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ABSTRACT

We present neural architectures that disentangle RGB-D images into objects’ shapes
and styles and a map of the background scene, and explore their applications for
few-shot 3D object detection and few-shot concept classification. Our networks
incorporate architectural biases that reflect the image formation process, 3D ge-
ometry of the world scene, and shape-style interplay. They are trained end-to-end
self-supervised by predicting views in static scenes, alongside a small number of
3D object boxes. Objects and scenes are represented in terms of 3D feature grids in
the bottleneck of the network. We show that the proposed 3D neural representations
are compositional: they can generate novel 3D scene feature maps by mixing object
shapes and styles, resizing and adding the resulting object 3D feature maps over
background scene feature maps. We show that classifiers for object categories,
color, materials, and spatial relationships trained over the disentangled 3D feature
sub-spaces generalize better with dramatically fewer examples than the current
state-of-the-art, and enable a visual question answering system that uses them as
its modules to generalize one-shot to novel objects in the scene.

1 INTRODUCTION

Humans can learn new concepts from just one or a few samples. Consider the example in Figure 1.
Assuming there is a person who has no prior knowledge about blue and carrot, by showing this person
an image of a blue carrot and telling him “this is an carrot with blue color”, the person can easily
generalize from this example to (1) recognizing carrots of varying colors, 3D poses and viewing
conditions and under novel background scenes, (2) recognizing the color blue on different objects, (3)
combine these two concepts with other concepts to form a novel object coloring he/she has never seen
before, e.g., red carrot or blue tomato and (4) using the newly learned concepts to answer questions
regarding the visual scene. Motivated by this, we explore computational models that can achieve
these four types of generalization for visual concept learning.

We propose disentangling 3D prototypical networks (D3DP-Nets), a model that learns to disentangle
RGB-D images into objects, their 3D locations, sizes, 3D shapes and styles, and the background
scene, as shown in Figure 2. Our model can learn to detect objects from a few 3D object bounding box
annotations and can further disentangle objects into different attributes through a self-supervised view
prediction task. Specifically, D3DP-Nets uses differentiable unprojection and rendering operations
to go back and forth between the input RGB-D (2.5D) image and a 3D scene feature map. From
the scene feature map, our model learns to detect objects and disentangles each object into a 3D
shape code and an 1D style code through a shape/style disentangling antoencoder. We use adaptive
instance normalization layers (Huang & Belongie, 2017) to encourage shape/style disentanglement
within each object. Our key intuition is to represent objects and their shapes in terms of 3D feature
representations disentangled from style variability so that the model can correspond objects with
similar shape by explicitly rotating and scaling their 3D shape representations during matching.

Project page: https://mihirp1998.github.io/project_pages/d3dp/
∗Equal contribution
†Work done while at Carnegie Mellon University
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Figure 1: Given a single image-language example regarding new concepts (e.g., blue and carrot), our
model can parse the object into its shape and style codes and ground them with Blue and Carrot labels,
respectively. On the right, we show tasks the proposed model can achieve using this grounding.(a) It
can detect the object under novel style, novel pose, and in novel scene arrangements and viewpoints.
(b) It can detect a new concept like blue broccoli. (c) It can imagine scenes with the new concepts.
(d) It can answer complex questions about the scene.

With the disentangled representations, D3DP-Nets can recognize new concepts regarding object
shapes, styles and spatial arrangements from a few human-supplied labels by training concept
classifiers only on the relevant feature subspace. Our model learns object shapes on shape codes,
object colors and textures on style codes, and object spatial arrangements on object 3D locations. We
show in the supplementary how the features relevant for each linguistic concept can be inferred from
a few contrasting examples. Thus the classifiers attend only to the essential property of the concept
and ignore irrelevant visual features. This allows them to generalize with far fewer examples and can
recognize novel attribute compositions not present in the training data.

We test D3DP-Nets in few-shot concept learning, visual question answering (VQA) and scene
generation. We train concept classifiers for object shapes, object colors/materials, and spatial
relationships on our inferred disentangled feature spaces, and show they outperform current state-
of-the-art (Mao et al., 2019; Hu et al., 2016), which use 2D representations. We show that a VQA
modular network that incorporates our concept classifiers shows improved generalization over the
state-of-the-art (Mao et al., 2019) with dramatically fewer examples. Last, we empirically show that
D3DP-Nets generalize their view predictions to scenes with novel number, category and styles of
objects, and compare against state-of-the-art view predictive architectures of Eslami et al. (2018).

The main contribution of this paper is to identify the importance of using disentangled 3D feature
representations for few-shot concept learning. We show the disentangled 3D feature representations
can be learned using self-supervised view prediction, and they are useful for detecting and classifying
language concepts by training them over the relevant only feature subsets. The proposed model out-
performs the current state-of-the-art in VQA in the low data regime and the proposed 3D disentangled
representation outperforms similar 2D or 2.5D ones in few-shot concept classification.

2 RELATION TO PREVIOUS WORKS

Few-shot concept learning Few-shot learning methods attempt to learn a new concept from one or a
few annotated examples at test time, yet, at training time, these models still require labelled datasets
which annotate a group of images as “belonging to the same category”(Koch et al., 2015; Vinyals
et al., 2016b). Metric-based few-shot learning approaches (Snell et al., 2017; Qi et al., 2018; Schwartz
et al., 2018; Vinyals et al., 2016a) aim at learning an embedding space in which objects of the same
category are closer in the latent space than objects that belong to different categories. These models
needs to be trained with several (annotated) image collections, where each collection contains images
of the same object category. Works of Misra et al. (2017); Purushwalkam et al. (2019); Nikolaus
et al. (2019); Tokmakov et al. (2019) compose attribute and nouns to detect novel attribute-noun
combinations, but their feature extractors need to be pretrained on large annotated image collections,
such as Imagenet, or require annotated data with various attribute compositions. The proposed
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model is pretrained by predicting views, without the need for annotations regarding object classes
or attributes. Our concept classi�ers are related to methods that classify concepts by computing
distances to prototypes produced by averaging the (2D CNN) features of few labelled examples (Snell
et al., 2017; Qi et al., 2018; Schwartz et al., 2018). The work of Prabhudesai et al. (2020) learns 3D
prototypes in a self-supervised manner, but they do not disentangle their representation into style
and shape codes. We compare against 2D and 3D few shot learning methods and outperform them
by a signi�cant margin. The novel feature of our work is that we learn concept prototypes over
disentangled 3D shape and 1D style codes as opposed to entangled 3D or 2D CNN features.

Learning neural scene representationOur work builds upon recent view-predictive scene repre-
sentation learning literature (Tung et al., 2019; Sitzmann et al., 2019; Eslami et al., 2016). Our
scene encoders and decoders, the view prediction objective, and the 3D neural bottleneck and ego-
stabilization of the 3D feature maps is similar to those proposed in geometry-aware neural networks
of Tung et al. (2019). Sitzmann et al. (2019) and Eslami et al. (2016) both encode multiview images
of a scene and camera poses into a scene representation, in the form of 2D scene feature maps or
an implicit function. Sitzmann et al. (2019) only considers single-object scenes and needs to train
a separate model for each object class. We compare generalization of our view predictions against
Eslami et al. (2016) and show we have dramatically better generalization across number, type and
spatial arrangements of objects. Furthermore, the above approaches do not explicitly disentangle
style/shape representations of objects. Zhu et al. (2018) focuses on synthesizing natural images of
objects with a disentangled 3D representation, but it remains unclear how to use the learnt embed-
dings to detect object concepts. Different from most inverse graphics networks (Tung et al., 2017;
Kanazawa et al., 2018) that aim to reconstruct detailed 3D occupancy of the objects, our model aims
to learn feature representations that can detect an object across pose and scale variability, and use
them for concept learning. Our shape-style disentanglement uses adaptive instance normalization
layers (Huang et al., 2018; Huang & Belongie, 2017) that have been valuable for disentangling shape
and style in 2D images. Here, we use them in a 3D latent feature space.

3 DISENTANGLING 3D PROTOTYPICAL NETWORKS (D3DP-NETS)

The architecture of D3DP-Nets is illustrated in Figure 2. D3DP-Nets consists of two main com-
ponents: (a) an image-to-scene encoder-decoder, and (b) an object shape/style disentanglement
encoder-decoder. Next, we describe these components in detail.

3.1 IMAGE-TO-SCENE ENCODER-DECODER

A 2D-to-3D scene differentiable encoderEsc maps an input RGB-D image to a 3D feature map
M 2 Rw� h� d� c of the scene, wherew; h; d; c denote width, height, depth and number of channels,
respectively. Every(x; y; z) grid location in the 3D feature mapM holds ac-channel feature vector
that describes the semantic and geometric properties of a corresponding 3D physical location in the
3D world scene. We output a binary 3D occupancy mapMocc 2 f 0; 1gw� h� d from M using an
occupancy decoderDocc. A differentiable neural rendererDsc neurally renders a 3D feature map
M to a 2D image and a depth map from a speci�c viewpoint. When the input to D3DP-Nets is a
sequence of images as opposed to a single image, each imageI t in the sequence is encoded to a
corresponding 3D per frame mapM t , the 3D rotation and translation of the camera with respect to the
frame map of the initial frameI 0 is computed and the scene mapM is computed by �rst rotating and
translatingM t to bring it to the same coordinate frame asM0 and then averaging with the map built
thus far. We will assume camera motion is known and given for this cross frame fusion operation.

D3DP-Nets are self-supervised by view prediction, predicting RGB images and occupancy grids for
query viewpoints. We assume there is an agent that can move around in static scenes and observes
them from multiple viewpoints. The agent is equipped with a depth sensor and knowledge of its
egomotion (proprioception) provided by the simulator in simulated environments.We train the scene
encoders and decoders jointly for RGB view prediction and occupancy prediction and errors are
backpropagated end-to-end to the parameters of the network:

L view � pred = kDsc (rotate( M; vq)) � I qk1 + log(1 + exp( � Oq � Docc ((rotate( M; vq)) ; vq))) ; (1)

whereI q andOq are the ground truth RGB image and occupancy map respectively,vq is the query
view, androtate(M; vq) is a trilinear resampling operation that rotates the content of a 3D feature
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Figure 2: Architecture for disentangling 3D prototypical networks (D3DP-Nets). (a)Given
multi-view posed RGB-D images of scenes as input during training, our model learns to map a single
RGB-D image to a completed scene 3D feature map at test time, by training for view prediction. From
the completed 3D scene feature map, our model learns to detect objects from the scene.(b) In each 3D
object box, we apply a shape-style disentanglement autoencoder that disentangles the object-centric
feature map to a 3D (feature) shape code and a 1D style code.(c) Our model can compose the
disentangled representations to generate a novel scene 3D feature map. We urge the readers to refer
the video in the supplimentary material for an intuitive understanding of the architecture.

mapM to viewpointvq. The RGB output is trained with a regression loss, and the occupancy is
trained with a logistic classi�cation loss. Occupancy labels are computed through raycasting, similar
to Harley et al. (2020). We provide more details on the architecture of our model in the supplementary
material. We train a 3D object detector that takes as input the output of the scene feature mapM and
predicts 3D axis-aligned bounding boxes, similar to Harley et al. (2020). This is supervised from
ground-truth 3D bounding boxes without class labels.

3.2 OBJECT SHAPE/STYLE DISENTANGLEMENT

As the style of an image can be understood as a property which is shared across its spatial dimensions,
previous works (Huang et al., 2018; Karras et al., 2019) use adaptive instance normalization (Huang
& Belongie, 2017) as an inductive bias to do style transfer between a pair of images. D3DP-Nets uses
this same inductive bias in its decoder to disentangle the style and 3D shape of an object. We believe
that 3D shape is not analogous to 3D occupancy, but it is a blend of 3D occupancy and texture (spatial
arrangement of color intensities).

Given a set of 3D object boxesf bojo = 1 � � � jOjg whereO is the set of objects in the scene,
D3DP-Nets obtain corresponding object feature mapsMo = crop( M; bo) by cropping the scene
feature mapM using the 3D bounding box coordinatesbo. We use ground-truth 3D boxes at training
time and detected boxes at test time. Each object feature map is resized to a �xed resolution
of 16 � 16 � 16, and fed to an object-centric autoencoder whose encoding modules predict a
4D shape codezo

shp = E shp (Mo) 2 Rw� h� d� c and a 1D style codezo
sty = E sty (Mo) 2 Rc.

A decoderD composes the two using adaptive instance normalization (AIN) layers (Huang &
Belongie, 2017) by adjusting the mean and variance of the 4D shape code based on the 1D style

code:AIN (z; ; � ) = 
�

z� � (z)
� (z)

�
+ � , wherez is obtained by a 3D convolution onzshp , � and�

are the channel-wise mean and standard deviation ofz, and� and are extracted using single-layer
perceptrons fromzsty . The object encoders and decoders are trained with an autoencoding objective
and a cycle-consistency objective which ensure that the shape and style code remain consistent after
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composing, decoding and encoding again (see Figure 2 (b)):

L dis =
1

jOj

jOjX

o=1

0

B
B
@kMo � D(E shp (Mo); Esty (Mo))k2| {z }

autoencoding loss

+
X

i 2On o
L c� shp (Mo; M i ) + L c� sty (Mo; M i )

| {z }
cycle-consistency loss

1

C
C
A ;

(2)

whereL c� shp (Mo; M i ) = kEshp (Mo) � Eshp (D(E shp (Mo); Esty (M i ))) k2 is the shape consistency
loss andL c� sty (Mo; M i ) = kEsty (Mo) � Esty (D(E shp (M i ); Esty (Mo))) k2 is the style consistency
loss.

We further include a view prediction loss on the synthesized scene feature map�M; which is composed
by replacing each object feature mapMo with its re-synthesized versionD(zo

shp ; zo
sty ), resized to

the original object size, as shown in Figure 2(c). The view prediction reads:L view � pred � synth =
kDsc

�
rotate( �M; vt +1 )

�
� I t +1 k1. The total unsupervised optimization loss for D3DP-Nets reads:

L uns = L view � pred + L view � pred � synth + L dis : (3)

3.3 3DDISENTANGLED PROTOTYPE LEARNING

Given a set of human annotations in the form of labels for object attributes (shape, color, material,
size), our model computes prototypes for each concept (e.g. "red" or "sphere") in an attribute, using
only the relevant feature embeddings. For example, object category prototypes are learned on top
of shape codes, and material and color prototypes are learned on top of style codes. In order to
classify a new object example, we compute the nearest neighbors between the inferred shape and
style embeddings from the D3DP-Nets with the prototypes in the prototype dictionary, as shown in
Figure 3. This non-parametric classi�cation method allows us to detect objects even from a single
example, and also improves when more labels are provided by co-training the underlying feature
representation space as in Snell et al. (2017).

To compute the distance between an embeddingx and a prototypey, we de�ne the following rotation-
aware distance metric:

hx; yi R =
�

hx; yi if x; y are 1D
maxr 2R hRotate(x; r ); yi if x; y are 4D

(4)

whereRotate(x; r ) explicitly rotates the content in 3D feature mapx with angler through trilinear
interpolation. We exhaustively search across rotationsR, in a parallel manner, considering increments
of 10� along the vertical axis. This is speci�cally shown in the bottom right of Figure 3 while
computing theFilter Shapefunction.

Our model initializes the concept prototypes by averaging the feature codes of the labelled instances.
We build color and material concept prototypes, e.g.,red or rubber, by passing the style codes
through a color fully connected module and a material fully connected module respectively, and
then averaging the outputs. For object category prototypes, we use a rotation-aware averaging over
the (4D) object shape embeddings, which are produced by a 3D convolutional neural module over
shape codes. Speci�cally, we �nd the alignmentr for each shape embedding that is used to calculate
hz0; zi i R , and average over the aligned embeddings to create the prototype.

When annotations for concepts are provided, we can jointly �netune our prototypes and neural
modules (as well as D3DP-Net weights) using a cross entropy loss, whose logits are inner products
between neural embeddings and prototypes. Speci�cally, givenP(oa = c) = exp (hf a (zo ) ;pc i R )P

d 2C a
exp (hf a (zo ) ;pd i R )

whereh�; �i R represents the rotation-aware distance metric,f a is the neural module for attributea,
Ca is the set of concepts for attributea, andoa is the value of attributea for objecto, andpc is the
prototype for conceptc. The loss used to train prototypes is:

L prototype = �
1

jOj

X

o2O

X

a2A

X

c2Ca

1oa = c logP(oa = c) + 1oa 6= c logP(oa 6= c) (5)

whereA is the set of attributes.
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Figure 3: D3DP-VQA Modular Networks. Given a question-image pair and a list of learned
prototype dictionaries (left), D3DP-Nets parse the visual scene to object shapes, styles, locations and
sizes codes (top-right), while the semantic language parser converts the question to an executable
program. The generated program is executed sequentially to answer the question (bottom-right).
Note that in order to associate different poses of the same shape (Filter Shape), our model does a
rotation-aware search between the indexed prototype and the candidate objects.

4 EXPERIMENTS

We test D3DP-Nets in few-shot learning of object category, color and material, and compare against
state-of-the-art 2D and 2.5D shape-style disentangled CNN representations (Sections 4.1). We
integrate these concept classi�ers in a visual question answering modular system (see Figure 3) and
show it can answer questions about images more accurately than the state-of-the-art in the few-shot
regime (Section 4.2). In addition, we test D3DP-Nets on novel 3D scene generation. We also test
D3DP-Nets on view prediction and compare against alternative scene representation learning methods
(Section 4.3). Furthermore, we show our model can generate a 3D scene (and its 2D image renders)
based on a language utterance description (Section 4.4).

4.1 FEW-SHOT OBJECT SHAPE AND STYLE CATEGORY LEARNING

We evaluate D3DP-Nets in its ability to classify shape and style concepts from few annotated examples
on three datasets: i) CLEVR dataset (Johnson et al., 2017): it is comprised of cubes, spheres and
cylinders of various sizes, colors and materials. We consider every unique combination of color and
material categories as a single style category. The dataset has 16 style classes and 3 shape classes in
total. ii) Real Veggie dataset: it is a real-world scene dataset we collected that contains 800 RGB-D
scenes of vegetables placed on a table surface. The dataset has 6 style classes and 7 shape classes in
total. iii) Replica dataset (Straub et al., 2019): it consists of 18 high quality reconstructions of indoor
scenes. We use AI Habitat simulator (Manolis Savva* et al., 2019) to render multiview RGB-D data
for it. We use the 152 instance-level shape categories provided by Replica. Due to lack of style labels,
we manually annotate 16 style categories. Details on manual annotation process are present in the
supplementary material. Figure 4 shows one example for both shape and style category.

We train D3DP-Nets self-supervised on posed multiview images in each dataset and learn the
prototypes for each concept category. During training, we consider 1 and 5 labeled instances for each
shape and style category in the dataset. During testing, we consider a pool of 1000 object instances.

In this experiment, we use ground-truth bounding boxes to isolate errors caused by different object
detection modules. We compare D3DP-Nets with 2D, 2.5D and 3D versions of Prototypical Networks
(Snell et al., 2017) that similarly classify object image crops by comparing object feature embeddings
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Figure 4:Replica dataset.On the left, we show two objects in different scenes belonging to the
same shape cateogry `Plant`. On the right, we show two objects belonging to the same style category
`Cream`.

CLEVR Real Veggie Data Replica

5 shot 1 shot 5 shot 1 shot 5 shot 1 shot

Style Shape Style Shape Style Shape Style Shape Style Shape Style Shape

D3DP-Net 0.79 0.86 0.61 0.70 0.61 0.52 0.53 0.44 0.48 0.58 0.46 0.51
3DP-Net 0.14 0.64 0.09 0.57 0.38 0.18 0.31 0.19 0.31 0.45 0.27 0.42
2D MUNIT 0.50 0.54 0.41 0.47 0.43 0.48 0.39 0.38 0.300.60 0.23 0.42
2.5D MUNIT 0.47 0.58 0.46 0.55 0.41 0.32 0.39 0.33 0.23 0.42 0.20 0.40
GQN 0.09 0.52 0.11 0.45 0.24 0.41 0.22 0.34 0.25 0.31 0.19 0.26
D3D-Net 0.43 0.48 0.26 0.40 0.31 0.28 0.18 0.24 0.23 0.29 0.10 0.14
MB(Supervised) 0.60 0.89 0.36 0.75 0.42 0.71 0.35 0.67 0.33 0.32 0.19 0.24

Table 1: Five & one shot classi�cation accuracy for shape and style concepts in CLEVR (Johnson
et al., 2017), Real Veggie, and Replica datasets.

to prototype embeddings. Speci�cally, we learn prototypical embeddings over the visual representa-
tions produced by the following baselines: (i)2D MUNIT (Huang et al., 2018) which disentangles
shape and style within each object-centric 2D image RGB patch using the 2D equivalent of the
shape-style disentanglement architecture of our model, and learns using an autoencoding objective
(ii) 2.5D MUNIT an extension of 2D MUNIT which uses concatenated RGB and depth as input.
(iii) 3DP-Nets, a version of D3DP-Nets where object shape-style disentanglement is omitted, this
version corresponds to the scene representation learning model of Tung et al. (2019). (iv) Generative
Query NetworkGQN of Eslami et al. (2016) which encodes multiview images of a scene and camera
poses into a 2D feature map and is trained using cross-view prediction, similar to our model. (v)
D3D-Nets, a version of D3DP-Nets where prototypical nearest neighbour retrieval is replaced with a
linear layer which predicts the class probabilities. (iv) Meta-BaselineMB of Chen et al. (2020) is
the SOTAsupervisedfew-shot learning model, pre-trained using ImageNet. All baselines except
MB are trained with the same unlabeled multiview image set as our method. All models classify
each test image into a shape, and style category. Few-shot concept classi�cation results are shown in
Table 1. D3DP-Nets outperforms all unsupervised baselines. Interestingly, D3DP-Nets give better
classi�cation accuracy on the 1-shot task than almost all of the unsupervised baselines on the 5-shot
task. Figure 5 shows a visualization of the style codes produced by D3DP-Nets (left) and 2.5D
MUNIT baseline (right) on 2000 randomly sampled object instances from CLEVR using t-SNE
(Maaten & Hinton, 2008). Each color represents a unique CLEVR style class. Indeed, in D3DP-Nets,
codes of the same class are placed together, while for the2.5D MUNITbaseline, this is not the case.

4.2 FEW-SHOT VISUAL QUESTION ANSWERING

We integrate concept detectors built on the D3DP-Nets representation into modular neural networks
for visual question answering, in which a question about an image is mapped to a computational graph
over a small number of reusable neural modules including object category detectors, style detectors
and spatial expression detectors. Speci�cally, we build upon the recent Neuro-Symbolic Concept
Learner (NSCL) (Mao et al., 2019), as shown in Figure 3. In NSCL, the input and output of different
neural modules are probability distributions over 2D object proposals denoting the probability that
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Figure 6: (a) View predictions of D3DP-Nets and GQN (Eslami et al., 2018) in novel scenes. (b)
Generating novel scenes using only a single example for each style and shape category.

the executed subprogram is referring to each object, and their object category, color and material
classi�ers also use nearest neighbors over learnt prototypes. For example, in the question“How
many yellow objects are there?”, the model �rst uses the color classi�er to predict for all objects
the probability that they are yellow, and then uses the resulting probability map to give an answer.
NSCL learns 1D prototypes for object shape, color and material categories and classi�es objects to
labels using nearest neighbors to these prototypes. In our D3DP-Nets-VQA architecture, we have
3D instead of 2D object proposals, and disentangled 3D shape and 1D color/material and spatial
relationship prototypes instead.

Figure 5: t-SNE visualization on styles codes.

We compare D3DP-VQA against the following
models: i)NSCL-2D(with and without Ima-
geNet pretraining), the state of the art model
of Mao et al. (2019) that uses a ResNet-34
pretrained on ImageNet as input feature repre-
sentations ii)NSCL-2.5D, in which the object
visual representations for shape/color/material
are computed over RGB and depth concate-
nated object patches as opposed to RGB alone.
This model is pretrained with a view prediction
loss using the CLEVR dataset in Sec. 4.1 iii)
NSCL-2.5D-disentanglethat uses disentangled
object representations generated by our 2.5D
MUNIT disentangling model, iv)D3DP with-
out 3D shape prototypes, a version of D3DP-
Nets that replaces the 3-dimensional shape codes with 1D ones obtained by spatial pooling v)
D3DP without disentanglement, that learns prototypes for shape, color and material on top of
entangled 3D tensors.

We consider the same supervision for our model and baselines in the form of densely annotated
scenes with object attributes and 3D object boxes. We use ground-truth neural programs so as to not
confound the results with the performance of a learned parser. More details on the VQA experimental
setup and additional ablative experiments are included in the supplementary �le.

VQA performance results are shown in Table 2. We evaluate by varying the number of training
scenes from 10 to 250. For each training scene we generate 10 questions. The original CLEVR
dataset included 70,000 scenes and 700,000 questions, so even when training with 250 scenes, we are
training with 0.35% the number of original scenes. Our full model outperforms all of the alternatives,
showing the importance of both the 3D feature representations as well as disentanglement of shape
and style. To test our model's one shot generalization ability on questions about object categories it
had not seen in the original training set, we introduce a new test set consisting of only novel objects.
We generate a test set of 500 scenes in the CLEVR environment with three new objects: “cheese”,
“garlic”, and “pepper” and introduce them to our model and baselines using one example image of
each, associated with its shape category label. We provide example scene/question pairs for this
setting in the supplementary. The results described in Table 2 indicate that our model is able to
maintain its ability to answer questions even when seeing completely novel objects and with very few
training examples. The SOTA 2D model outperforms our model on the in domain test set because it
is able to exploit pretraining on ImageNet, which our models are unable to do. However, our model
is able to adapt much better than both the 2D and 2.5D baselines in few-shot regime.
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