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ABSTRACT

We present neural architectures that disentangle RGB-D images into objects’ shapes
and styles and a map of the background scene, and explore their applications for
few-shot 3D object detection and few-shot concept classification. Our networks
incorporate architectural biases that reflect the image formation process, 3D ge-
ometry of the world scene, and shape-style interplay. They are trained end-to-end
self-supervised by predicting views in static scenes, alongside a small number of
3D object boxes. Objects and scenes are represented in terms of 3D feature grids in
the bottleneck of the network. We show that the proposed 3D neural representations
are compositional: they can generate novel 3D scene feature maps by mixing object
shapes and styles, resizing and adding the resulting object 3D feature maps over
background scene feature maps. We show that classifiers for object categories,
color, materials, and spatial relationships trained over the disentangled 3D feature
sub-spaces generalize better with dramatically fewer examples than the current
state-of-the-art, and enable a visual question answering system that uses them as
its modules to generalize one-shot to novel objects in the scene.

1 INTRODUCTION

Humans can learn new concepts from just one or a few samples. Consider the example in Figure 1.
Assuming there is a person who has no prior knowledge about blue and carrot, by showing this person
an image of a blue carrot and telling him “this is an carrot with blue color”, the person can easily
generalize from this example to (1) recognizing carrots of varying colors, 3D poses and viewing
conditions and under novel background scenes, (2) recognizing the color blue on different objects, (3)
combine these two concepts with other concepts to form a novel object coloring he/she has never seen
before, e.g., red carrot or blue tomato and (4) using the newly learned concepts to answer questions
regarding the visual scene. Motivated by this, we explore computational models that can achieve
these four types of generalization for visual concept learning.

We propose disentangling 3D prototypical networks (D3DP-Nets), a model that learns to disentangle
RGB-D images into objects, their 3D locations, sizes, 3D shapes and styles, and the background
scene, as shown in Figure 2. Our model can learn to detect objects from a few 3D object bounding box
annotations and can further disentangle objects into different attributes through a self-supervised view
prediction task. Specifically, D3DP-Nets uses differentiable unprojection and rendering operations
to go back and forth between the input RGB-D (2.5D) image and a 3D scene feature map. From
the scene feature map, our model learns to detect objects and disentangles each object into a 3D
shape code and an 1D style code through a shape/style disentangling antoencoder. We use adaptive
instance normalization layers (Huang & Belongie, 2017) to encourage shape/style disentanglement
within each object. Our key intuition is to represent objects and their shapes in terms of 3D feature
representations disentangled from style variability so that the model can correspond objects with
similar shape by explicitly rotating and scaling their 3D shape representations during matching.

Project page: https://mihirp1998.github.io/project_pages/d3dp/
∗Equal contribution
†Work done while at Carnegie Mellon University
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Figure 1: Given a single image-language example regarding new concepts (e.g., blue and carrot), our
model can parse the object into its shape and style codes and ground them with Blue and Carrot labels,
respectively. On the right, we show tasks the proposed model can achieve using this grounding.(a) It
can detect the object under novel style, novel pose, and in novel scene arrangements and viewpoints.
(b) It can detect a new concept like blue broccoli. (c) It can imagine scenes with the new concepts.
(d) It can answer complex questions about the scene.

With the disentangled representations, D3DP-Nets can recognize new concepts regarding object
shapes, styles and spatial arrangements from a few human-supplied labels by training concept
classifiers only on the relevant feature subspace. Our model learns object shapes on shape codes,
object colors and textures on style codes, and object spatial arrangements on object 3D locations. We
show in the supplementary how the features relevant for each linguistic concept can be inferred from
a few contrasting examples. Thus the classifiers attend only to the essential property of the concept
and ignore irrelevant visual features. This allows them to generalize with far fewer examples and can
recognize novel attribute compositions not present in the training data.

We test D3DP-Nets in few-shot concept learning, visual question answering (VQA) and scene
generation. We train concept classifiers for object shapes, object colors/materials, and spatial
relationships on our inferred disentangled feature spaces, and show they outperform current state-
of-the-art (Mao et al., 2019; Hu et al., 2016), which use 2D representations. We show that a VQA
modular network that incorporates our concept classifiers shows improved generalization over the
state-of-the-art (Mao et al., 2019) with dramatically fewer examples. Last, we empirically show that
D3DP-Nets generalize their view predictions to scenes with novel number, category and styles of
objects, and compare against state-of-the-art view predictive architectures of Eslami et al. (2018).

The main contribution of this paper is to identify the importance of using disentangled 3D feature
representations for few-shot concept learning. We show the disentangled 3D feature representations
can be learned using self-supervised view prediction, and they are useful for detecting and classifying
language concepts by training them over the relevant only feature subsets. The proposed model out-
performs the current state-of-the-art in VQA in the low data regime and the proposed 3D disentangled
representation outperforms similar 2D or 2.5D ones in few-shot concept classification.

2 RELATION TO PREVIOUS WORKS

Few-shot concept learning Few-shot learning methods attempt to learn a new concept from one or a
few annotated examples at test time, yet, at training time, these models still require labelled datasets
which annotate a group of images as “belonging to the same category”(Koch et al., 2015; Vinyals
et al., 2016b). Metric-based few-shot learning approaches (Snell et al., 2017; Qi et al., 2018; Schwartz
et al., 2018; Vinyals et al., 2016a) aim at learning an embedding space in which objects of the same
category are closer in the latent space than objects that belong to different categories. These models
needs to be trained with several (annotated) image collections, where each collection contains images
of the same object category. Works of Misra et al. (2017); Purushwalkam et al. (2019); Nikolaus
et al. (2019); Tokmakov et al. (2019) compose attribute and nouns to detect novel attribute-noun
combinations, but their feature extractors need to be pretrained on large annotated image collections,
such as Imagenet, or require annotated data with various attribute compositions. The proposed
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model is pretrained by predicting views, without the need for annotations regarding object classes
or attributes. Our concept classifiers are related to methods that classify concepts by computing
distances to prototypes produced by averaging the (2D CNN) features of few labelled examples (Snell
et al., 2017; Qi et al., 2018; Schwartz et al., 2018). The work of Prabhudesai et al. (2020) learns 3D
prototypes in a self-supervised manner, but they do not disentangle their representation into style
and shape codes. We compare against 2D and 3D few shot learning methods and outperform them
by a significant margin. The novel feature of our work is that we learn concept prototypes over
disentangled 3D shape and 1D style codes as opposed to entangled 3D or 2D CNN features.

Learning neural scene representation Our work builds upon recent view-predictive scene repre-
sentation learning literature (Tung et al., 2019; Sitzmann et al., 2019; Eslami et al., 2016). Our
scene encoders and decoders, the view prediction objective, and the 3D neural bottleneck and ego-
stabilization of the 3D feature maps is similar to those proposed in geometry-aware neural networks
of Tung et al. (2019). Sitzmann et al. (2019) and Eslami et al. (2016) both encode multiview images
of a scene and camera poses into a scene representation, in the form of 2D scene feature maps or
an implicit function. Sitzmann et al. (2019) only considers single-object scenes and needs to train
a separate model for each object class. We compare generalization of our view predictions against
Eslami et al. (2016) and show we have dramatically better generalization across number, type and
spatial arrangements of objects. Furthermore, the above approaches do not explicitly disentangle
style/shape representations of objects. Zhu et al. (2018) focuses on synthesizing natural images of
objects with a disentangled 3D representation, but it remains unclear how to use the learnt embed-
dings to detect object concepts. Different from most inverse graphics networks (Tung et al., 2017;
Kanazawa et al., 2018) that aim to reconstruct detailed 3D occupancy of the objects, our model aims
to learn feature representations that can detect an object across pose and scale variability, and use
them for concept learning. Our shape-style disentanglement uses adaptive instance normalization
layers (Huang et al., 2018; Huang & Belongie, 2017) that have been valuable for disentangling shape
and style in 2D images. Here, we use them in a 3D latent feature space.

3 DISENTANGLING 3D PROTOTYPICAL NETWORKS (D3DP-NETS)

The architecture of D3DP-Nets is illustrated in Figure 2. D3DP-Nets consists of two main com-
ponents: (a) an image-to-scene encoder-decoder, and (b) an object shape/style disentanglement
encoder-decoder. Next, we describe these components in detail.

3.1 IMAGE-TO-SCENE ENCODER-DECODER

A 2D-to-3D scene differentiable encoder Esc maps an input RGB-D image to a 3D feature map
M ∈ Rw×h×d×c of the scene, where w, h, d, c denote width, height, depth and number of channels,
respectively. Every (x, y, z) grid location in the 3D feature map M holds a c-channel feature vector
that describes the semantic and geometric properties of a corresponding 3D physical location in the
3D world scene. We output a binary 3D occupancy map Mocc ∈ {0, 1}w×h×d from M using an
occupancy decoder Docc. A differentiable neural renderer Dsc neurally renders a 3D feature map
M to a 2D image and a depth map from a specific viewpoint. When the input to D3DP-Nets is a
sequence of images as opposed to a single image, each image It in the sequence is encoded to a
corresponding 3D per frame map Mt, the 3D rotation and translation of the camera with respect to the
frame map of the initial frame I0 is computed and the scene map M is computed by first rotating and
translating Mt to bring it to the same coordinate frame as M0 and then averaging with the map built
thus far. We will assume camera motion is known and given for this cross frame fusion operation.

D3DP-Nets are self-supervised by view prediction, predicting RGB images and occupancy grids for
query viewpoints. We assume there is an agent that can move around in static scenes and observes
them from multiple viewpoints. The agent is equipped with a depth sensor and knowledge of its
egomotion (proprioception) provided by the simulator in simulated environments.We train the scene
encoders and decoders jointly for RGB view prediction and occupancy prediction and errors are
backpropagated end-to-end to the parameters of the network:

Lview−pred =‖Dsc (rotate(M, vq))− Iq‖1 + log(1 + exp(−Oq ·Docc((rotate(M, vq)) , vq))), (1)

where Iq and Oq are the ground truth RGB image and occupancy map respectively, vq is the query
view, and rotate(M, vq) is a trilinear resampling operation that rotates the content of a 3D feature
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Figure 2: Architecture for disentangling 3D prototypical networks (D3DP-Nets). (a) Given
multi-view posed RGB-D images of scenes as input during training, our model learns to map a single
RGB-D image to a completed scene 3D feature map at test time, by training for view prediction. From
the completed 3D scene feature map, our model learns to detect objects from the scene. (b) In each 3D
object box, we apply a shape-style disentanglement autoencoder that disentangles the object-centric
feature map to a 3D (feature) shape code and a 1D style code. (c) Our model can compose the
disentangled representations to generate a novel scene 3D feature map. We urge the readers to refer
the video in the supplimentary material for an intuitive understanding of the architecture.

map M to viewpoint vq. The RGB output is trained with a regression loss, and the occupancy is
trained with a logistic classification loss. Occupancy labels are computed through raycasting, similar
to Harley et al. (2020). We provide more details on the architecture of our model in the supplementary
material. We train a 3D object detector that takes as input the output of the scene feature map M and
predicts 3D axis-aligned bounding boxes, similar to Harley et al. (2020). This is supervised from
ground-truth 3D bounding boxes without class labels.

3.2 OBJECT SHAPE/STYLE DISENTANGLEMENT

As the style of an image can be understood as a property which is shared across its spatial dimensions,
previous works (Huang et al., 2018; Karras et al., 2019) use adaptive instance normalization (Huang
& Belongie, 2017) as an inductive bias to do style transfer between a pair of images. D3DP-Nets uses
this same inductive bias in its decoder to disentangle the style and 3D shape of an object. We believe
that 3D shape is not analogous to 3D occupancy, but it is a blend of 3D occupancy and texture (spatial
arrangement of color intensities).

Given a set of 3D object boxes {bo|o = 1 · · · |O|} where O is the set of objects in the scene,
D3DP-Nets obtain corresponding object feature maps Mo = crop(M, bo) by cropping the scene
feature map M using the 3D bounding box coordinates bo. We use ground-truth 3D boxes at training
time and detected boxes at test time. Each object feature map is resized to a fixed resolution
of 16 × 16 × 16, and fed to an object-centric autoencoder whose encoding modules predict a
4D shape code zoshp = Eshp(Mo) ∈ Rw×h×d×c and a 1D style code zosty = Esty(Mo) ∈ Rc.
A decoder D composes the two using adaptive instance normalization (AIN) layers (Huang &
Belongie, 2017) by adjusting the mean and variance of the 4D shape code based on the 1D style
code: AIN(z, γ, β) = γ

(
z−µ(z)
σ(z)

)
+ β, where z is obtained by a 3D convolution on zshp, µ and σ

are the channel-wise mean and standard deviation of z, and β and γ are extracted using single-layer
perceptrons from zsty. The object encoders and decoders are trained with an autoencoding objective
and a cycle-consistency objective which ensure that the shape and style code remain consistent after
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composing, decoding and encoding again (see Figure 2 (b)):

Ldis =
1

|O|

|O|∑
o=1

‖Mo −D(Eshp(Mo),Esty(Mo))‖2︸ ︷︷ ︸
autoencoding loss

+
∑

i∈O\o
Lc−shp(Mo,Mi) + Lc−sty(Mo,Mi)︸ ︷︷ ︸

cycle-consistency loss

 ,

(2)

where Lc−shp(Mo,Mi) = ‖Eshp(Mo)−Eshp(D(Eshp(Mo),Esty(Mi)))‖2 is the shape consistency
loss and Lc−sty(Mo,Mi) = ‖Esty(Mo)−Esty(D(Eshp(Mi),Esty(Mo)))‖2 is the style consistency
loss.

We further include a view prediction loss on the synthesized scene feature map M̄, which is composed
by replacing each object feature map Mo with its re-synthesized version D(zoshp, z

o
sty), resized to

the original object size, as shown in Figure 2(c). The view prediction reads: Lview−pred−synth =
‖Dsc

(
rotate(M̄, vt+1)

)
− It+1‖1. The total unsupervised optimization loss for D3DP-Nets reads:

Luns = Lview−pred + Lview−pred−synth + Ldis. (3)

3.3 3D DISENTANGLED PROTOTYPE LEARNING

Given a set of human annotations in the form of labels for object attributes (shape, color, material,
size), our model computes prototypes for each concept (e.g. "red" or "sphere") in an attribute, using
only the relevant feature embeddings. For example, object category prototypes are learned on top
of shape codes, and material and color prototypes are learned on top of style codes. In order to
classify a new object example, we compute the nearest neighbors between the inferred shape and
style embeddings from the D3DP-Nets with the prototypes in the prototype dictionary, as shown in
Figure 3. This non-parametric classification method allows us to detect objects even from a single
example, and also improves when more labels are provided by co-training the underlying feature
representation space as in Snell et al. (2017).

To compute the distance between an embedding x and a prototype y, we define the following rotation-
aware distance metric:

〈x, y〉R =

{
〈x, y〉 if x, y are 1D
maxr∈R〈Rotate(x, r), y〉 if x, y are 4D

(4)

where Rotate(x, r) explicitly rotates the content in 3D feature map x with angle r through trilinear
interpolation. We exhaustively search across rotationsR, in a parallel manner, considering increments
of 10◦ along the vertical axis. This is specifically shown in the bottom right of Figure 3 while
computing the Filter Shape function.

Our model initializes the concept prototypes by averaging the feature codes of the labelled instances.
We build color and material concept prototypes, e.g., red or rubber, by passing the style codes
through a color fully connected module and a material fully connected module respectively, and
then averaging the outputs. For object category prototypes, we use a rotation-aware averaging over
the (4D) object shape embeddings, which are produced by a 3D convolutional neural module over
shape codes. Specifically, we find the alignment r for each shape embedding that is used to calculate
〈z0, zi〉R, and average over the aligned embeddings to create the prototype.

When annotations for concepts are provided, we can jointly finetune our prototypes and neural
modules (as well as D3DP-Net weights) using a cross entropy loss, whose logits are inner products
between neural embeddings and prototypes. Specifically, given P (oa = c) = exp(〈fa(zo),pc〉R)∑

d∈Ca
exp(〈fa(zo),pd〉R)

where 〈·, ·〉R represents the rotation-aware distance metric, fa is the neural module for attribute a,
Ca is the set of concepts for attribute a, and oa is the value of attribute a for object o, and pc is the
prototype for concept c. The loss used to train prototypes is:

Lprototype = − 1

|O|
∑
o∈O

∑
a∈A

∑
c∈Ca

1oa=c logP (oa = c) + 1oa 6=c logP (oa 6= c) (5)

where A is the set of attributes.
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Figure 3: D3DP-VQA Modular Networks. Given a question-image pair and a list of learned
prototype dictionaries (left), D3DP-Nets parse the visual scene to object shapes, styles, locations and
sizes codes (top-right), while the semantic language parser converts the question to an executable
program. The generated program is executed sequentially to answer the question (bottom-right).
Note that in order to associate different poses of the same shape (Filter Shape), our model does a
rotation-aware search between the indexed prototype and the candidate objects.

4 EXPERIMENTS

We test D3DP-Nets in few-shot learning of object category, color and material, and compare against
state-of-the-art 2D and 2.5D shape-style disentangled CNN representations (Sections 4.1). We
integrate these concept classifiers in a visual question answering modular system (see Figure 3) and
show it can answer questions about images more accurately than the state-of-the-art in the few-shot
regime (Section 4.2). In addition, we test D3DP-Nets on novel 3D scene generation. We also test
D3DP-Nets on view prediction and compare against alternative scene representation learning methods
(Section 4.3). Furthermore, we show our model can generate a 3D scene (and its 2D image renders)
based on a language utterance description (Section 4.4).

4.1 FEW-SHOT OBJECT SHAPE AND STYLE CATEGORY LEARNING

We evaluate D3DP-Nets in its ability to classify shape and style concepts from few annotated examples
on three datasets: i) CLEVR dataset (Johnson et al., 2017): it is comprised of cubes, spheres and
cylinders of various sizes, colors and materials. We consider every unique combination of color and
material categories as a single style category. The dataset has 16 style classes and 3 shape classes in
total. ii) Real Veggie dataset: it is a real-world scene dataset we collected that contains 800 RGB-D
scenes of vegetables placed on a table surface. The dataset has 6 style classes and 7 shape classes in
total. iii) Replica dataset (Straub et al., 2019): it consists of 18 high quality reconstructions of indoor
scenes. We use AI Habitat simulator (Manolis Savva* et al., 2019) to render multiview RGB-D data
for it. We use the 152 instance-level shape categories provided by Replica. Due to lack of style labels,
we manually annotate 16 style categories. Details on manual annotation process are present in the
supplementary material. Figure 4 shows one example for both shape and style category.

We train D3DP-Nets self-supervised on posed multiview images in each dataset and learn the
prototypes for each concept category. During training, we consider 1 and 5 labeled instances for each
shape and style category in the dataset. During testing, we consider a pool of 1000 object instances.

In this experiment, we use ground-truth bounding boxes to isolate errors caused by different object
detection modules. We compare D3DP-Nets with 2D, 2.5D and 3D versions of Prototypical Networks
(Snell et al., 2017) that similarly classify object image crops by comparing object feature embeddings
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Shape concept category: Plant Style concept category: Cream

Figure 4: Replica dataset. On the left, we show two objects in different scenes belonging to the
same shape cateogry ‘Plant‘. On the right, we show two objects belonging to the same style category
‘Cream‘.

CLEVR Real Veggie Data Replica

5 shot 1 shot 5 shot 1 shot 5 shot 1 shot

Style Shape Style Shape Style Shape Style Shape Style Shape Style Shape

D3DP-Net 0.79 0.86 0.61 0.70 0.61 0.52 0.53 0.44 0.48 0.58 0.46 0.51
3DP-Net 0.14 0.64 0.09 0.57 0.38 0.18 0.31 0.19 0.31 0.45 0.27 0.42
2D MUNIT 0.50 0.54 0.41 0.47 0.43 0.48 0.39 0.38 0.30 0.60 0.23 0.42
2.5D MUNIT 0.47 0.58 0.46 0.55 0.41 0.32 0.39 0.33 0.23 0.42 0.20 0.40
GQN 0.09 0.52 0.11 0.45 0.24 0.41 0.22 0.34 0.25 0.31 0.19 0.26
D3D-Net 0.43 0.48 0.26 0.40 0.31 0.28 0.18 0.24 0.23 0.29 0.10 0.14
MB(Supervised) 0.60 0.89 0.36 0.75 0.42 0.71 0.35 0.67 0.33 0.32 0.19 0.24

Table 1: Five & one shot classification accuracy for shape and style concepts in CLEVR (Johnson
et al., 2017), Real Veggie, and Replica datasets.

to prototype embeddings. Specifically, we learn prototypical embeddings over the visual representa-
tions produced by the following baselines: (i) 2D MUNIT (Huang et al., 2018) which disentangles
shape and style within each object-centric 2D image RGB patch using the 2D equivalent of the
shape-style disentanglement architecture of our model, and learns using an autoencoding objective
(ii) 2.5D MUNIT an extension of 2D MUNIT which uses concatenated RGB and depth as input.
(iii) 3DP-Nets, a version of D3DP-Nets where object shape-style disentanglement is omitted, this
version corresponds to the scene representation learning model of Tung et al. (2019). (iv) Generative
Query Network GQN of Eslami et al. (2016) which encodes multiview images of a scene and camera
poses into a 2D feature map and is trained using cross-view prediction, similar to our model. (v)
D3D-Nets, a version of D3DP-Nets where prototypical nearest neighbour retrieval is replaced with a
linear layer which predicts the class probabilities. (iv) Meta-Baseline MB of Chen et al. (2020) is
the SOTA supervised few-shot learning model, pre-trained using ImageNet. All baselines except
MB are trained with the same unlabeled multiview image set as our method. All models classify
each test image into a shape, and style category. Few-shot concept classification results are shown in
Table 1. D3DP-Nets outperforms all unsupervised baselines. Interestingly, D3DP-Nets give better
classification accuracy on the 1-shot task than almost all of the unsupervised baselines on the 5-shot
task. Figure 5 shows a visualization of the style codes produced by D3DP-Nets (left) and 2.5D
MUNIT baseline (right) on 2000 randomly sampled object instances from CLEVR using t-SNE
(Maaten & Hinton, 2008). Each color represents a unique CLEVR style class. Indeed, in D3DP-Nets,
codes of the same class are placed together, while for the 2.5D MUNIT baseline, this is not the case.

4.2 FEW-SHOT VISUAL QUESTION ANSWERING

We integrate concept detectors built on the D3DP-Nets representation into modular neural networks
for visual question answering, in which a question about an image is mapped to a computational graph
over a small number of reusable neural modules including object category detectors, style detectors
and spatial expression detectors. Specifically, we build upon the recent Neuro-Symbolic Concept
Learner (NSCL) (Mao et al., 2019), as shown in Figure 3. In NSCL, the input and output of different
neural modules are probability distributions over 2D object proposals denoting the probability that
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Ground Truth RGB                       Eslami et al’s (GQN) Ours

Ground Truth RGB Eslami et al. (GQN) Ours

Figure 6: (a) View predictions of D3DP-Nets and GQN (Eslami et al., 2018) in novel scenes. (b)
Generating novel scenes using only a single example for each style and shape category.

the executed subprogram is referring to each object, and their object category, color and material
classifiers also use nearest neighbors over learnt prototypes. For example, in the question “How
many yellow objects are there?”, the model first uses the color classifier to predict for all objects
the probability that they are yellow, and then uses the resulting probability map to give an answer.
NSCL learns 1D prototypes for object shape, color and material categories and classifies objects to
labels using nearest neighbors to these prototypes. In our D3DP-Nets-VQA architecture, we have
3D instead of 2D object proposals, and disentangled 3D shape and 1D color/material and spatial
relationship prototypes instead.

Figure 5: t-SNE visualization on styles codes.

We compare D3DP-VQA against the following
models: i) NSCL-2D (with and without Ima-
geNet pretraining), the state of the art model
of Mao et al. (2019) that uses a ResNet-34
pretrained on ImageNet as input feature repre-
sentations ii) NSCL-2.5D, in which the object
visual representations for shape/color/material
are computed over RGB and depth concate-
nated object patches as opposed to RGB alone.
This model is pretrained with a view prediction
loss using the CLEVR dataset in Sec. 4.1 iii)
NSCL-2.5D-disentangle that uses disentangled
object representations generated by our 2.5D
MUNIT disentangling model, iv) D3DP with-
out 3D shape prototypes, a version of D3DP-
Nets that replaces the 3-dimensional shape codes with 1D ones obtained by spatial pooling v)
D3DP without disentanglement, that learns prototypes for shape, color and material on top of
entangled 3D tensors.

We consider the same supervision for our model and baselines in the form of densely annotated
scenes with object attributes and 3D object boxes. We use ground-truth neural programs so as to not
confound the results with the performance of a learned parser. More details on the VQA experimental
setup and additional ablative experiments are included in the supplementary file.

VQA performance results are shown in Table 2. We evaluate by varying the number of training
scenes from 10 to 250. For each training scene we generate 10 questions. The original CLEVR
dataset included 70,000 scenes and 700,000 questions, so even when training with 250 scenes, we are
training with 0.35% the number of original scenes. Our full model outperforms all of the alternatives,
showing the importance of both the 3D feature representations as well as disentanglement of shape
and style. To test our model’s one shot generalization ability on questions about object categories it
had not seen in the original training set, we introduce a new test set consisting of only novel objects.
We generate a test set of 500 scenes in the CLEVR environment with three new objects: “cheese”,
“garlic”, and “pepper” and introduce them to our model and baselines using one example image of
each, associated with its shape category label. We provide example scene/question pairs for this
setting in the supplementary. The results described in Table 2 indicate that our model is able to
maintain its ability to answer questions even when seeing completely novel objects and with very few
training examples. The SOTA 2D model outperforms our model on the in domain test set because it
is able to exploit pretraining on ImageNet, which our models are unable to do. However, our model
is able to adapt much better than both the 2D and 2.5D baselines in few-shot regime.
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VQA Model
In domain test set One shot test set

Number of Training Examples Number of Training Examples

10 25 50 100 250 10 25 50 100 250

Our full model 0.809 0.872 0.902 0.923 0.939 0.775 0.836 0.834 0.828 0.845

without 3D shape prototypes 0.798 0.858 0.538 0.905 0.932 0.410 0.410 0.517 0.745 0.771
without shape/style disentanglement 0.458 0.407 0.616 0.806 0.788 0.457 0.402 0.616 0.807 0.792
without 3D shape prototypes and

without shape/style disentanglement 0.718 0.829 0.849 0.868 0.894 0.608 0.681 0.688 0.692 0.701

Entangled disentangled features 0.648 0.565 0.899 0.917 0.928 0.619 0.542 0.812 0.831 0.813
InstanceNorm disentangled features

+ rotation-aware check 0.606 0.831 0.875 0.894 0.905 0.627 0.775 0.832 0.836 0.861

2D NSCL Mao et al. (2019) 0.733 0.927 0.959 0.978 0.990 0.594 0.708 0.703 0.789 0.743
2D NSCL Mao et al. (2019)

without ImageNet pretraining 0.514 0.624 0.682 0.844 0.931 0.467 0.502 0.553 0.624 0.679

2.5D NSCL Mao et al. (2019) 0.594 0.737 0.828 0.881 0.925 0.528 0.633 0.651 0.633 0.633
2.5D NSCL Mao et al. (2019) disentangled 0.436 0.486 0.640 0.735 0.842 0.430 0.462 0.517 0.561 0.564

Table 2: VQA results with model compared to ablations and baselines.

4.3 VIEW PREDICTION

We qualitatively compare our model with the Generative Query Network (GQN) of Eslami et al.
(2016) on the task of view prediction in Figure 6 (a). The figure shows view prediction results for
a scene with more objects than those at training time. D3DP-Nets dramatically outperforms GQN,
which we attribute to the 3-dimensional representation bottleneck that better represents the 3D space
of the scene, as compared to the 2D bottleneck of Eslami et al. (2016).

4.4 3D SCENE GENERATION FROM LANGUAGE UTTERANCES

We test D3DP-Nets on the task of scene generation from language utterances. Given annotations for
each prototype, our model can generate 3D scenes that comply with a language utterance, as seen in
Figure 12 (b). We assume the parse tree of the utterance is given. Our model generates each object’s
3D feature map by combining shape and style prototypes as suggested by the utterance, and placing
them iteratively on a background canvas making sure it complies with the spatial constraints in the
utterance (Prabhudesai et al., 2019). Our model can generate shape and style combinations not seen
at training time. We neurally render the feature map to generate the RGB image.

5 CONCLUSION AND FUTURE DIRECTIONS

We presented D3DP-Nets, a model that learns disentangled 3D representations of scenes and objects
and distills them into 3D and 1D prototypes of shapes and styles using multiview RGB-D videos
of static scenes. We trained classifiers of prototypical object categories, object styles, and spatial
relationships, on disentangled relevant features. We showed that they generalize better than 2D
representations or 2D disentangled representations, with less training data. We showed modular
architectures for VQA over our concept classifiers permit few-shot generalization to scenes with
novel objects. We hope our work will stimulate interest in self-supervising 3D feature representation
for 3D visual recognition and question answering in domains with few human labels. Finally adding
deformation to our model which will permit a prototype to match against more instances of the same
class and expanding to diverse natural language datasets of VQA which will require us to add more
diverse programs are direct avenues of future work.
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A DATASET PREPARATION

CLEVR Dataset. We construct four different datasets using the CLEVR Blender simulator as
a base (Johnson et al., 2017). One key difference from the original simulator is that we generate
RGB-D images of scenes instead of RGB images.

The first dataset is a support dataset containing 1200 scenes in the training split and 400 scenes in the
validation split. For each scene, 12 different RGB-D views are generated (4 different azimuths, 3
different elevations). The azimuths are in 90◦ increments and the elevations are 20◦, 40◦, and 60◦.
This dataset is used in the unsupervised training of the D3DP-Nets.

The second dataset generated contains 5000 scenes in the training split and 1500 scenes in each of
the validation and testing splits, with 10 questions generated for each scene. Each scene is rendered
according to the specification of the original CLEVR dataset. This dataset is used for the training of
all VQA models. Examples can be seen in Figure 7.

The third and fourth datasets are used to test the one-shot learning capabilities of the VQA models.
They introduce three new shapes: cheese, garlic, pepper. The prototype split for both datasets
contains one scene for each object with a single viewpoint rendered for each scene. The scene for
each object contains that object centered on floor with the large size and random color and material.
The test split for the third dataset contains 500 scenes with a mix of the shapes seen during training
and novel shapes. The test split for the fourth dataset contains 500 scenes with only the novel shapes.
Each scene in the test split is rendered from a single viewpoint (approximately the same as the
viewpoint used in the second dataset) and has 10 questions generated about it. Examples from the
novel only dataset can be seen in Figure 8. The results for the novel only dataset are shown in the
main paper, and the results for the mixed dataset are shown in Appendix E.

Q: There is a purple matte 
object in front of the red 
object behind the rubber 
thing in front of the yellow 
matte ball; what shape is 
it?
A: sphere

Q: What number of tiny 
shiny balls have the same 
color as the cylinder?
A: 1

Q: Does the tiny cyan 
thing have the same 
material as the large blue 
cylinder?
A: True

Figure 7: Example scene/QA pairs from the training dataset used for VQA

Q: Do the cyan matte thing 
and the matte cheese that 
is in front of the brown 
metallic cheese have the 
same size?
A: False

Q: How many cheeses are 
either small gray shiny 
objects or small objects?
A: 2

Q: What material is the 
other gray thing that is the 
same shape as the tiny 
matte object?
A: metal

Figure 8: Example scene/QA pairs from the novel only one shot test dataset used for VQA.
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CARLA Dataset. We use CARLA dataset to show detector improvement results in Appendix D.
We use the 26 vehicle classes available in Carla 0.9.7 to prepare our dataset. We call each recorded
datapoint a scene. Each scene consists of multiview RGB and depth images of static vehicles placed
at randomly selected spawn locations. We generate two separate datasets: datasets with scenes
consisting of only single vehicles and datasets with scenes consisting of 3-6 vehicles. The single
vehicle scenes are used to train the 3D detector. The multi-vehicle scenes are used to evaluate the
trained 3D detector. For clarity, we will use a = Uniform(b, c) to mean that ’a’ takes a random
value between ’b’ and ’c’. For each scene, we first randomly select a map from the available CARLA
maps. Then we randomly perturb the weather conditions by setting cloudiness = Uniform(0, 70),
precipitation = Uniform(0, 75), and sun_altitude_angle = Uniform(30, 90). We place a
total of 18 RGB-D cameras in the scene. The origin of a selected player vehicle serves as the origin
with respect to which the extrinsics of all the cameras is calculated. For single-vehicle scenes, we
randomly select a spawn point and place the vehicle there. This vehicle then also acts as the player
vehicle. For multi-vehicle scenes, we again randomly select a spawn point, place a vehicle there, and
mark it as the player vehicle. Then, we randomly determine how many more vehicles to place. We
then find all spawn points that are within 17 units distance from the first spawn point and randomly
select some of them to place the extra vehicles. Selecting nearby spawn locations helps ensure that
most of the vehicles will be visible in the majority of the camera views. For vehicles in CARLA, the
x-axis points forward, the y-axis points to the right, and the z-axis points upwards. For all scenes,
we place the first camera at x = Uniform(8, 13), y = 0, z = 1, pitch = 0◦, yaw = −180◦,
roll = 0◦. The next 8 cameras are placed on the boundary of a circle centered at the player vehicle,
with radius = Uniform(7, 14) (radius is randomly sampled for each camera position), z = 5.5,
pitch = 0◦, roll = 0◦, and yaw decremented uniformly by 35◦ from −40◦ to −285◦. The next
8 cameras follow the same setup but with pitch = −40◦ and z = 6.5. Finally, the last RGB-D
camera is placed overhead at x = 0, y = 0, z = Uniform(6, 10), pitch = −90◦, yaw = 0◦, and
roll = 0◦.

Real World Veggie Dataset. Our real world veggie dataset consists of multiview RGB-D scenes
of vegetables placed on a table recorded with Microsoft Azure Kinect camera. For each scene, we
place 1 to 6 vegetables on a table and move the camera around the table randomly to capture RGB
and depth images. A SLAM package then takes the camera output and provides us with the extrinsics.
To get the 3D bounding boxes of objects in the scene, we fire a 2D object detector on each RGB
image and triangulate the 2D detections to generate the 3D bounding boxes.

Replica Dataset. Replica dataset (Straub et al., 2019) provides high quality reconstructions for
18 indoor scenes. We use AI Habitat simulator (Manolis Savva* et al., 2019) to render multiview
RGB-D data for these meshes. Specifically, to capture one scene, we load a random mesh in the
simulator, select one object (primary object) in the mesh randomly, and spawn the agent near that
object. We then move the agent around that object, ensuring that agent is between 1m to 2m from the
primary object, and capture RGB-D images from 24 different viewpoints. We use 256× 256 spatial
resolution for RGB and depth images. These images can also include objects in the vicinity of the
primary object we selected. For a particular view, we only store information for objects that occupy
more than 500 pixels in the RGB image for that view. We also manually annotate the style and shape
category for each object visible in any of the 24 views. For shape category, we use the instance id
provided by the AI Habitat simulator. This gives us 152 shape categories. For style, we annotate each
object with a color and use the color label as style for that object. This gives us 16 different style
categories.

B ARCHITECTURE DETAILS

For all the models, Esc and Dsc trained over view prediction losses are used as the base model.

The input RGB and depth images are resized to a resolution of 320× 480 for all the datasets. While
training using view prediction, we randomly sample 2 views from each multi-view scene. During
testing, we only use a single view. Our model converges in 10-12hrs of training and requires 0.8
seconds for an inference step on a single RTX 2080.
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B.1 D3DP-NETS

2.5D-to-3D Lifting (Esc) and 3D-to-2.5D Projection (Dsc and Docc). Our 2.5D-to-3D lifting, 3D
occupancy estimation and 2D RGB estimation modules follow the exact same architecture as Harley
et al. (2020). However, unlike their architecture, we do not use batch normalization in our network
because we did not find it to be compatible with adaptive instance normalization which is used later
in the pipeline. Our 2D-to-3D Lifting module takes as input RGB-D images, camera intrinsics, and
camera extrinsics and outputs a 3D feature map of size 72× 72× 72× 32, where 32 is the number
of channels and 72 is the height, width, and depth. We explain the implementation details of each of
these modules below.

• 2.5D-to-3D lifting Our 2.5D-to-3D unprojection module takes as input RGB-D images and
converts it into a 4D tensor U ∈ Rw×h×d×4, where w, h, d is 72, 72, 72. We use perspective
(un)projection to fill the 3D grid with samples from 2D image. Specifically, using pinhole
camera model (Hartley & Zisserman, 2003), we find the floating-point 2D pixel location that
every cell in the 3D grid, indexed by the coordinate (i, j, k), projects onto from the current
camera viewpoint. This is given by [u, v]T = KS[i, j, k]T , where S, the similarity transform,
converts memory coordinates to camera coordinates and K, the camera intrinsics, convert
camera coordinates to pixel coordinates. Bilinear interpolation is applied on pixel values
to fill the grid cells. We obtain a binary occupancy grid O ∈ Rw×h×d×1 from the depth
image D in a similar way. This occupancy is then concatenated with the unprojected RGB to
get a tensor [U,O] ∈ Rw×h×d×4. This tensor is then passed through a 3D encoder-decoder
network, the architecture of which is as follows: 4-2-64, 4-2-128, 4-2-256, 4-0.5-128, 4-0.5-
64, 1-1-F . Here, we use the notation k-s-c for kernel-stride-channels, and F is the feature
dimension, which we set to F = 32. We concatenate the output of transposed convolutions
in decoder with same resolution feature map output from the encoder. The concatenated
tensor is then passed to the next layer in the decoder. We use leaky ReLU activation after
every convolution layer, except for the last one in each network. We obtain our 3D feature
map M as the output of this process.

• 3D occupancy estimation. In this step, we want to estimate whether a voxel in the 3D
grid is “occupied“ or “free“. The input depth image gives us partial labels for this. We
voxelize the pointcloud to get sparse “occupied“ labels. All voxel cells that are intersected
by the ray from the source-camera to each occupied voxel are marked as “free“. We give M
as input to the occupancy module. It produces a new tensor C, where each voxel stores
the probability of being occupied. We use a 3D convolution layer with a 1 × 1 × 1 filter
followed by a sigmoid non-linearity to achieve this. We train this network with the logistic
loss, Locc = (1/

∑
Î)
∑

Î log(1 + exp(−Ĉ · C)), where Ĉ is the label map, and Î is an
indicator tensor, indicating which labels are valid. Since there are far more “free” voxels
than “occupied”, we balance this loss across classes within each minibatch.

• 2D RGB estimation. Given a camera viewpoint vq, this module projects the 3D feature
map M to “render“ 2D feature maps. To achieve this, we first obtain a view-aligned version,
Mvq , by resampling M. The view oriented tensor, Mvq , is then warped so that perspective
viewing rays become axis-aligned. This gives us the perspective-transformed tensor Mprojq .
This tensor is then passed through a CNN to get a 2D feature map vq. The CNN has the
following architecture (using the notation k-s-c for kernel-stride-channels): max-pool along
the depth axis with 1× 8× 1 kernel and 1× 8× 1 stride, to coarsely aggregate along each
camera ray, 3D convolution with 3-1-32, reshape to place rays together with the channel
axis, 2D convolution with 3-1-32, and finally 2D convolution with 1-1-E, where E is the
channel dimension, E = 3.

Object-Centric Encoder Eo Our object encoder Eo consists of two sub encoders, the content
encoder Eshp and the style encoder Esty. Both Eshp and Esty take as input an object centric 3D
feature map of size 16×16×16×32. Esty uses two 3D convolutions with the following architecture
(our notation is k-s-c-p-pt for kernel size, stride, output channels, padding, and padding type): 3-1-64-
1-constant, 4-2-128-1-constant. Each 3D convolution operation is followed by ReLU non-linearity.
The output of the second ReLU is averaged pooled spatially to get a linear output, which is the style
code. This style code is then passed through two linear layers, both producing 256 dimensional output.
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We use ReLU non-linearity only after the first linear layer. The final output of the linear layer is
used as adaptive instance normalization (AdaIN) parameters to re-normalize the intermediate features
generated by D. Eshp also uses two 3D convolution layers with the following architecture: 3-1-64-1-
constant, 4-2-128-1-constant. Both convolution operations are followed by Instance Normalization
(Ulyanov et al., 2016) and ReLU non-linearity.

Object-Centric Decoder D The object-centric decoder D takes as input the shape and style codes
from Eshp and Esty , and compose them back into a complete object-centric feature maps. It consists
of two 3D convolution layers with the architectures: 3-1-128-1-constant, 3-1-32-1-constant. The
output of the first 3D convolution is re-normalized using the AdaIN parameters generated by Esty,
before passing through a ReLU non-linearity. This output is then upsampled by a factor of 2 and
passed through the second 3D convolution. The output of D is an object centric feature map with
content and style dictated by the inputs of Eshp and Esty respectively.

3D Detector We use the same 3D detector architecture as in Tung et al. (2019). This 3D detector
extends the Faster RCNN architecture (Ren et al., 2015) to use 3D feature maps to predict 3D
bounding boxes, instead of predicting 2D bounding boxes using 2D feature maps. The output of
our 2D-to-3D Lifting module, with size 72× 72× 72× 32, is fed as input to the 3D detector. The
3D detector consists of one down-sampling layer and three 3D residual blocks. Each layer has 32
channels. At each grid location in the 3D feature map, we use a single cube shaped anchor box of
side length 12 units.

B.2 VISUAL QUESTION ANSWERING (VQA)

The VQA model architecture is similar to the Neuro-Symbolic Concept Learner (NSCL) (Mao et al.,
2019). We assume each object in a scene can have certain attributes and each pair of objects can
have a relationship associated with it. For our tasks, the object attributes are shape, color, material,
and size; the relationships are all spatial. The model has a neural operator for each of the possible
attributes/relationships. These operators take as input features corresponding to a specific instance
of an object/relationship. The outputs of the operators are compared to a dictionary of embeddings
representing specific concepts (e.g. red or sphere) to compute the probability that the instance
matches the concept. We do this by computing the cosine similarity of the computed embeddings
with the stored embeddings, and using those similarities as logits in our probability calculation. For
the shape attribute, our embeddings are 4D, while for the others, the embeddings are 1D. This allows
us to do a rotation aware similarity calculation for shape, as described in the main paper.

For every object in the scene, five disentangled feature sets are created: shape and style from the
D3DP-Nets and center location, size, and rotation from the bounding box description. For every pair
of objects, the relationship feature sets are created by concatenating the corresponding feature sets of
both objects (e.g. content with content).

Since the feature sets we input into the operators are disentangled, we can feed specific inputs into
each operator. The feature set descriptions and the usage of the feature sets by each attribute operator
are shown in Table 3. The 1D feature sets are first passed through a linear layer with output dimension
256. The content feature set is passed through a 3-1-256-1-constant 3D convolution. The relevant
feature set is then passed to each attribute operator. For the shape attribute, we use two 3D convolution
layers to produce the final embedding: 1-1-256-0-constant and 1-1-64-0-constant. For the other
attributes, we use a linear layer with output dimension 256 and a linear layer with output dimension
64. Every layer described above except for the final attribute operator layers is followed by a ReLU
non-linearity. These embeddings are the ones compared to the stored concept embeddings in the
model’s dictionary. Every VQA model is trained for 60 epochs with early stopping. We use the Adam
optimizer (Kingma & Ba, 2014) initialized with a learning rate of .001.

We also trained a semantic parser to be able to answer questions for which we do not have a symbolic
program generated. The architecture of this parser follows the architecture described in Mao et al.
(2019). Instead of training it with reinforcement learning during the VQA training, we train the parser
separately in a supervised manner with teacher forcing using a small set of question, program pairs.
The accuracy of this parser is 94%, allowing us to use it for most questions that are of similar form to
those in the CLEVR dataset.
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Feature set Shape Description

D3DP-Nets Content 8x8x8x128 The content output of D3DP-Nets
D3DP-Nets Style 128 The style output of D3DP-Nets

Bounding box center 3 The (x, y, z) location of the center of the
bounding box containing the object

Bounding box size 3 The length, width, and height of the
bounding box containing the object

Bounding box rotation 3 The pitch, roll, and yaw rotations of the
bounding box containing the object

Operator Input (in final model) 3D Embedding Used

Shape D3DP-Nets Content Yes
Color D3DP-Nets Style No
Material D3DP-Nets Style No
Size Bounding box-size No
Spatial relationship Bounding box-centers No

Table 3: Left: Description of feature sets available during VQA. Right: Input feature sets used by
each module.

In	domain	test	split One-shot	test	split

Q:	What	is	the	shape	of	the	shiny	red
	object	in	front	of	the	yellow	sphere?
A:	cube

Q:	What	is	the	shape	of	the	shiny	red
object	behind	the	large	yellow	pepper?
A:	cheese

Pepper CheeseGarlicPepper CheeseGarlicPepper CheeseGarlic

(a) (b)

Prototype imagesOne-shot test splitIn domain test split

Figure 9: (a) The left scene/question pair is from the in domain test set, and the right scene/question
pair is from the one shot test set. The colors, materials, sizes, and spatial relationships tested in both
splits are the same. The only difference is that the one shot test set contains shapes the model did not
see while training and was only exposed to one example before the testing phase. (b) The prototype
images shown to the model before starting the one shot testing phase.

In figure 9, we show example scene/question pairs for the in domain test set and one shot test set.

C FEATURE SUBSPACE SELECTION USING CONTRASTIVE EXAMPLES

In this section we show that, given contrastive examples, our disentangled representation can be
used to infer relevant feature subspace for each concept category. We do this by selecting the feature
subspace which has the minimum cosine similarity given a contrastive example. For example, in
order to find what input we should give to Color module, we take 3D object centric feature maps
for two objects differing only in their color. We then disentangle the feature maps into content and
style features. We finally calculate the cosine similarity between corresponding content and style
features for both the objects and use the features which has lower similarity. If our disentanglement is
good, we should be able to infer correct feature subspace for different concept categories, as changes
in one feature subspace should leave the other disentangled feature subspaces unchanged. In Table
5 we show the accuracy of selecting the correct feature subspace given 10 contrastive examples
for each concept category. For retrieving a cosine similarity friendly feature subspace for size and
spatial relation categories, we train an auto-encoder on top of their inputs, and use their encoded
representation as the relevant feature subspace. In Figure 11, we show contrastive examples for each
concept category.

D LEARNING 3D OBJECT DETECTORS BY GENERATION

Upon training, D3DP-Nets maps a novel RGB-D image to a set of 3D object boxes, their shape and
style codes, and the background scene feature map. We generate (simulate) novel 3D scene feature
maps by adding object feature maps against background scene maps while randomizing object 3D
locations, 3D pose and 3D sizes. We make sure each added 3D object box does not intersect in
3D with the predicted scene occupancyMocc and objects added thus far. We train our 3D object
detectors using additional annotations from such labelled imagined scene feature maps. We show
below that such mental augmentations are beneficial for generalization of 3D object detector from
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Annotation
Source

CARLADosovitskiy et al. (2017) CLEVRJohnson et al. (2017)

50 annot. 100 annot. 200 annot. 50 annot. 100 annot. 200 annot.

IOU .3 IOU .5 IOU .3 IOU .5 IOU .3 IOU .5 IOU .3 IOU .5 IOU .3 IOU .5 IOU .3 IOU .5

Real 0.57 0.41 0.57 0.44 0.60 0.47 0.43 0.43 0.47 0.44 0.50 0.48
Real + Aug 0.61 0.45 0.67 0.55 0.64 0.50 0.44 0.46 0.50 0.47 0.54 0.50

Table 4: Mean average precision for category agnostic region proposals.

Shape Color Material Spatial Relation Size

0.9 1.0 1.0 1.0 1.0

Table 5: Feature selection accuracy on CLEVR dataset given 10 randomly selected contrastive
examples per category.

few examples, and can generate improvements, especially in the low IoU evaluation regime. Note
that D3DP-Nets’s imaginations do not attempt to match the training scene distribution. Rather, they
target combinatorial generalization (Battaglia et al., 2018), using basic spatial reasoning of free space
encoded in the 3D neural representations. In Figure 10, we visualize RGB neural renders of our
generated novel 3D feature maps. We generate (simulate) novel 3D scene feature maps Msim by
adding entangled object feature maps against background scene maps while randomizing object
3D locations and 3D sizes as shown in Figure 1. We consider 50, 100 and 200 annotations of 3D
bounding box on single object scenes in CARLA and CLEVR datasets. We use those annotations to
train corresponding category agnostic 3D object detectors. D3DP-Nets weights are initialized with
self-supervised view-prediction using a support dataset made up of 1600 scenes with 12 views each
(4 different azimuths, 3 different elevations). Implementation details of our 3D detector architecture
can be found in the supplementary file. We generate neural scene imaginations following the method
described above, and use it as additional training data. Specifically, we consider randomly placing
3-10 objects around the (real) object in the inferred 3D scene maps of the training images. We test
the model with 300 scenes from each simulated environment, with each having around 3-8 objects
present. We compare a 3D detector trained on joint real and hallucinated data, with one trained on
real data alone. We use L2 weight regularization in all methods, and cross-validate the weight decay.
We use an early stopping technique to avoid overtraining of the detector. In Table 4, we show that
training the 3D detector on real and hallucinated neural scenes outperforms just using real images
alone. We found that most of our improvement in mean AP comes from placing more objects and
randomizing their location and not from composing unique shape-style. We believe this is because
our entangled object representation generated from unique shape/style composition is distinguishable
from the actual real object, which the detector exploits.

E VQA ADDITIONAL RESULTS

Further ablations We introduce three more ablations of our VQA model that were not presented
above due to space considerations.

The first ablation entangles all the disentangled feature sets together before feeding them into the at-
tribute operators. It does so by concatenating the different feature sets after upsampling/downsampling
to match dimensions, and then passing through either a linear layer or 3D convolution layer depending
on if the input/desired output embedding is 1D or 4D.

The second ablation involves using a simple method to extract content and style embeddings. We take
the input 3D tensors, normalize by channel to get the content embedding, concatenate the channel
means and channel standard deviations to get the style embedding. This simple baseline performs
surprisingly well at the higher data settings we test. The full results for both ablations are shown in
Table 6.

The final ablation removes all disentanglement and 3D prototypes. This model is pretrained only with
view prediction, and does not do any shape/style disentanglement. It also pools any 3D prototypes to
1D prototypes before comparison instead of doing a rotation aware check.
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Figure 11: Contrasting examples for each concept category. First column specifies the concept and
the contrasting attributes shown for that concept. Next two columns show the images differing only
in that specified concept.

Figure 10: RGB neural renders of the novel
3D scene feature maps generated by our
imagination module. Although we don’t
get pixel accurate generation, our synthe-
sized 3D feature map encodes the semantic
structure of the scene.

Attribute classifier accuracy We present the classi-
fication accuracy of the attribute modules for the VQA
experiments in this paper in Tables 7,8, 9, and 10.

For the shape classifier in particular, we find that our
full model is worse than the 2D baseline when tested
on in domain examples, but when tested on the one
shot dataset, the shape classification accuracy of the
2D baseline decreases sharply. The 3D models mean-
while are able to maintain decent performance. Our
full model does not have the best shape classification
accuracy on the one shot dataset, but it still shows a
respectable performance. Finally, we note our model
tended to do worse on the shape classification accuracy
when trained with more examples in the training phase.
This phenomenon requires further exploration, but a
possible explanation could be that more training exam-
ples of the original shapes encodes stronger biases into
the model, making it more difficult to identify the one
shot objects.

Mixed one shot only dataset We present results on
the mixed one shot test dataset introduced in Appendix
A. This dataset contains a mix of objects seen in training
and novel objects. Table 11 shows results on this dataset.
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VQA Model
In domain test set One shot test set

Number of Training Examples Number of Training Examples

10 25 50 100 250 10 25 50 100 250

D3DP 0.809 0.872 0.902 0.923 0.939 0.775 0.836 0.834 0.828 0.845

D3DP without 3D shape prototypes 0.798 0.858 0.538 0.905 0.932 0.410 0.410 0.517 0.745 0.771
D3DP without shape/style disentanglement 0.458 0.407 0.616 0.806 0.788 0.457 0.402 0.616 0.807 0.792

NSCL-2D (Mao et al., 2019) 0.733 0.927 0.959 0.978 0.990 0.594 0.708 0.703 0.789 0.743
NSCL-2.5D (Mao et al., 2019) 0.594 0.737 0.828 0.881 0.925 0.528 0.633 0.651 0.633 0.633
NSCL-2.5D-disentangled (Mao et al., 2019) 0.436 0.486 0.640 0.735 0.842 0.430 0.462 0.517 0.561 0.564

Table 6: VQA performance of our model and baselines in CLEVR (Johnson et al., 2017) under a
varying number of annotated training scenes.

VQA Model
In domain test set One shot test set

Number of Training Examples Number of Training Examples

10 25 50 100 250 10 25 50 100 250

Our full model 0.772 0.828 0.856 0.875 0.904 0.808 0.814 0.766 0.729 0.740

without 3D shape prototypes 0.762 0.793 0.734 0.857 0.899 0.529 0.649 0.535 0.557 0.600
without shape/style disentanglement 0.350 0.326 0.441 0.698 0.692 0.229 0.426 0.476 0.870 0.879
without 3D shape prototypes and

without shape/style disentanglement 0.682 0.730 0.775 0.795 0.818 0.422 0.409 0.416 0.418 0.421

Entangled disentangled features 0.492 0.724 0.845 0.859 0.893 0.459 0.639 0.766 0.855 0.911
InstanceNorm disentangled features

+ rotation-aware check 0.733 0.803 0.834 0.841 0.835 0.818 0.870 0.850 0.836 0.894

2D NSCL Mao et al. (2019) 0.725 0.958 0.980 0.991 0.996 0.481 0.574 0.596 0.664 0.632
2D NSCL Mao et al. (2019)

without ImageNet pretraining 0.479 0.661 0.727 0.804 0.899 0.263 0.131 0.395 0.381 0.426

2.5D NSCL Mao et al. (2019) 0.527 0.662 0.756 0.809 0.881 0.206 0.410 0.455 0.335 0.342
2.5D NSCL Mao et al. (2019) disentangled 0.707 0.768 0.838 0.884 0.930 0.464 0.534 0.496 0.438 0.406

Table 7: Accuracy of the shape classifiers of the VQA models

VQA Model
In domain test set One shot test set

Number of Training Examples Number of Training Examples

10 25 50 100 250 10 25 50 100 250

Our full model 0.949 0.970 0.978 0.981 0.983 0.899 0.952 0.965 0.976 0.972

without 3D shape prototypes 0.948 0.970 0.828 0.981 0.982 0.112 0.125 0.225 0.974 0.976
without shape/style disentanglement 0.158 0.129 0.952 0.982 0.983 0.149 0.122 0.926 0.967 0.960
without 3D shape prototypes and

without shape/style disentanglement 0.833 0.969 0.979 0.982 0.981 0.733 0.920 0.963 0.971 0.968

Entangled disentangled features 0.836 0.483 0.979 0.982 0.984 0.759 0.401 0.973 0.974 0.975
InstanceNorm disentangled features

+ rotation-aware check 0.645 0.962 0.974 0.979 0.982 0.578 0.895 0.964 0.962 0.960

2D NSCL Mao et al. (2019) 0.827 0.945 0.980 0.989 0.992 0.820 0.936 0.988 0.996 0.993
2D NSCL Mao et al. (2019)

without ImageNet pretraining 0.229 0.451 0.529 0.930 0.980 0.204 0.353 0.444 0.872 0.976

2.5D NSCL Mao et al. (2019) 0.669 0.880 0.969 0.977 0.984 0.614 0.831 0.967 0.964 0.993
2.5D NSCL Mao et al. (2019) disentangled 0.897 0.950 0.964 0.980 0.986 0.883 0.968 0.961 0.969 0.970

Table 8: Accuracy of the color classifiers of the VQA models
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VQA Model
In domain test set One shot test set

Number of Training Examples Number of Training Examples

10 25 50 100 250 10 25 50 100 250

Our full model 0.907 0.952 0.975 0.983 0.989 0.897 0.952 0.964 0.968 0.975

without 3D shape prototypes 0.917 0.957 0.620 0.986 0.987 0.495 0.445 0.587 0.967 0.978
without shape/style disentanglement 0.570 0.504 0.821 0.983 0.980 0.565 0.505 0.707 0.952 0.960
without 3D shape prototypes and

without shape/style disentanglement 0.887 0.968 0.972 0.982 0.987 0.880 0.940 0.948 0.955 0.965

Entangled disentangled features 0.955 0.788 0.984 0.988 0.986 0.908 0.698 0.941 0.954 0.964
InstanceNorm disentangled features

+ rotation-aware check 0.798 0.950 0.963 0.976 0.986 0.807 0.888 0.930 0.955 0.967

2D NSCL Mao et al. (2019) 0.970 0.990 0.993 0.997 0.997 0.905 0.872 0.893 0.948 0.912
2D NSCL Mao et al. (2019)

without ImageNet pretraining 0.909 0.960 0.978 0.982 0.988 0.778 0.803 0.808 0.806 0.842

2.5D NSCL Mao et al. (2019) 0.877 0.953 0.967 0.987 0.993 0.747 0.786 0.793 0.828 0.822
2.5D NSCL Mao et al. (2019) disentangled 0.821 0.954 0.960 0.977 0.986 0.709 0.844 0.805 0.862 0.738

Table 9: Accuracy of the material classifiers of the VQA models

VQA Model
In domain test set One shot test set

Number of Training Examples Number of Training Examples

10 25 50 100 250 10 25 50 100 250

Our full model 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

without 3D shape prototypes 1.000 1.000 1.000 1.000 1.000 0.522 0.522 1.000 1.000 1.000
without shape/style disentanglement 1.000 0.488 1.000 1.000 1.000 1.000 0.478 1.000 1.000 1.000
without 3D shape prototypes and

without shape/style disentanglement 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Entangled disentangled features 0.993 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000
InstanceNorm disentangled features

+ rotation-aware check 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2D NSCL Mao et al. (2019) 0.919 0.974 0.983 0.991 1.000 0.755 0.917 0.867 0.925 0.919
2D NSCL Mao et al. (2019)

without ImageNet pretraining 0.872 0.974 0.993 0.994 0.999 0.788 0.963 0.978 0.966 0.986

2.5D NSCL Mao et al. (2019) 0.919 0.965 0.988 0.994 0.998 0.869 0.947 0.974 0.975 0.941
2.5D NSCL Mao et al. (2019) disentangled 0.627 0.980 0.972 0.985 0.982 0.638 0.978 0.975 0.983 0.984

Table 10: Accuracy of the size classifiers of the VQA models

VQA Model
Mixed one shot test set

Number of Training Examples

10 25 50 100 250

Our full model 0.740 0.804 0.812 0.820 0.832
without 3D shape prototypes 0.395 0.397 0.501 0.774 0.793
without shape/style disentanglement 0.448 0.406 0.601 0.787 0.777
without 3D shape prototypes and

without shape/style disentanglement 0.627 0.724 0.745 0.757 0.760

Entangled disentangled features 0.611 0.542 0.807 0.835 0.838
InstanceNorm disentangled features

+ rotation-aware check 0.604 0.772 0.809 0.833 0.845

2D NSCL Mao et al. (2019) 0.604 0.752 0.766 0.808 0.790
2D NSCL Mao et al. (2019)

without ImageNet pretraining 0.472 0.540 0.577 0.685 0.745

2.5D NSCL Mao et al. (2019) 0.539 0.632 0.684 0.707 0.721
2.5D NSCL Mao et al. (2019) disentangled 0.560 0.683 0.676 0.719 0.710

Table 11: VQA results on the mixed one shot dataset. This test dataset contains some objects seen in
training and some are completely novel objects.
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F QUALITATIVE RESULTS FOR ONE SHOT 3D NEURAL SCENE IMAGINATION
USING LANGUAGE DESCRIPTIONS

The disentangled representations from D3DP-Nets allow us to render novel scenes which can have
objects with content-style combinations not seen during training.

If the available scenes are accompanied with annotations of object categories, colors and materials,
then our model can generate 3D scenes that comply with a scene description, following the method
of Prabhudesai et al. (2019), assuming a parse of the scene description. We explain the experiment in
detail and show some qualitative results in Section 4.4 of the main paper. We show some additional
results for the same in Figure 12.
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“Green cube to the left of brown 
sphere to the front of brown sphere 
to right front of blue sphere”

“Gray cube to the left of blue sphere to 
the left of cyan cylinder to the top of 
green sphere to the top of purple 
sphere to the bottom right of blue 
cylinder”

“Blue cube to the left front of cyan cube 
to the left front of purple sphere to the 
front of purple cylinder to the right of 
green cube to the right of yellow cube to 
the behind of purple cube”

“Green cylinder to the right of cyan 
sphere to the top of yellow sphere to 
the left of cyan sphere”

“Green sphere to the left of cyan 
cylinder to the top left of yellow cube”

“Green sphere to the top of red sphere 
to the bottom of purple cube to the 
right of red cylinder”

“Blue cube to the bottom of purple 
cube to the bottom of yellow sphere to 
the left of green cylinder to the top of 
cyan cube to the left of purple sphere 
to the bottom of purple cylinder”

Natural Language Utterance Neural Renders

View 1 (Ref view) View 2 

“Blue cylinder to the top left of cyan 
sphere to the top left of brown sphere 
to the bottom of red cylinder  to the 
right of cyan sphere to the bottom right 
of brown sphere”

Figure 12: Generating novel scenes using only a single example for each style and content class.
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