for the synthetic data. Since these real-world
datasets are arguably more complex than the synthetic data,
the generative model can be expected to have a harder time
learning the data-generating process and hence this increased
difficulty appears to affect the performance of REVISE/CLUE.

The out-of-sample model performance also deteriorates
across the board and substantially so: the largest average
reduction in F-Scores of more than 10 percentage points is
observed for the Credit Default dataset. For this dataset we
achieved the lowest initial model performance, indicating once
again that weaker classifiers may be more exposed to endoge-
nous dynamics. As with the synthetic data, the estimates for
logistic regression are qualitatively in line with the above, but
quantitatively even more pronounced.

To recap, we answer our research questions: firstly, endoge-
nous dynamics do emerge in our experiments (RQ IV.1) and
we find them substantial enough to be considered costly (RQ
IV.2); secondly, the choice of the counterfactual generator mat-
ters, with Latent Space search generally having a dampening
effect (RQ IV.3). The observed dynamics, therefore, seem to
be driven by a discrepancy between counterfactual outcomes
that minimize costs to individuals and outcomes that comply
with the data-generating process (RQ IV.4).

VII. MITIGATION STRATEGIES AND EXPERIMENTS

Having established in the previous section that endogenous
macrodynamics in AR are substantial enough to warrant our
attention, in this section we ask ourselves:

Research Question VII.1 (Mitigation Strategies). What are
potential mitigation strategies with respect to endogenous
macrodynamics in AR?

https://www.paltmeyer.com/endogenous-macrodynamics-in-algorithmic-recourse/
https://www.paltmeyer.com/endogenous-macrodynamics-in-algorithmic-recourse/


We propose and test several simple mitigation strategies. All
of them essentially boil down to one simple principle: to avoid
domain and model shifts, the generated counterfactuals should
comply as much as possible with the true data-generating pro-
cess. This principle is really at the core of Latent Space (LS)
generators, and hence it is not surprising that we have found
these types of generators to perform comparably well in the
previous section. But as we have mentioned earlier, generators
that rely on separate generative models carry an additional
computational burden and, perhaps more importantly, their
performance hinges on the performance of said generative
models. Fortunately, it turns out that we can use a number
of other, much simpler strategies.

A. More Conservative Decision Thresholds

The most obvious and trivial mitigation strategy is to
simply choose a higher decision threshold γ. This threshold
determines when a counterfactual should be considered valid.
Under γ = 0.5, counterfactuals will end up near the decision
boundary by construction. Since this is the region of maximal
aleatoric uncertainty, the classifier is bound to be thrown off.
By setting a more conservative threshold, we can avoid this
issue to some extent. A drawback of this approach is that a
classifier with high decisiveness may classify samples with
high confidence even far away from the training data.

B. Classifier Preserving ROAR (ClaPROAR)

Another strategy draws inspiration from ROAR [14]: to
preserve the classifier, we propose to explicitly penalize the
loss it incurs when evaluated on the counterfactual x′ at given
parameter values. Recall that extcost(·) denotes what we had
defined as the external cost in Equation (4). Formally, we let

extcost(f(s′)) = l(M(f(s′)), y′) (6)

for each counterfactual k where l denotes the loss func-
tion used to train M . This approach, which we refer to
as ClaPROAR, is based on the intuition that (endogenous)
model shifts will be triggered by counterfactuals that increase
classifier loss. It is closely linked to the idea of choosing a
higher decision threshold, but is likely better at avoiding the
potential pitfalls associated with highly decisive classifiers. It
also makes the private vs. external cost trade-off more explicit
and hence manageable.

C. Gravitational Counterfactual Explanations

Yet another strategy extends Wachter as follows: instead of
only penalizing the distance of the individuals’ counterfactual
to its factual, we propose penalizing its distance to some
sensible point in the target domain, for example, the subsample
average x̄∗ = mean(x), x ∈ D1:

extcost(f(s′)) = dist(f(s′), x̄∗) (7)

Once again we can put this in the context of Equation
(4): the former penalty can be thought of here as the private
cost incurred by the individual, while the latter reflects the

Fig. 5. Illustrative example demonstrating the properties of the various
mitigation strategies. Samples from the negative class (y = 0) are marked
in orange while samples of the positive class (y = 1) are marked in blue.

external cost incurred by other individuals. Higher choices of
λ2 relative to λ1 will lead counterfactuals to gravitate towards
the specified point x̄∗ in the target domain. In the remainder
of this paper, we will therefore refer to this approach as
Gravitational generator, when we investigate its usefulness
for mitigating endogenous macrodynamics10.

Figure 5 shows an illustrative example that demonstrates the
differences in counterfactual outcomes when using the various
mitigation strategies compared to the baseline approach, that
is, Wachter with γ = 0.5: choosing a higher decision threshold
pushes the counterfactual a little further into the target domain;
this effect is even stronger for ClaPROAR; finally, using the
Gravitational generator the counterfactual ends up all the way
inside the target domain in the neighbourhood of x̄∗11. Linking
these ideas back to Example I.2, the mitigation strategies help
ensure that the recommended recourse actions are substantial
enough to truly lead to an increase in the probability that the
admitted student eventually graduates.

Our findings indicate that all three mitigation strategies
are at least at par with LS generators with respect to their
effectiveness at mitigating domain and model shifts. Figure 6
presents a subset of the evaluation metrics for our synthetic
data with overlapping classes. The top row in Figure 6
indicates that while domain shifts are of roughly the same
magnitude for both Wachter and LS generators, our proposed
strategies effectively mitigate these shifts. ClaPROAR appears
to be particularly effective, which is positively surprising since
it is designed to explicitly address model shifts, not domain
shifts. As evident from the middle row in Figure 6 model
shifts can also be reduced: for the deep ensemble LS search
yields results that are at par with the mitigation strategies,
while for both the simple MLP and logistic regression our
simple strategies are more effective. The same overall pattern
can be observed for out-of-sample model performance. Con-
cerning the other synthetic datasets, for the Moons dataset,
the emerging patterns are largely the same, but the estimated
model shifts are insignificant as noted earlier; the same holds
for the Circles dataset, but there is no significant reduction
in model performance for our neural networks; in the case of

10Note that despite the naming conventions, our goal here is not to
provide yet more counterfactual generators. Rather than looking at them as
isolated entities, we believe and demonstrate that different approaches can be
effectively combined.

11In order for the Gravitational generator and ClaPROAR to work as ex-
pected, one needs to ensure that counterfactual search continues, independent
of the threshold probability γ.



Fig. 6. The differences in counterfactual outcomes when using the various
mitigation strategies compared to the baseline approach, that is Wachter with
γ = 0.5. Results for synthetic data with overlapping classes. The shown
model MMD (PP MMD) was computed over a mesh grid of points. Error
bars indicate the standard deviation across folds.

Fig. 7. Combining various mitigation strategies with LS search. Results for
synthetic data with overlapping classes. The shown model MMD (PP MMD)
was computed over a mesh grid of points. Error bars indicate the standard
deviation across folds.

linearly separable data, we find the Gravitational generator to
be most effective at mitigating shifts.

An interesting finding is also that the proposed strategies
have a complementary effect when used in combination with
LS generators. In experiments we conducted on the synthetic
data, the benefits of LS generators were exacerbated further
when using a more conservative threshold or combining it
with the penalties underlying Gravitational and ClaPROAR. In
Figure 7 the conventional LS generator with γ = 0.5 serves
as our baseline. Evidently, being more conservative or using
one of our proposed penalties decreases the estimated domain
and model shifts, in some cases beyond significance.

Finally, Figure 8 shows the results for our real-world data.
We note that for both the California Housing and GMSC data,

Fig. 8. The differences in counterfactual outcomes when using the various
mitigation strategies compared to the baseline approach, that is Wachter with
γ = 0.5. Results for the MLP using real-world datasets. The shown model
MMD (PP MMD) was computed over actual samples, rather than a mesh
grid. Error bars indicate the standard deviation across folds.

ClaPROAR does have an attenuating effect on model perfor-
mance deterioration12. Overall, the results are less significant,
possibly because a somewhat smaller share of individuals from
the non-target group received recourse than in the synthetic
case13.

VIII. DISCUSSION

Our results in Section VI indicate that state-of-the-art ap-
proaches to Algorithmic Recourse induce substantial domain
and model shift if implemented at scale in practice. These
induced shifts can and should be considered as an (expected)
external cost of individual recourse. While they do not affect
the individual directly as long as we look at the individual
in isolation, they can be seen to affect the broader group of
stakeholders in automated data-driven decision-making. We
have seen, for example, that out-of-sample model performance
generally deteriorates in our simulation experiments. In prac-
tice, this can be seen as a cost to model owners, that is the
group of stakeholders using the model as a decision-making
tool. As we have set out in Example I.2 of our introduction,
these model owners may be unwilling to carry that cost, and
hence can be expected to stop offering recourse to individuals
altogether. This in turn is costly to those individuals that would
otherwise derive utility from being offered recourse.

So, where does this leave us? We would argue that the
expected external costs of individual recourse should be
shared by all stakeholders. The most straightforward way
to achieve this is to introduce a penalty for external costs
in the counterfactual search objective function, as we have
set out in Equation (4). This will on average lead to more
costly counterfactual outcomes, but may help to avoid extreme
scenarios, in which minimal-cost recourse is reserved to a tiny
minority of individuals. We have shown various types of shift-
mitigating strategies that can be used to this end. Since all
of these strategies can be seen simply as a specific adaption

12Estimated domain shifts (not shown) were largely insubstantial, as in
Figure 4 in the previous section.

13In earlier experiments we moved a larger share of individuals and the
results more clearly favoured our mitigation strategies.

https://github.com/pat-alt/endogenous-macrodynamics-in-algorithmic-recourse/releases/tag/dec-2022


of Equation (4), they can be applied to any of the various
counterfactual generators studied here.

IX. LIMITATIONS AND FUTURE WORK

While we believe that this work constitutes a valuable
starting point for addressing existing issues in Algorithmic
Recourse from a fresh perspective, we are aware of several of
its limitations. In the following, we highlight some of these
and point to avenues for future research.

A. Private vs. External Costs

Perhaps the most crucial shortcoming of our work is that we
merely point out that there exists a trade-off between private
costs to the individual and external costs to the collective of
stakeholders. We fall short of providing any definitive answers
as to how that trade-off may be resolved in practice. The
mitigation strategies we have proposed here provide a good
starting point, but they are ad-hoc extensions of the exist-
ing AR framework. An interesting idea to explore in future
work could be the potential for Pareto optimal Algorithmic
Recourse, that is, a collective recourse outcome in which no
single individual can be made better off, without making at
least one other individual worse off. This type of work would
be interdisciplinary and could help to formalize some of the
concepts presented in this work.

B. Experimental Setup

The experimental setup proposed here is designed to mimic
a real-world recourse process in a simple fashion. In practice,
models are updated regularly [14]. We also find it plausible to
assume that the implementation of recourse happens periodi-
cally for different individuals, rather than all at once at time
t = 0. That being said, our experimental design is a vast over-
simplification of potential real-world scenarios. In practice,
any endogenous shifts that may occur can be expected to
be entangled with exogenous shifts of the nature investigated
in Upadhyay et al. [14]. We also make implicit assumptions
about the utility functions of the involved agents that may well
be too simple: individuals seeking recourse are assumed to
always implement the proposed Counterfactual Explanations;
conversely, the agent in charge of the model M is assumed to
always treat individuals that have implemented valid recourse
as if they were truly now in the target class.

C. Causal Modelling

In this work, we have focused on popular counterfactual
generators that do not incorporate any causal knowledge.
The generated perturbations therefore may involve changes to
variables that affect the outcome predicted by the black-box
model, but not the true outcome. The implementation of such
changes is typically described as gaming [36], although they
need not be driven by adversarial intentions: in Example I.2,
student applicants may dutifully focus on acquiring credentials
that help them to be admitted to university, but ultimately
not to improve their chances of success at completing their
degree [37]. Preventing such actions may help to avoid the

dynamics we have pointed to in this work. Future work would
likely benefit from including recent approaches to AR that
incorporate causal knowledge such as Karimi et al. [13].

D. Classifiers

For reasons stated earlier, we have limited our analysis to
differentiable linear and non-linear classifiers, in particular
logistic regression and deep neural networks. While these sorts
of classifiers have also typically been analyzed in the existing
literature on Counterfactual Explanations and Algorithmic
Recourse, they represent only a subset of popular machine
learning models employed in practice. Despite the success and
popularity of deep learning in the context of high-dimensional
data such as image, audio and video, empirical evidence
suggests that other models such as boosted decision trees may
have an edge when it comes to lower-dimensional tabular
datasets, such as the ones considered here ([38], [39]).

E. Data

Largely in line with the existing literature on Algorithmic
Recourse, we have limited our analysis of real-world data to
three commonly used benchmark datasets that involve binary
prediction tasks. Future work may benefit from including novel
datasets or extending the analysis to multi-class or regression
problems, the latter arguably representing the most common
objective in Finance and Economics.

X. CONCLUDING REMARKS

This work has revisited and extended some of the most
general and defining concepts underlying the literature on
Counterfactual Explanations and, in particular, Algorithmic
Recourse. We demonstrate that long-held beliefs as to what
defines optimality in AR, may not always be suitable. Specif-
ically, we run experiments that simulate the application of
recourse in practice using various state-of-the-art counterfac-
tual generators and find that all of them induce substantial
domain and model shifts. We argue that these shifts should
be considered as an expected external cost of individual
recourse and call for a paradigm shift from individual to
collective recourse in these types of situations. By proposing
an adapted counterfactual search objective that incorporates
this cost, we make that paradigm shift explicit. We show that
this modified objective lends itself to mitigation strategies that
can be used to effectively decrease the magnitude of induced
domain and model shifts. Through our work, we hope to
inspire future research on this important topic. To this end
we have open-sourced all of our code along with a Julia
package: AlgorithmicRecourseDynamics.jl. Future
researchers should find it easy to replicate, modify and extend
the simulation experiments presented here and apply them to
their own custom counterfactual generators.
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APPENDIX

Granular results for all of our experiments can be found
in this online companion: https://www.paltmeyer.com/
endogenous-macrodynamics-in-algorithmic-recourse/. The
Github repository containing all the code used to produce the
results in this paper can be found here: https://github.com/
pat-alt/endogenous-macrodynamics-in-algorithmic-recourse.
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