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ABSTRACT

Advanced data augmentation strategies have widely been studied to improve the
generalization ability of deep learning models. Regional dropout is one of the
popular solutions that guides the model to focus on less discriminative parts by
randomly removing image regions, resulting in improved regularization. How-
ever, such information removal is undesirable. On the other hand, recent strate-
gies suggest to randomly cut and mix patches and their labels among train-
ing images, to enjoy the advantages of regional dropout without having any
pointless pixel in the augmented images. We argue that such random selec-
tion strategies of the patches may not necessarily represent sufficient informa-
tion about the corresponding object and thereby mixing the labels according to
that uninformative patch enables the model to learn unexpected feature repre-
sentation. Therefore, we propose SaliencyMix that carefully selects a repre-
sentative image patch with the help of a saliency map and mixes this indica-
tive patch with the target image, thus leading the model to learn more appro-
priate feature representation. SaliencyMix achieves the best known top-1 error of
21.26% and 20.09% for ResNet-50 and ResNet-101 architectures on ImageNet
classification, respectively, and also improves the model robustness against ad-
versarial perturbations. Furthermore, models that are trained with SaliencyMix
help to improve the object detection performance. Source code is available at
https://github.com/SaliencyMix/SaliencyMix.

1 INTRODUCTION

Machine learning has achieved state-of-the-art (SOTA) performance in many fields, especially in
computer vision tasks. This success can mainly be attributed to the deep architecture of convolu-
tional neural networks (CNN) that typically have 10 to 100 millions of learnable parameters. Such a
huge number of parameters enable the deep CNNs to solve complex problems. However, besides the
powerful representation ability, a huge number of parameters increase the probability of overfitting
when the number of training examples is insufficient, which results in a poor generalization of the
model.

In order to improve the generalization ability of deep learning models, several data augmentation
strategies have been studied. Random feature removal is one of the popular techniques that guides
the CNNs not to focus on some small regions of input images or on a small set of internal activations,
thereby improving the model robustness. Dropout (Nitish et al., 2014; Tompson et al., 2015) and
regional dropout (Junsuk & Hyunjung, 2019; Terrance & Graham, 2017; Golnaz et al., 2018; Singh
& Lee, 2017; Zhun et al., 2017) are two established training strategies where the former randomly
turns off some internal activations and later removes and/or alters random regions of the input im-
ages. Both of them force a model to learn the entire object region rather than focusing on the most
∗Department of Computer Science & Engineering, Kyung Hee University, South Korea.
†Corresponding author.
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Figure 1: Problem of randomly selecting image patch and mixing labels according to it. When the
selected source patch does not represent the source object, the interpolated label misleads the model
to learn unexpected feature representation.

important features and thereby improving the generalization of the model. Although dropout and
regional dropout improve the classification performance, this kind of feature removal is undesired
since they discard a notable portion of informative pixels from the training images.

Recently, Yun et al. (2019) proposed CutMix, that randomly replaces an image region with a patch
from another training image and mixes their labels according to the ratio of mixed pixels. Unlike
Cutout (Devries & Taylor, 2017), this method can enjoy the properties of regional dropout without
having any blank image region. However, we argue that the random selection process may have
some possibility to select a patch from the background region that is irrelevant to the target objects
of the source image, by which an augmented image may not contain any information about the
corresponding object as shown in Figure 1. The selected source patch (background) is highlighted
with a black rectangle on the source image. Two possible augmented images are shown wherein
both of the cases, there is no information about the source object (cat) in the augmented images
despite their mixing location on the target image. However, their interpolated labels encourage the
model to learn both objects’ features (dog and cat) from that training image. But we recognize
that it is undesirable and misleads the CNN to learn unexpected feature representation. Because,
CNNs are highly sensitive to textures (Geirhos et al., 2019) and since the interpolated label indicates
the selected background patch as the source object, it may encourage the classifier to learn the
background as the representative feature for the source object class.

We address the aforementioned problem by carefully selecting the source image patch with the
help of some prior information. Specifically, we first extract a saliency map of the source image that
highlights important objects and then select a patch surrounding the peak salient region of the source
image to assure that we select from the object part and then mix it with the target image. Now the
selected patch contains relevant information about the source object that leads the model to learn
more appropriate feature representation. This more effective data augmentation strategy is what
we call, ”SaliencyMix”. We present extensive experiments on various standard CNN architectures,
benchmark datasets, and multiple tasks, to evaluate the proposed method. In summary, SaliencyMix
has obtained the new best known top-1 error of 2.76% and 16.56% for WideResNet (Zagoruyko &
Komodakis, 2016) on CIFAR-10 and CIFAR-100 (Krizhevsky, 2012), respectively. Also, on Ima-
geNet (Olga et al., 2015) classification problem, SaliencyMix has achieved the best known top-1 and
top-5 error of 21.26% and 5.76% for ResNet-50 and 20.09% and 5.15% for ResNet-101 (He et al.,
2016). In object detection task, initializing the Faster RCNN (Shaoqing et al., 2015) with Salien-
cyMix trained model and then fine-tuning the detector has improved the detection performance on
Pascal VOC (Everingham et al., 2010) dataset by +1.77 mean average precision (mAP). Moreover,
SaliencyMix trained model has proved to be more robust against adversarial attack and improves
the top-1 accuracy by 1.96% on adversarially perturbed ImageNet validation set. All of these re-
sults clearly indicate the effectiveness of the proposed SaliencyMix data augmentation strategy to
enhance the model performance and robustness.

2 RELATED WORKS

2.1 DATA AUGMENTATION

The success of deep learning models can be accredited to the volume and diversity of data. But col-
lecting labeled data is a cumbersome and time-consuming task. As a result, data augmentation has
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been introduced that aims to increase the diversity of existing data by applying various transforma-
tions e.g., rotation, flip, etc. Since this simple and inexpensive technique significantly improves the
model performance and robustness, data augmentation has widely been used to train deep learning
models. Lecun et al. (1998) applied data augmentation to train LeNet for hand written character
recognition. They performed several affine transformations such as translation, scaling, shearing,
etc. For the same task, Bengio et al. (2011) applied more diverse transformation such as Gaussian
noise, salt and pepper noise, Gaussian smoothing, motion blur, local elastic deformation, and various
occlusions to the images. Krizhevsky et al. (2012) applied random image patch cropping, horizontal
flipping and random color intensity changing based on principal component analysis (PCA). In Deep
Image (Wu et al., 2015), color casting, vignetting, and lens distortion are applied besides flipping
and cropping to improve the robustness of a very deep network.

Besides these manually designed data augmentations, Lemley et al. (2017) proposed an end-to-end
learnable augmentation process, called Smart Augmentation. They used two different networks
where one is used to learn the suitable augmentation type and the other one is used to train the actual
task. Devries & Taylor (2017) proposed Cutout that randomly removes square regions of the input
training images to improve the robustness of the model. Zhang et al. (2017) proposed MixUp that
blends two training images to some degree where the labels of the augmented image are assigned by
the linear interpolation of those two images. But the augmented images look unnatural and locally
ambiguous. Recently, Cubuk et al. (2019) proposed an effective data augmentation method called
AutoAugment that defines a search space of various augmentation techniques and selects the best
suitable one for each mini-batch. Kim et al. (2020) proposed PuzzleMix that jointly optimize two
objectives i.e., selecting an optimal mask and an optimal mixing plan. The mask tries to reveal
most salient data of two images and the optimal transport plan aims to maximize the saliency of the
revealed portion of the data. Yun et al. (2019) proposed CutMix that randomly cuts and mixes image
patches among training samples and mixes their labels proportionally to the size of those patches.
However, due to the randomness in the source patch selection process, it may select a region that
does not contain any informative pixel about the source object, and the label mixing according to
those uninformative patches misleads the classifier to learn unexpected feature representation.

In this work, the careful selection of the source patch always helps to contain some information
about the source object and thereby solves the class probability assignment problem and helps to
improve the model performance and robustness.

2.2 LABEL SMOOTHING

In object classification, the class labels are usually represented by one-hot code i.e., the true labels
are expected to have the probability of exactly 1 while the others to have exactly 0. In other words,
it suggests the model to be overconfident which causes overfitting to training dataset. As a result,
the models have low performance on unseen test dataset. To alleviate this problem, label smoothing
allows to relax the model confidence on the true label by setting the class probability to a slightly
lower value e.g., lower than 1. As a result, it guides the model to be more adaptive instead of
being over-confident and ultimately improves the model robustness and performance (Szegedy et al.,
2016). Our method also mixes the class labels and enjoys the benefit of label smoothing.

2.3 SALIENCY DETECTION

Saliency detection aims to simulate the natural attention mechanism of human visual system (HVS)
and can be classified into two main categories. The first one is a bottom-up approach (Cheng et al.,
2014; Zhu et al., 2014; Li et al., 2015; Zhou et al., 2015; Achanta et al., 2009; Li et al., 2013; Hou
& Zhang, 2007; Qin et al., 2015; Peng et al., 2016; Lei et al., 2016; Montabone & Soto, 2010) that
focuses on exploring low-level vision features. Some visual priors that are inspired by the HVS
properties are utilized to describe a salient object. Cheng et al. (2014) utilized a contrast prior and
proposed a regional contrast based salient object detection algorithm. Zhu et al. (2014) introduced
a robust background measure in an optimization framework to integrate multiple low level cues to
obtain clean and uniform saliency maps. Li et al. (2015) optimized the image boundary selection
by a boundary removal mechanism and then used random walks ranking to formulate pixel-wised
saliency maps. Zhou et al. (2015) proposed a saliency detection model where the saliency infor-
mation is propagated using a manifold ranking diffusion process on a graph. In addition, some
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Figure 2: The proposed SaliencyMix data augmentation. We first extract the saliency map of the
source image that highlights the regions of interest. Then we select a patch around the peak salient
pixel location and mix it with the target image.

traditional techniques are also introduced to achieve image saliency detection, such as frequency
domain analysis (Achanta et al., 2009), sparse representation (Li et al., 2013), log-spectrum (Hou
& Zhang, 2007) cellular automata (Qin et al., 2015), low-rank recovery (Peng et al., 2016), and
Bayesian theory (Lei et al., 2016). Hou & Zhang (2007) proposed a spectral residual method that
focuses on the properties of background. Achanta et al. (2009) proposed a frequency tuned approach
that preserves the boundary information by retaining sufficient amount of high frequency contents.
Montabone & Soto (2010) introduced a method that was originally designed for a fast human detec-
tion in a scene by proposing novel features derived from a visual saliency mechanism. Later on this
feature extraction mechanism was generalized for other forms of saliency detection.

The second one is a top-down approach which is task-driven and utilizes supervised learning with
labels. Several deep learning based methods have been proposed for saliency detection (Deng et al.,
2018; Liu et al., 2018; Zhang et al., 2018a;b; Qin et al., 2019). Deng et al. (2018) proposed a recur-
rent residual refinement network (R3Net) equipped with residual refinement blocks (RRBs) to more
accurately detect salient regions. Contexts play an important role in the saliency detection task and
based on that Liu et al. (2018) proposed a pixel-wise contextual attention network, called PiCANet,
to learn selectively attending to informative context locations for each pixel. Zhang et al. (2018a) in-
troduced multi-scale context-aware feature extraction module and proposed a bi-directional message
passing model for salient object detection. Zhang et al. (2018b) focused on powerful feature extrac-
tion and proposed an attention guided network which selectively integrates multi-level contextual
information in a progressive manner. Recently, Qin et al. (2019) proposed a predict and refine ar-
chitecture for salient object detection called boundary-aware saliency detection network (BASNet).
The author introduced a hybrid loss to train a densely supervised Encoder-Decoder network.

However, despite the high performance of top-down approach, there is a lack of generalization for
various applications since they are biased towards the training data and limited to the specific objects.
In this study, we require a saliency model to focus on the important object/region in a given scene
without knowing their labels. As a result, we rely on bottom-up approach which are unsupervised,
scale-invariant and more robust for unseen data. It is worth noting that the training based saliency
methods can also be applied where the quality and quantity of data for training the saliency methods
may be correlated with the effectiveness of data augmentation. Section 3.3 further explains the
effects of different saliency detection algorithm on the proposed data augmentation method.

3 PROPOSED METHOD

Similar to Yun et al. (2019), we cut a source patch and mix it to the target image and also mix
their labels proportionally to the size of the mixed patches. But in order to prevent the model from
learning any irrelevant feature representation, the proposed method enforces to select a source patch
in a way so that it must contains information about the source object. It first extracts a saliency map
of the source image to highlight the objects of interest and then selects a patch surrounding the peak
salient region to mix with the target image. Here we explain the process in detail.

3.1 SELECTION OF THE SOURCE PATCH

The goal of saliency detection is to find out the pixels or regions that are attractive to the HVS and to
assign them with higher intensity values (Cong et al., 2019). A saliency detection method produces
the visual saliency map, a gray-scale image, that highlights the objects of interest and thereby mostly
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Figure 3: The effect of using different saliency detection methods in the proposed data augmentation
on (a) CIFAR10 and (b) Tiny-ImageNet classification tasks. Different ways of selection and mixing
of the source patch with the target image and their effects on (c) CIFAR 10 and (d) Tiny-ImageNet
classification tasks. Performance is reported from the average of five and three runs for CIFAR10
and Tiny-ImageNet, respectively.

focuses on the foreground. Let Is ∈ RW×H×C is a randomly selected training (source) image with
label ys from which a patch will be cut. Then its saliency map detection can be represented as

Ivs = f(Is), (1)

where Ivs ∈ RW×H represents the visual saliency map of the given source image Is as shown in
Figure 2 where the objects of interest have higher intensity values and f(·) represents a saliency
detection model. Then we search for a pixel Ii,jvs in the saliency map that has the maximum intensity
value. The i, j represent the x and y coordinates of the most salient pixel and can be found as

i, j = argmax(Ivs), (2)

Then we select a patch, either by centering on the Ii,jvs − th pixel if possible, or keeping the Ii,jvs − th
pixel on the selected patch. It ensures that the patch is selected from the object region, not from the
background. The size of the patch is determined based on a combination ratio λ which is sampled
from the uniform distribution (0, 1) to decide the percentage of an image to be cropped.

3.2 MIXING THE PATCHES AND LABELS

Let It ∈ RW×H×C is another randomly selected training (target) image with label yt, to where the
source patch will be mixed. SaliencyMix partially mixes It and Is to produce a new training sample
Ia, the augmented image, with label ya. The mixing of two images can be defined as

Ia =M � Is +M ′ � It, (3)

where Ia denotes the augmented image, M ∈ {0, 1}W×H represents a binary mask, M ′ is the
complement of M and � represents element-wise multiplication. First, the source patch location is
defined by using the peak salient information and the value of λ and then the corresponding location
of the mask M is set to 1 and others to 0. The element-wise multiplication of M with the source
image results with an image that removes everything except the region decided to keep. In contrast,
M ′ performs in an opposite way of M i.e., the element-wise multiplication of M ′ with the target
image keeps all the regions except the selected patch. Finally, the addition of those two creates a
new training sample that contains the target image with the selected source patch in it (See Figure 2).
Besides mixing the images we also mix their labels based on the size of the mixed patches as

ya = λyt + (1− λ)ys, (4)

where ya denotes the label for the augmented sample and λ is the combination ratio. Other ways of
mixing are investigated in Section 3.4.

3.3 IMPACT OF DIFFERENT SALIENCY DETECTION METHODS

Here we investigate the effect of incorporating various saliency detection methods in our Salien-
cyMix data augmentation technique. We use four well-recognized saliency detection algorithms
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Table 1: Classification performance (average of five runs) of SOTA data augmentation methods on
CIFAR-10 and CIFAR-100 datasets using popular standard architectures. An additional ”+” sign
after the dataset name indicates that the traditional data augmentation techniques have also been
used during training.

METHOD
TOP-1 ERROR (%)

CIFAR-10 CIFAR-10+ CIFAR-100 CIFAR-100+
RESNET-18 (BASELINE) 10.63± 0.26 4.72± 0.21 36.68± 0.57 22.46± 0.31
RESNET-18 + CUTOUT 9.31±0.18 3.99±0.13 34.98±0.29 21.96±0.24
RESNET-18 + CUTMIX 9.44±0.34 3.78±0.12 34.42±0.27 19.42±0.23
RESNET-18 + SALIENCYMIX 7.59±0.22 3.65±0.10 28.73±0.13 19.29±0.21
RESNET-50 (BASELINE) 12.14±0.95 4.98±0.14 36.48±0.50 21.58±0.43
RESNET-50 + CUTOUT 8.84±0.77 3.86±0.25 32.97±0.74 21.38±0.69
RESNET-50 + CUTMIX 9.16±0.38 3.61±0.13 31.65±0.61 18.72±0.23
RESNET-50 + SALIENCYMIX 6.81±0.30 3.46±0.08 24.89±0.39 18.57±0.29
WIDERESNET-28-10 (BASELINE) 6.97±0.22 3.87±0.08 26.06±0.22 18.80±0.08
WIDERESNET-28-10 + CUTOUT 5.54±0.08 3.08±0.16 23.94±0.15 18.41±0.27
WIDERESNET-28-10 + AUTOAUGMENT - 2.60±0.10 - 17.10±0.30
WIDERESNET-28-10 + PUZZLEMIX (200 EPOCHS) - - - 16.23
WIDERESNET-28-10 + CUTMIX 5.18±0.20 2.87±0.16 23.21±0.20 16.66±0.20
WIDERESNET-28-10 + SALIENCYMIX 4.04±0.13 2.76±0.07 19.45±0.32 16.56±0.17

(Montabone & Soto, 2010; Hou & Zhang, 2007; Achanta et al., 2009; Qin et al., 2019), and perform
experiments using ResNet-18 as a baseline model on CIFAR-10 dataset and ResNet-50 as a baseline
model on Tiny-ImageNet dataset for 200 epochs and 100 epochs, respectively. Note that the statis-
tical saliency models (Montabone & Soto, 2010; Hou & Zhang, 2007; Achanta et al., 2009) work
on any size of images. But the learning based model i.e., Qin et al. (2019) are not scale invariant
and it should resizes the input image to 224 × 224 and the resulting saliency map is scaled back
to the original size. Figure 3(a-b) show that Montabone & Soto (2010) performs better on both the
datasets and the effects are identical on CIFA10 and ImageNet datasets. As a result, Montabone &
Soto (2010) is used to extract the saliency map in the proposed data augmentation technique.

3.4 DIFFERENT WAYS OF SELECTING AND MIXING THE SOURCE PATCH

There are several ways to select the source patch and mix it with the target image. In this section, we
explore those possible schemes and examine their effect on the proposed method. We use ResNet-
18 and ResNet-50 architectures with SaliencyMix data augmentation and perform experiments on
CIFAR-10 and Tiny-ImageNet datasets, respectively. We consider five possible schemes: (i) Salient
to Corresponding, that selects the source patch from the most salient region and mix it to the corre-
sponding location of the target image; (ii) Salient to Salient, that selects the source patch from the
most salient region and mix it to the salient region of the target image; (iii) Salient to Non-Salient,
that selects the source patch from the most salient region but mix it to the non-salient region of the
target image; (iv) Non-Salient to Salient, that selects the source patch from the non-salient region
of the source image but mix it to the salient region of the target image; and (v) Non-Salient to Non-
Salient, that selects the source patch from the non-salient region of the source image and also mix
it to the non-salient region of the target image. To find out the non-salient region, we use the least
important pixel of an image.

Figure 3(c-d) show the classification performance of the proposed SaliencyMix data augmentation
with the above mentioned selection and mixing schemes. Similar to the Section 3.3, the effects of
the proposed method are similar for CIFAR10 and Tiny-ImageNet datasets. Both the Non-Salient
to Salient and Non-Salient to Non-Salient select the source patch from the non-salient region of
the source image that doesn’t contain any information about the source object and thereby produce
large classification error compared to the other three options where the patch is selected from the
most salient region of the source image. It justifies our SaliencyMix i.e., the source patch should
be selected in such a way so that it must contain information about the source object. On the other
hand, Salient to Salient covers the most significant part of the target image that restricts the model
from learning its most important feature and Salient to Non-Salient may not occlude the target object
which is necessary to improve the regularization. But Salient to Corresponding keeps balance by
changeably occluding the most important part and other based on the orientation of the source and
target object. Consequently, it produces more variety of augmented data and thereby achieves the
lowest classification error. Also, it introduces less computational burden since only the source image
saliency detection is required. Therefore, the proposed method uses Salient to Corresponding as the
default selection and mixing scheme.
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Table 2: Performance comparison (the best
performance) of SOTA data augmentation
strategies on ImageNet classification with stan-
dard model architectures.

METHOD
TOP-1 TOP-5

ERROR (%) ERROR (%)
RESNET-50 (BASELINE) 23.68 7.05
RESNET-50 + CUTOUT 22.93 6.66
RESNET-50 + STOCHASTICDEPTH 22.46 6.27
RESNET-50 + MIXUP 22.58 6.40
RESNET-50 + MANIFOLD MIXUP 22.50 6.21
RESNET-50 + AUTOAUGMENT 22.40 6.20
RESNET-50 + DROPBLOCK 21.87 5.98
RESNET-50 + CUTMIX 21.40 5.92
RESNET-50 + PUZZLEMIX 21.24 5.71
RESNET-50 + SALIENCYMIX 21.26 5.76
RESNET-101 (BASELINE) 21.87 6.29
RESNET-101 + CUTOUT 20.72 5.51
RESNET-101 + MIXUP 20.52 5.28
RESNET-101 + CUTMIX 20.17 5.24
RESNET-101 + SALIENCYMIX 20.09 5.15

Table 3: Impact of SaliencyMix trained
model on transfer learning to object detec-
tion task. The results are reported from the
average of three runs.

BACKBONE NETWORK

IMAGENET DETECTION
CLS. ERR. (F-RCNN)
TOP-1 (%) (MAP)

RESNET-50 (BASELINE) 23.68 76.71 (+0.00)
CUTOUT-TRAINED 22.93 77.17 (+0.46)
MIXUP-TRAINED 22.58 77.98 (+1.27)
CUTMIX-TRAINED 21.40 78.31 (+1.60)
SALIENCYMIX-TRAINED 21.26 78.48 (+1.77)

4 EXPERIMENTS

We verify the effectiveness of the proposed SaliencyMix data augmentation strategy on multiple
tasks. We evaluate our method on image classification by applying it on several benchmark image
recognition datasets using popular SOTA architectures. We also use the SaliencyMix trained model
and fine-tune it for object detection task to verify its usefulness in enhancing the detection perfor-
mance. Furthermore, we validate the robustness of the proposed method against adversarial attacks.
All experiments were performed on PyTorch platform with four NVIDIA GeForce RTX 2080 Ti
GPUs.

4.1 IMAGE CLASSIFICATION

4.1.1 CIFAR-10 AND CIFAR-100

There are 60, 000 color images of size 32×32 pixels in both the CIFAR-10 and CIFAR-100 datasets
(Krizhevsky, 2012) where CIFAR-10 has 10 distinct classes and CIFAR-100 has 100 classes. The
number of training and test images in each dataset is 50, 000 and 10, 000, respectively. We apply
several standard architectures: a deep residual network (He et al., 2016) with a depth of 18 (ResNet-
18) and 50 (ResNet-50), and a wide residual network (Zagoruyko & Komodakis, 2016) with a depth
of 28, a widening factor of 10, and dropout with a drop probability of p = 0.3 in the convolutional
layers (WideResNet-28-10). We train the networks for 200 epochs with a batch size of 256 using
stochastic gradient descent (SGD), Nesterov momentum of 0.9, and weight decay of 5e − 4. The
initial learning rate was 0.1 and decreased by a factor of 0.2 after each of the 60, 120, and 160
epochs. The images are normalized using per-channel mean and standard deviation. We perform
experiments with and without a traditional data augmentation scheme where the traditional data
augmentation includes zero-padding, random cropping, and horizontal flipping.

Table 1 presents the experimental results on CIFAR datasets where the results are reported on five
runs average. It can be seen that for each of the architectures, the proposed SaliencyMix data aug-
mentation strategy outperforms all other methods except PuzzleMix (Kim et al., 2020). It is worth
noting that PuzzleMix (Kim et al., 2020) and AutoAugment (Cubuk et al., 2019) require additional
optimization process to find out the best augmentation criterion, thereby introduces computational
burden. On the other hand, rest of the methods do not require such process. The proposed method
achieves the best known top-1 error of 2.76% and 16.56% for WideResNet-28-10 on CIFAR-10 and
CIFAR-100 datasets, respectively. Moreover, SaliencyMix shows significant performance improve-
ment over CutMix (Yun et al., 2019) when applied without any traditional augmentation technique. It
reduces the error rate by 1.85%, 2.35%, and 1.14% on CIFAR-10 dataset when applied with ResNet-
18, ResNet-50 and WideResNet-28-10 architectures, respectively. Using the same architectures, it
reduces the error rate by 5.69%, 6.76%, and 3.76% on CIFAR-100 dataset, respectively.

4.1.2 IMAGENET

ImageNet (Olga et al., 2015) contains 1.2 million training images and 50, 000 validation images of
1000 classes. To perform experiments on ImageNet dataset, we apply the same settings as used in
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(a) CAM visualizations on un-augmented images. The
proposed data augmentation method guides the model
to precisely focus on target object.
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(b) CAM visualizations on augmented images. Left
most column shows the original images, top row
shows the input augmented images by different meth-
ods, middle and bottom rows show the CAM for
’Golden Retriever’, and ’Tiger Cat’ class, respectively.
The proposed method and Yun et al. (2019) improves
the localization ability of the model.

Figure 4: Class activation map (CAM) for models that are trained with various data augmentation
techniques. The images are randomly taken from ImageNet (Olga et al., 2015) validation set.

Yun et al. (2019) for a fair comparison. We have trained our SaliencyMix for 300 epochs with an
initial learning rate of 0.1 and decayed by a factor of 0.1 at epochs 75, 150, and 225, with a batch
size of 256. Also, the traditional data augmentations such as resizing, cropping, flipping, and jitters
have been applied during the training process. Table 2 presents the ImageNet experimental results
where the best performance of each method is reported. SaliencyMix outperforms all other methods
in comparison and shows competitive results with PuzzleMix (Kim et al., 2020). It drops top-1 error
for ResNet-50 by 1.66%, 1.31%, and 0.14% over Cutout, Mixup and CutMix data augmentation,
respectively. For ResNet-101 architecture, SaliencyMix achieves the new best result of 20.09%
top-1 error and 5.15% top-5 error.

4.2 OBJECT DETECTION USING PRE-TRAINED SALIENCYMIX

In this section, we use the SaliencyMix trained model to initialize the Faster RCNN (Shaoqing et al.,
2015) that uses ResNet-50 as a backbone network and examine its effect on object detection task.
The model is fine-tuned on Pascal VOC 2007 and 2012 datasets and evaluated on VOC 2007 test data
using the mAP metric. We follow the fine-tuning strategy of the original method (Shaoqing et al.,
2015). The batch size, learning rate, and training iterations are set to 8, 4e−3, and 41K, respectively
and the learning rate is decayed by a factor of 0.1 at 33K iterations. The results are shown in Table 3.
Pre-training with CutMix and SaliencyMix significantly improves the performance of Faster RCNN.
This is because in object detection, foreground information (positive data) is much more important
than the background (Lin et al., 2017). Since SaliencyMix helps the augmented image to have more
foreground or object part than the background, it leads to better detection performance. It can be
seen that SaliencyMix trained model outperforms other methods and achieves a performance gain
of +1.77 mAP.

4.3 CLASS ACTIVATION MAP (CAM) ANALYSIS

Class Activation Map (CAM) (Zhou et al., 2016) finds out the regions of input image where the
model focuses to recognize an object. To investigate this, we extract CAM of models that are
trained with various data augmentation techniques. Here we use a vanilla ResNet-50 model equipped
with various data augmentation techniques and trained on ImageNet (Olga et al., 2015). Then we
extract CAM for un-augmented images as well as for augmented images. Figure 4 presents the
experimental results. Figure 4a shows that the proposed data augmentation technique guides the
model to precisely focus on the target object compared to others. Also, Figure 4b shows the similar
effect when we search for a specific object in a scene with multiple objects. It can be seen that
Mixup (Zhang et al., 2017) has a severe problem of being confused when trying to recognize an
object because the pixels are mixed and it is not possible to extract class specific features. Also,
Cutout (Devries & Taylor, 2017) suffers disadvantages due to the uninformative image region. On
the other hand, both the CutMix (Yun et al., 2019) and SaliencyMix effectively focuses on the
corresponding features and precisely localizes the two objects in the scene.
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Table 4: Performance comparison on adversar-
ial robustness. Top-1 accuracy (%) of various
data augmentation techniques on adversarially
perturbed ImageNet validation set.

BASELINE CUTOUT MIXUP CUTMIX SALIENCYMIX

ACC. (%) 8.2 11.5 24.4 31.0 32.96

Table 5: Training time comparison of various
data augmentation techniques using ResNet-18
architecture on CIFAR-10 dataset.

BASELINE CUTOUT MIXUP CUTMIX SALIENCYMIX

TIME (HOUR) 0.83 0.84 0.87 0.89 0.91

4.4 ROBUSTNESS AGAINST ADVERSARIAL ATTACK

Deep learning based models are vulnerable to adversarial examples i.e., they can be fooled by
slightly modified examples even when the added perturbations are small and unrecognizable
(Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2017). Data augmentation helps to
increase the robustness against adversarial perturbations since it introduces many unseen image
samples during the training (Madry et al., 2017). Here we verify the adversarial robustness of a
model that is trained using various data augmentation techniques and compare their effectiveness.
Fast Gradient Sign Method (FGSM) (Madry et al., 2017) is used to generate the adversarial examples
and ImageNet pre-trained models of each data augmentation techniques with ResNet-50 architecture
is used in this experiment. Table 4 reports top-1 accuracy of various augmentation techniques on
adversarially attacked ImageNet validation set. Due to the appropriate feature representation learn-
ing and focusing on the overall object rather than a small part, SaliencyMix significantly improves
the robustness against the adversarial attack and achieves 1.96% performance improvement over the
nearly comparable method CutMix (Yun et al., 2019).

4.5 COMPUTATIONAL COMPLEXITY

We investigate the computational complexity of the proposed method and compare it with other data
augmentation techniques in terms of training time. All the models are trained on CIFAR-10 dataset
using ResNet-18 architecture for 200 epochs. Table 5 presents the training time comparison. It can
be seen that SaliencyMix requires a slightly longer training time compared to others, due to saliency
map generation. But considering the performance improvement, it can be negligible.

5 CONCLUSION

We have introduced an effective data augmentation strategy, called SaliencyMix, that is carefully
designed for training CNNs to improve their classification performance and generalization ability.
The proposed SaliencyMix guides the models to focus on the overall object regions rather than
a small region of input images and also prevents the model from learning in-appropriate feature
representation by carefully selecting the representative source patch. It introduces a little compu-
tational burden due to saliency detection, while significantly boosts up the model performance and
strengthen the model robustness on various computer vision tasks. Applying SaliencyMix with
WideResNet achieves the new best known top-1 error of 2.76% and 16.56% on CIFAR-10 and
CIFAR-100, respectively. On ImageNet classification, applying SaliencyMix with ResNet-50 and
ResNet-101 obtains the new best known top-1 error of 21.26% and 20.09%, respectively. On ob-
ject detection, using the SaliencyMix trained model to initialize the Faster RCNN (ResNet-50 as a
backbone network) and fine-tuning leads to a performance improvement by +1.77 mAP. Further-
more, SaliencyMix trained model is found to be more robust against adversarial attacks and achieves
1.96% accuracy improvement on adversarially perturbed ImageNet validation set compared to the
nearly comparable augmentation method. Considering more detailed and/or high level semantic
information for data augmentation will be our future work.
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E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le. Autoaugment: Learning augmentation
strategies from data. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 113–123, 2019. doi: 10.1109/CVPR.2019.00020.

Zijun Deng, Xiaowei Hu, Lei Zhu, Xuemiao Xu, Jing Qin, Guoqiang Han, and Pheng-Ann Heng.
R3net: Recurrent residual refinement network for saliency detection. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pp. 684–690. AAAI Press, 2018.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. ArXiv, abs/1708.04552, 2017.

Mark Everingham, Luc Van Gool, Christopher Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88:303–
338, 06 2010. doi: 10.1007/s11263-009-0275-4.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias im-
proves accuracy and robustness. In International Conference on Learning Representations, 2019.

Ghiasi Golnaz, Lin Tsung-Yi, and V. Le Quoc. Dropblock: A regularization method for convolu-
tional networks. In Neural Information Processing Systems (NeurIPS), 2018.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint, 01 2015. URL https://arxiv.org/abs/1412.6572.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. doi:
10.1109/CVPR.2016.90.

X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In 2007 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8, June 2007. doi: 10.1109/CVPR.2007.383267.

Choe Junsuk and Shim Hyunjung. Attention-based dropout layer for weakly supervised object
localization. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2219–2228, 2019.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup, 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05
2012.

10

http://proceedings.mlr.press/v15/bengio11b.html
http://proceedings.mlr.press/v15/bengio11b.html
https://arxiv.org/abs/1412.6572


Published as a conference paper at ICLR 2021

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep convo-
lutional neural networks. In Neural Information Processing Systems (NeurIPS), pp. 1097–1105,
January 2012. doi: 10.1145/3065386.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 1558-2256. doi:
10.1109/5.726791.

Jianjun Lei, Bingren Wang, Yuming Fang, Weisi Lin, Patrick Le Callet, Nam Ling, and Chunping
Hou. A universal framework for salient object detection. IEEE Transactions on Multimedia, 18
(9):1783–1795, 2016.

Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning an optimal
data augmentation strategy. IEEE Access, 5:5858–5869, 2017.

Changyang Li, Yuchen Yuan, Weidong Cai, Yong Xia, and David Dagan Feng. Robust saliency
detection via regularized random walks ranking. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2710–2717, 2015.

Xiaohui Li, Huchuan Lu, Lihe Zhang, Xiang Ruan, and Ming-Hsuan Yang. Saliency detection
via dense and sparse reconstruction. In Proceedings of the IEEE international conference on
computer vision, pp. 2976–2983, 2013.

T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007, Oct 2017. doi:
10.1109/ICCV.2017.324.

Nian Liu, Junwei Han, and Ming-Hsuan Yang. Picanet: Learning pixel-wise contextual attention
for saliency detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3089–3098, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ArXiv, abs/1706.06083, 2017.

Sebastian Montabone and Alvaro Soto. Human detection using a mobile platform and novel features
derived from a visual saliency mechanism. Image and Vision Computing, 28(3):391–402, 2010.

Srivastava Nitish, Hinton Geoffrey, Krizhevsky Alex, Sutskever Ilya, and Salakhutdinov Rus-
lan. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Russakovsky Olga, Deng Jia, Su Hao, Krause Jonathan, Satheesh Sanjeev, Ma Sean, Huang Zhi-
heng, Karpathy Andrej, Khosla Aditya, Bernstein Michael, C. Berg Alexander, and Fei-Fei Li.
Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115
(3):211–252, 2015.

Houwen Peng, Bing Li, Haibin Ling, Weiming Hu, Weihua Xiong, and Stephen J Maybank. Salient
object detection via structured matrix decomposition. IEEE transactions on pattern analysis and
machine intelligence, 39(4):818–832, 2016.

Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao, Masood Dehghan, and Martin Jagersand.
Basnet: Boundary-aware salient object detection. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

Yao Qin, Huchuan Lu, Yiqun Xu, and He Wang. Saliency detection via cellular automata. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 110–119,
2015.

Ren Shaoqing, He Kaiming, Girshick Ross, and Sun Jian. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Neural Information Processing Systems (NeurIPS),
2015.

11

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html


Published as a conference paper at ICLR 2021

K. K. Singh and Y. J. Lee. Hide-and-seek: Forcing a network to be meticulous for weakly-supervised
object and action localization. In 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 3544–3553, 2017.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture
for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2818–2826, 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations, 2014. URL http://arxiv.org/abs/1312.6199.

DeVries Terrance and W Taylor Graham. Improved regularization of convolutional neural networks
with cutout. arXiv preprint, 2017. URL https://arxiv.org/abs/1708.04552.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann Lecun, and Christoph Bregler. Efficient object
localization using convolutional networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 648–656, 06 2015. doi: 10.1109/CVPR.2015.7298664.

Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun. Deep image: Scaling up image
recognition. arXiv preprint, 01 2015. URL https://arxiv.org/abs/1501.02876.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Interna-
tional Conference on Computer Vision (ICCV), 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. Procedings of the British Ma-
chine Vision Conference 2016, 2016. doi: 10.5244/c.30.87. URL http://dx.doi.org/10.
5244/C.30.87.
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