
Under review as a conference paper at ICLR 2023

INTRINSIC COMPUTATIONAL COMPLEXITY OF
EQUIVARIANT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Equivariant neural networks have shown significant advantages in learning on data
with intrinsic symmetries represented by groups. A major concern is on the high
computational costs in the cases of large-scale groups, especially in the inference
stage. This paper studies the required computational complexity of equivariant
neural networks in inference for achieving a desired expressivity. We theoretically
compare three classes of ReLU networks: (1) two-layer group-averaging networks
(TGNs); (2) two-layer layer-wise equivariant networks (TENs); and (3) two-layer
networks without any equivariant constraints (TNs), with a new notion intrinsic
computational complexity for better characterizing computational costs. We prove
that (1) TGNs/TENs have equal and full expressivities to represent any invariant
function that can be learned by a TN, where the TGNs and TENs have equal
intrinsic computational complexities; (2) a TGN/TEN requires at most double
the intrinsic computational complexity of a TN; and (3) a TEN can achieve the
inference speed coincident with its intrinsic computational complexity, while
TGNs are strictly slower, which justifies the computational advantages of layer-
wise equivariant architectures over group averaging. Our theory rules out the
existence of equivariant networks with group-scale-independent computational
costs, summarized in a new no-free-lunch theorem: when more equivariance is
desired, more computation is required.

1 INTRODUCTION

Equivariant neural networks are designed to process data with intrinsic symmetries (Cohen & Welling,
2016) and have shown significant advantages in 3D point cloud (Li et al., 2018; Chen et al., 2021),
chemistry (Faber et al., 2016; Eismann et al., 2021), astronomy (Ntampaka et al., 2016; Ravanbakhsh
et al., 2016), and drug discovery (Hoogeboom et al., 2022). The groups in typical practical scenarios
may be of prohibitively large scales (Romero & Cordonnier, 2020). Take the example in 2D point
cloud processing, the group can have a scale up to 1000 (Hutchinson et al., 2021). However,
experiments show that existing algorithms usually have considerable dependence on the group scale.
This casts a shadow over the computational efficiency, and further development and application of
equivariant neural networks. Unfortunately, few efforts are seen in the literature on the theoretical
understanding of equivariant neural networks’ computational complexity.

This paper studies the required computational complexity of equivariant neural networks in inference
for achieving a desired expressivity. To our best knowledge, this is the first work on this topic.

To characterize the required computational complexity, we define a new intrinsic computational
complexity as the computational complexity of a neural network that merges the inner product
operations between the same-direction channel weight vectors and the input vector. In major cases
of two-layer group-averaging networks defined below, a significant number of channels have same-
direction weight vectors. These channels yield a considerable volume of repeating computation; see
Example 4.5. Intrinsic computational complexity thus has remarkable advantages in characterizing
the required computational complexity in practice.

We then theoretically compare the intrinsic computational complexity of three canonical classes of
ReLU equivariant networks: (1) two-layer group-averaging networks (TGNs); (2) two-layer layer-
wise equivariant networks (TENs); and (3) two-layer networks without any equivariant constraints

1

Under review as a conference paper at ICLR 2023

(TNs). To ensure a fair comparison, we fix the expressivity invariant in all cases, which is characterized
as that they have the same invariant output function in the inference stage. Then, under the same
output function, we compare their intrinsic computational complexities.

We first prove that any invariant output function of a TN can be represented by a TGN/TEN, where
the TGN and the TEN are of equal intrinsic computational complexities. This indicates that both
TENs and TGNs have equal and full expressivities to represent all invariant functions that can be
learned by a two-layer neural network. The proof consists of three stages based on constructions.
We first apply group averaging to an arbitrary TN to obtain a TGN. Since any invariant function is
invariant after performing group averaging, the TN and the TGN share the same invariant output
function. Then, we construct a TEN of the same intrinsic computational complexity with the TGN,
which represent the same invariant output function as the TGN. Eventually, we prove that all TENs
and TGNs of the same output function always have equal intrinsic computational complexities.

We then prove that the intrinsic computational complexity of a TGN/TEN would not be larger
than double the complexity of the corresponding TN. The proof depends on a new notion active
hyperplane defined as the boundary of one or more linear pieces of the piecewise linear output
function in the ReLU network, where the piecewise linearity is guaranteed by the ReLU activations.
When the TN and the TGN/TEN have the same invariant output function, we then show that the
intrinsic computational complexity of the TN is larger than the cardinality of active hyperplanes, and
is then larger than double the intrinsic computational complexity of the TGN/TEN. Additionally, we
construct an exemplary network that meets the “double intrinsic computational complexity” upper
bound exactly, which verifies the tightness of our bound.

Moreover, we theoretically compare the intrinsic computational complexities of TENs/TGNs with
their empirical computational costs in practice. We prove that the intrinsic computational complexity
of TENs rigorously coincides with their empirical computational cost under scenarios with common
quotient representations. In contrast, the empirical computational complexity of TGNs is often
strictly larger than their intrinsic computational complexity. These are guaranteed by the existence
of phenomena that TGNs may fail to merge the inner product computations involving the channel
weight vectors of the same direction, while TENs are sufficiently efficient in merging the inner
products. This shows a remarkable gain in computing efficiency of adopting layer-wise equivariance
over directly employing group averaging.

Our theory rules out the possibility of designing equivariant neural networks of group-scale-
independent computational complexity. We show that the intrinsic computational complexity of a
TEN relies on the group scale. Further, to represent an arbitrary invariant function, a TN requires at
least half the intrinsic computational complexity of the corresponding TEN, which is dependent on
the group scale. We summarize this as an equivariance no-free-lunch theorem: when more equivariant
constraints are desired, more computation is required.

2 RELATED WORK

Designing equivariant neural networks. Remarkable advances have been seen in designing
equivariant network architectures for the intrinsic symmetries in data. Typical approaches for
obtaining an equivariant neural network can be categorized into three steams: designing equivariant
architectures, introducing equivariant constraints into the optimization, and applying group-averaging
to backbone neural networks.

(1) Equivariant architectures. A typical designing paradigm is designing equivariant neural
architectures based on classic neural networks. For example, Cohen & Welling (2016) design group
convolutional neural networks in the group spaces as the equivariant variants of the convolutional
neural networks (Shin et al., 2016), which is then extended to the homogeneous spaces by Cohen et al.
(2019). Similar approaches are also seen in designing equivariant graph neural networks (Klicpera
et al., 2020), equivariant transformers (Hutchinson et al., 2021; He et al., 2021), equivariant diffusion
(Hoogeboom et al., 2022), equivariant point network (Chen et al., 2021), equivariant harmonic
networks (Worrall et al., 2017), etc.

(2) Equivariant-constrained optimization. In this stream, equivariant constraints on the the
parameters of the networks are introduced in the optimization to ensure the equivariance of the
learned model, usually called steerable neural networks Cohen & Welling (2017). For examples,

2

Under review as a conference paper at ICLR 2023

methods surge to compute the solution space satisfying the equivariance constraints for different
groups and network architectures, including the symmetry group SN in steerable graph networks
(Maron et al., 2018) and the rotation and Euclidean groups {CN , E2} in steerable convolutional neural
networks (Weiler et al., 2018; Weiler & Cesa, 2019). A major obstacle is the high computational
costs to compute the equivariant basis. Finzi et al. (2021) address this issues with an algorithm
with polynomial computational complexity on the sum of the number of discrete generators and the
dimension of the group, which divides the problem into some independent subproblems and adopts
Krylov method to compute nullspaces.

(3) Group-averaging on neural networks. Group-averaging apply to any backbone neural network
for obtaining the corresponding equivariant neural network (Schulz-Mirbach, 1994). It may generally
project an arbitrary hypothesis space of neural networks to the corresponding set of equivariant
networks. Huang et al. (2022) adopt group averaging over the subgroup in each layer to obtain a
equivariant graph network. Puny et al. (2022) propose a variant approach, frame averaging, that
calculates the average over the subgroup F(x) with respect to the input x. When the frame function
F is equivariant, the average over the subgroup F(x) is also ensured to be equivariant.

Theoretical analyses and benefits. Theoretical studies have shown that equivariant neural networks
have significant advantages from the aspects of generalizability, convergence, and approximation.
Sannai et al. (2021) prove improved generalization error bounds of equivariant models . Lawrence
et al. (2022) prove that linear group convolutional neural networks trained by gradient descent
for binary classification converge to solutions with low-rank Fourier matrix coefficients based on
the results via implicit bias. Zaheer et al. (2017); Maron et al. (2019); Yarotsky (2021) prove the
universal approximation ability of equivariant models by various approximation techniques, while
Ravanbakhsh (2020) utilizes group averaging to obtain an equivariant approximator to prove the
universal approximation ability. In addition, Elesedy & Zaidi (2021) prove that invariant/equivariant
models have a smaller expected loss when the target function is invariant/equivariant.

3 PRELIMINARIES

This section introduces necessary preliminaries in group representation theory (Serre, 1977).

Define [k] = {1, 2, . . . , k}. For a linear space V , define GL(V) as the group of all invertible linear
isomorphisms on V . The notations G and H refer to a group and a subgroup, respectively. Define
[G : H] = |G|/|H|, where G is a group, H is a subgroup, and | · | is the (sub-)group scale. The inner
product between any x, y ∈ Rn is defined as ⟨x, y⟩ =

∑n
i=1 xiyi. Moreover, we define the norm of

a vector x ∈ Rn as ∥x∥ =
√
⟨x, x⟩ for any n ∈ N.

A group representation ψ on the linear space Rm is defined as a homomorphism from the group G to
the isomorphism group GL(Rm). For any g ∈ G, ψg is an invertible matrix; and for any g, h ∈ G, we
have ψgh = ψgψh. A function f : Rn → Rm is defined asG-equivariant under group representations
ψ : G → GL(Rm) and ρ : G → GL(Rn), if ψg ◦ f = f ◦ ρg for all g ∈ G. For the simplicity, for
the cases ψ = 1 and f ◦ ρg = f for all g ∈ G, we call it invariant under the group representation ρ.
Additionally, we define the transformed set ρgX as {ρgx : x ∈ X} for any set X ∈ Rn.

A permutation representation ψ is defined as a group representation where ψg is a permutation matrix
for all g ∈ G. If every nonzero entry in ψg is not constrained to be 1 only, ψg is called a generalized
permutation matrix, and correspondingly, ψ is called a generalized permutation representation.
Moreover, generalized permutation representations always commute with ReLU nonlinearity.

Quotient representation is defined as a special permutation representation. Given a subgroup H of
group G, the quotient representation IndGH1 permutates [G : H] channels indexed by the cosets Hg.
In particular, it acts on axes eHg as defined by IndGH1(g′) ◦ eHg = eHgg′ .

Every permutation matrix in Rm×m functions as permutating the coordinates of the vector. Then,
any permutation representation P : G→ Rm×m can be extended to P : G→ Sm, where each Pg is
a permutation on the set [m]. Moreover, P divides [m] into some orbits, where P is transitive in each
orbit. We denote the orbit partition of [m] as [m] =

⋃ℓ
i=1 Ci. We also define Stab(k) = {g ∈ G :

Pg(k) = k} as the stabilizer subgroup with respect to k ∈ [m].

3

Under review as a conference paper at ICLR 2023

4 MAIN RESULTS

This section presents our main results. We first define the intrinsic computational complexity and
the three canonical families of neural networks in our comparisons, TENs, TGNs, and TNs. Then,
we prove that TENs and TGNs can represent all possible invariant output functions of TNs, where
the TENs and the TGNs have equal intrinsic computational complexities. We further study the
required intrinsic computational complexity of TENs and TGNs. Furthermore, we compare the
intrinsic computational complexity of TENs and TGNs with their empirical computational costs.
Lastly, we prove an equivariance no-free-lunch theorem, which rules out the existence of group-scale-
independent equivariant networks.

4.1 THEORETICAL PROBLEM SETTINGS AND MEASUREMENTS

In this paper, we compare the required computational complexity for achieving a desired expressivity
of the following three canonical families of equivariant neural networks.

Two-layer neural networks without any equivariant constraints (TNs). Two-layer networks are
feedforward neural networks of a hidden layer with weight matrix W (1) and an output layer with
weight matrix W (2). The output function is F (x) =W (2)σ(W (1)x), where x ∈ Rn is the input and
σ(·) is the nonlinear activation. In this paper, we consider the settings where all activations are ReLU
functions. For simplicity, we denote W (2) and W (1) by (β1, β2, . . . , βm) and (α1, α2, . . . , αm)T ,
respectively, where βi ∈ Rd and αi ∈ Rn for all i ∈ [m]. In addition, we assume without any loss of
generality that βi ̸= 0 and define its unit vector σi = βi/∥βi∥. Consequently, the output function can
be formulated as follows,

F (x) =W (2)σ(W (1)x) =

m∑
i=1

βiσ
(〈
αi, x

〉)
=

m∑
i=1

σiσ
(〈

∥βi∥αi, x
〉)

=

m∑
i=1

σiσ
(〈
α̃i, x

〉)
.

The empirical computational complexity is defined as the number of channels m.

Two-layer layer-wise equivariant networks (TENs). Given two group representations ψ : G →
GL(Rn) and ρ : G→ GL(Rm), TENs require for any g ∈ G that

W (2) ◦ ψg =W (2), ψg ◦ σ = σ ◦ ψg, and ψg ◦W (1) =W (1) ◦ ρg.

Then, the output function is invariant under the group representation ρ, i.e., for all input x ∈ Rn and
group element g ∈ G,

W (2)σ(W (1)ρgx) =W (2)σ(ψgW
(1)x) =W (2)ψgσ(W

(1)x) =W (2)σ(W (1)x).

Moreover, we define a group representation ψ as admitted, if it commutes with ReLU.

Two-layer group-averaging networks (TGNs). Group averaging acting on a function f is defined as
[Qf] = 1

|G|
∑
g∈G ψ

−1
g ◦ f ◦ ρg , where ρ and ψ are two given group representations. Particularly, for

the cases where ψ = 1, group averaging becomes [Qf](x) = 1
|G|

∑
g∈G f(ρgx), which calculates

the average over the outputs of all transformed inputs. Then, given a two-layer network with output
function F (x), the group averaging transfers the output function of TGNs into F̃ (x) = [QF](x) =
1
|G|

∑
g∈G F (ρgx). Moreover, group averaging is a projection to the equivariant function space, i.e.,

ψg ◦ [Qf] = [Qf] ◦ ρg for all g ∈ G and Q fixes all equivariant functions. Thus, the output function
of TGNs are invariant under given group representation ρ.

Intrinsic computational complexity. Equivariant neural networks ordinarily have channels whose
weight vectors are of the same directions, which is particularly normal in TGNs. This phenomenon
causes a considerable amount of repeated computations, which can be merged in practice. This
consequently contributes a large discrepancy between the theoretical computational complexity in
terms of conventional measures and the computing costs in practice.

To address this issue, we define an intrinsic computational complexity which theoretically measures
the computing costs after merging the computations in channels with the same-direction weight
vectors. In this way, the discrepancy aforementioned is rectified.

4

Under review as a conference paper at ICLR 2023

Consider an output function
∑m
i=1 βiσ(⟨αi, x⟩) of a two-layer network, where βi ̸= 0 ∈ Rd and

αi ̸= 0 ∈ Rn. If there are two weight vectors αi and αj that are of the same direction, i.e.,
α = αi/|αi| = αj/|αj |, we have that

βiσ(⟨αi, x⟩) + βjσ(⟨αj , x⟩) = (βi∥αi∥+ βj∥αj∥)σ(⟨α, x⟩),

which indicates that we can construct an “equivalent” channel to replace the original two channels
with the same output, which merges the computation of the two channels. This merge is repeated
until no channel pairs in the networks have weight vectors of the same direction. After the merges,
the output function becomes

∑ℓ
i=1 σi(⟨γi, x⟩), where σi ∈ Rd with ∥σi∥ = 1, γi ̸= 0 ∈ Rn, and

γi/∥γi∥ ̸= γj/∥γj∥ for all i ̸= j. In this way, we may significantly reduce the computational
complexity, while this “merged” computational complexity is then defined as intrinsic computational
complexity as follows.

Definition 4.1 (Intrinsic computational complexity). For a two-layer network of output function
F (x) =

∑m
i=1 βiσ(⟨αi, x⟩) with βi ̸= 0 ∈ Rd and αi ̸= 0 ∈ Rn, we define its intrinsic computa-

tional complexity C as the scale of the direction set {αi/∥αi∥ : i ∈ [m]}.

4.2 “UNIVERSAL” EXPRESSIVITY AND EQUAL INTRINSIC COMPUTATION COMPLEXITIES OF
TENS AND TGNS

In this subsection, we construct a TGN and a TEN to represent any invariant output function of a TN,
where the TGN and the TEN have equal intrinsic computational complexities.

We first prove that TENs and TGNs have equal and “universal” expressivity, shown in the following
theorem.

Theorem 4.2. Any invariant output function of a TN can be represented by a TGN or a TEN, where
the TGN and the TEN have equal intrinsic computational complexities.

The detailed constructions are presented in Section 5.1.

Then, we prove that all TENs and TGNs of the same invariant output function have equal intrinsic
computational complexities. It further justifies the essential position of intrinsic computational
complexity in characterizing the required computational cost for equivariant networks to achieve
a desired expressivity. Suppose the invariant output function of a TGN is as follows, F (x) =
1
|G|

∑m
i=1 σi

∑
g∈G σ(⟨ρTg αi, x⟩). Similarly from the definition of intrinsic computational complex-

ity, the TGN’s intrinsic computational complexity is exactly C = |{ρTg αi/∥ρTg αi∥ : i ∈ [m], g ∈ G}|.
We then have the following theorem to characterize the output functions of TENs.

Theorem 4.3. A TEN’s output function is as follows,

F (x) =

ℓ∑
i=1

σi
∑
k∈Ci

σ

(〈∑
g∈G

ρTg α̃Pg(k), x
〉)

=

ℓ∑
i=1

σi
∑
g∈G

σ
(〈
ρTg γ̃i, x

〉)
,

where ℓ is the number of the orbits {Ci : i ∈ [ℓ]} induced by P defined in Lemma 5.2, σi ∈ Rd with
∥σi∥ = 1, α̃k = |βk|

|G| ∗ αk, and γ̃i =
|Stab(ki)|

|G|
∑
g∈G ρ

T
g α̃Pg(ki) for some fixed ki in each orbit Ci.

The proof will be sketched in Section 5.2 and full details will be given in Appendix A.5.

Theorem 4.3 implies that TEN’s output function has the same form of the TGN, where each channel
weight vector is

∑
g∈G ρ

T
g α̃Pg(k). Additionally, we have that{∑

g∈G
ρTg α̃Pg(k)/|

∑
g∈G

ρTg α̃Pg(k)| : k ∈ Ci

}
= {ρTg γ̃i/|ρTg γ̃i| : g ∈ G}.

Thus, the intrinsic computational complexity of the TEN is C = |{ρTg γ̃i/∥ρTg γ̃i∥ : i ∈ [ℓ], g ∈ G}|,
exactly equal with the TGNs’. Eventually, we have shown that TENs and TGNs have equal intrinsic
computational complexity when they represent the same output function.

5

Under review as a conference paper at ICLR 2023

4.3 UPPER BOUNDS OF INTRINSIC COMPUTATIONAL COMPLEXITY OF TENS AND TGNS

In this subsection, we prove that the required intrinsic computational complexity of TENs and TGNs
would not be larger than double the computational complexity of the corresponding TN, as shown in
the following theorem.
Theorem 4.4. Suppose a TN is of an invariant output function whose intrinsic computational
complexity is m. Then, its output function is as follows, F (x) =

∑ℓ
i=1 σi

∑
g∈G σ

〈
ρTg γi, x

〉
, where

σi ∈ Rd with ∥σi∥ = 1, γi ̸= 0 ∈ Rn, and |{ρTg γi/∥ρTg γi∥ : g ∈ G, i ∈ [ℓ]}| ≤ 2m.

Thus, given any TN, we may apply group averaging to it to obtain a TGN with the same output
function

∑ℓ
i=1 σi(⟨γi, x⟩). The intrinsic computational complexity of this TGN is |{ρTg γi/∥ρTg γi∥ :

g ∈ G, i ∈ [ℓ]}| ≤ 2m. As shown in the previous subsection, all TENs and TGNs have the same
intrinsic computational complexities if they represent the same output function. We then have
that the required intrinsic computational complexity of TENs/TGNs is no larger than double the
computational complexity of the corresponding TN.

We also construct the following example to show that the “double intrinsic computational complexity”
upper bound is tight.
Example 4.5. Denote G = ⟨g, h|g2 = h2 = e, gh = hg⟩. Suppose a group representation ρ is as
follows

ρg =

[
0 1
1 0

]
and ρh =

[
−1 0
0 −1

]
.

We define F (x, y) = σ(x) + σ(−y) + σ(−x+ y), which is the output function of a TN of intrinsic
computational complexity 3. For a TEN/TGN of the output function F , we can prove that its intrinsic
computational complexity is 6 and the TGN’s empirical computational complexity is at least 8. We
leave the proof in Appendix A.7.

4.4 WHICH OF TENS AND TGNS CAN REALIZE THEIR INTRINSIC COMPUTATIONAL
COMPLEXITY?

In this subsection, we compare the intrinsic computational complexity and the empirical computa-
tional complexity of TENs and TGNs. Since intrinsic computational complexity is not larger than
empirical computational complexity, a question then rises: when do they equal?

Given any output function F (x) =
∑ℓ
i=1 σi

∑
g∈G σ(⟨ρTg αi, x⟩), we have proven previously that

all TENs and TGNs have equal intrinsic computational complexities if they represent this output
function. By the constructed TEN of Theorem 4.2 in Section 5.1, we have the following corollary.
Corollary 4.6. For any invariant output function of a TN, there must exist a TEN of the same output
function whose intrinsic computational complexity and empirical computational complexity are equal.

For TGNs, in contrast, the empirical computational complexity can be strictly larger than its intrinsic
computational complexity. Take Example 4.5, the empirical computational complexity of the TGN is
at least 8, while its intrinsic computational complexity is only 6.

For theoretical analyses, when the output function is F (x) =
∑ℓ
i=1 σi

∑
g∈G σ(⟨ρTg αi, x⟩), we

find that the TGN must compute ⟨ρTg αi, x⟩ for all g ∈ G, while TEN can compute the channels of
same-direction weight vectors only once. As a result, the TEN decreases the empirical computational
complexity

∑ℓ
i=1 |G| to

∑ℓ
i=1 |Mi|. This finding shows a significant gain in computing efficiency of

adopting layer-wise equivariance over directly employing group averaging.

4.5 EQUIVARIANCE NO-FREE-LUNCH THEOREM

This subsection rules out the fairy tale of designing equivariant neural networks with group-scale-
independent computational complexity, beyond the restrictions of nonlinearity ReLU. This is sug-
gested in the following equivariance no-free-lunch theorem.
Theorem 4.7 (Equivariance no-free-lunch theorem). The required computational complexity of any
ReLU network to achieve a G-equivariant function has a positive correlation with the scale of the

6

Under review as a conference paper at ICLR 2023

group G which is also the number of equivariant constraints. Thus, more equivariant constraints
require more computation.

This theorem is proved based on a new notion, active hyperplane, as the boundary of one or more
linear parts of the piecewise linear output function. Active hyperplane help discover the connection
between computational complexity and group scale.

Intuitively, the computational complexity of a network has a positive correlation with the number of
active hyperplanes, as also indirectly shown in Raghu et al. (2017). Moreover, this “active” property
maintains during group action: for any active hyperplane M and group G, all the transformed
hyperplanes ρGM = {ρgM : g ∈ G} are still active. Thus, the number of active hyperplanes has a
positive correlation with the scale of group G. Further, any g ∈ G serves an equivariant constraint.
Therefore, when more equivariance constraints are required, more active hyperplanes exist, and more
computation is required.

5 PROOF SKETCH

In this section, we give the proof sketches for Theorems 4.2, 4.3, and 4.4.

5.1 PROOF SKETCH OF THEOREMS 4.2

This theorem can be proved via two stages of constructions as shown below.

Stage 1. Construct the TGN of the same output function with any TN.

Suppose F (x) =
∑m
i=1 σiσ(⟨αi, x⟩) is an invariant output function of a TN. Applying group

averaging to this TN, we obtain a TGN. This TGN inherits the invariant output function [QF] = F of
the TN, because invariant functions are invariant after performed group averaging. Then the output
function can be formulated as below,

F (x) = [QF](x) = 1

|G|
∑
g∈G

m∑
i=1

σiσ
(〈
ρTg αi, x

〉)
=

1

|G|

m∑
i=1

σi
∑
g∈G

σ
(〈
ρTg αi, x

〉)
,

where σi ∈ Rd with ∥σ∥ = 1, αi ̸= 0, and αi ∈ Rn. Thus, the intrinsic computational complexity
equals the scale of the direction set {ρTg αi/∥ρTg αi∥ : g ∈ G, i ∈ [m]}.

We denote Mi = {ρTg αi/∥ρTg αi∥ : g ∈ G}. Then the intrinsic computational complexity becomes
|
⋃m
i=1Mi|. The following lemma helps further characterize the intrinsic computational complexity.

Lemma 5.1. For all i ̸= j ∈ [m], we have Mi =Mj or Mi ∩Mj = ∅.

From calculating definition of intrinsic computational complexity, all same-direction channel weight
vectors have been merged. We thus may assume for any i ̸= j that Mi ∩ Mj . Therefore, the
intrinsic computational complexity of the TGN satisfies C =

∑m
i=1 |Mi|. This result indicates we

can efficiently compute the intrinsic computational complexity without comparing different Mis.

Stage 2. Construct the TEN of the same output function with the TGN.

To this end, we should determine the weight matrices W (1) and W (2) to construct a network of the
same output function, and the admitted group representation ψ in the hidden layer to ensure that it is
a TEN such that W (2) ◦ ψg =W (2) and ψg ◦W (1) =W (1) ◦ ρg for all g ∈ G. We define that

W (1) =
[
ρTH1g1α1, . . . , ρ

T
H1g|M1|

α1, . . . , ρ
T
Hmg1αm, . . . , ρHmg|Mm|αm

]T
,

and
W (2) =

[σ1
|M1|

, . . . ,
σ1
|M1|

, . . . ,
σm
|Mm|

, . . . ,
σm
|Mm|

]
,

where {ρTH1gj
αi : j ∈ [|Mi|]} is the set of all distinct weight vectors M̃i = {ρTg αi : g ∈ G}, and

Hi = {g ∈ G : ρTg αi = αi} is the stabilizer subgroup with respected to vector αi. Then, we

7

Under review as a conference paper at ICLR 2023

construct a two-layer neural network of equal empirical computational complexity and intrinsic
computational complexity C =

∑m
i=1 |Mi|, with the following output function,

W (2)σ(W (1)x) =

m∑
i=1

σi
|Mi|

∑
j∈[|Mi|]

σ
(〈
ρTHigjαi, x

〉)
=

m∑
i=1

σi
|G|

∑
g∈G

σ
(〈
ρTg αi, x

〉)
= F (x),

which proves that the constructed two-layer network has the same output function with the TN.

Then, we define a group representation ψ as the direct sum of some quotient representations as below,

ψ =

m⊕
i=1

IndGHi
1 : G→ R

∑m
i=1 |Mi|, where ψgρTHigjαi = ρTHi(gjg)

αi

which characterizes how the channels is permutated. We further have for all g ∈ G that W (2) ◦ ψg =
W (2) and ψg ◦W (1) =W (1) ◦ ρg , which verify that the constructed two-layer network is a TEN. A
detailed verification can be found in Appendix A.2.

5.2 PROOF SKETCH OF THEOREM 4.3

We start by proving the following lemma that characterizes all admitted group representations that
commute with ReLU nonlinearities.
Lemma 5.2. A group representation ψ is admitted if and only if ψg = diag(λ1g, ..., λ

m
g)Pg is a

generalized permutation matrix, where Pg is a permutation matrix and λkg is positive for all k ∈ [m]
and g ∈ G. Moreover, the P is also a permutation representation.

In addition, the invariance relationship W (2) ◦ ψg = W (2) implies that βi(ψg)ij = βj for all
(ψg)ij ̸= 0 and g ∈ G. To ensure a solution W (2) with no zero-weight vector βi, the constraint
βi(ψg)ij = βj requires all nonzero (ψg)ij to be equal for all g ∈ G. We summarize this constraint in
the following lemma.

Lemma 5.3. There exists a W (2) with no zero-weight vector βi such that W (2) ◦ ψg =W (2) for all
g ∈ G, if and only if the admitted group representation ψ satisfies all the following conditions:

(1) For any g ∈ G, ψg is a generalized permutation matrix with nonnegative entries.

(2) The value of every nonzero entry only depends on its position in the matrix and is independent of
the group element g. Thus, we can use the notation ψij to denote the nonzero entry in the i-th row
and j-th column of ψg if there exists g such that (ψg)ij ̸= 0.

From the definition of the orbit Cr induced by the permutation representation P in Lemma 5.2, we
may derive that there exists g ∈ G such that (ψg)ij ̸= 0, if and only if i and j are in the same orbit
Cr. Therefore, we use the notation ψij when i and j are in the same orbit for the briefy.

Now we are ready to prove Theorem 4.3 by proving following two equations,

F (x) =

ℓ∑
i=1

σi
∑
k∈Ci

σ(⟨ρTg α̃Pg(k), x⟩) and
ℓ∑
i=1

σi
∑
k∈Ci

σ(⟨ρTg α̃Pg(k), x⟩) =
ℓ∑
i=1

σi
∑
g∈G

(⟨ρTg γ̃i, x⟩).

Step 1. Since W (2)ψg =W (2), we have that βiψij = βj for all i and j in the same orbit. It implies
that ∥βi∥ψij = ∥βj∥ and βi/∥βi∥ = βj/∥βj∥. Since all weight vectors βj have the same direction
βj/∥βj∥ for all j ∈ Ci, we may define the same direction as σi ∈ Rk without any loss of generality.

Then, we formulate W (1) as QW (1) = 1
|G|

∑
g∈G ψ

−1
g W (1)ρg, since the equivariant W (1) is main-

tained in group averaging. Thus, the output function becomes as follows,

F (x) =
1

|G|

m∑
k=1

βkσ

(〈∑
g∈G

ρTg αPg(k)

ψPg(k),k
, x

〉)
=

ℓ∑
i=1

σi
∑
k∈Ci

σ

(〈∑
g∈G

ρTg ∥βPg(k)∥αPg(k)

|G|
, x

〉)
.

Denote α̃k as |βk|
|G| ∗ αk. Then we have completed the proof for the first equation.

8

Under review as a conference paper at ICLR 2023

Step 2. Denote γi as
∑
g∈G ρ

T
g α̃Pg(ki) for some fixed ki in every orbit Ci. Since P is transitive in

any orbit, then for any k ∈ Ci, there exists group element h ∈ G such that Ph−1(ki) = k. Hence, we
have ρTh γi =

∑
g∈G ρ

T
g αPg [Ph−1 (ki)] =

∑
g∈G ρ

T
g αPg(k). This implies that{

ρTg γi : g ∈ G
}
=

{∑
g∈G

ρTg α̃Pg(k) : k ∈ Ci

}
for all i ∈ [ℓ].

The number of group elements g that satisfies P−1
g (ki) = k is exactly equal to |G|/|Stab(ki)|, which

is a constant independent of the choice of k. Then, we have that∑
k∈Ci

σ

(〈∑
g∈G

ρTg α̃Pg(k), x
〉)

=
|Stab(ki)|

|G|
∑
g∈G

σ

(〈
ρTg γi, x

〉)
=

∑
g∈G

σ

(〈
ρTg

|Stab(ki)|γi
|G|

, x
〉)

.

Denote γ̃i as |Stab(ki)|
|G| ∗ γi. Then, the proof for the second equation is completed.

5.3 PROOF SKETCH OF THEOREM 4.4

We first define two new notions, feature gap and active hyperplane.

We divide the whole input space Rn into some cells such that the output function is linear in each
cell. The output function is F (x) = ⟨W,x⟩ in each cell, where W is defined as the feature of the
cell. Then, we can define the feature function G as G(x) =W to output the feature of the cell. To
characterize the boundary of the cells, we define feature gap as follows.
Definition 5.4 (Feature gap). Given a hyperplaneM of dimension n−1 and one of its normal vectors
x ∈ Rn, the feature gap ∆G(M,x) is defined as Ey∈M

[
limz→0G(y + z ∗ x) − G(y − z ∗ x)

]
,

where z ∈ R, and the expectation is taken over any continuous probability on the hyperplane M .

The feature gap characterizes how the feature changes when the point crosses through the hyperplane
M . It characterizes the active hyperplanes as a whole. Moreover, the feature gap ∆G(M,x) is
nonzero, if and only if the hyperplane M is a boundary of some cells. Therefore, we define a
hyperplane M as active if it is of nonzero feature gap ∆G(M,x).

Then, we may present the formal definition of active hyperplane is as follows.
Definition 5.5 (Active hyperplane). A hyperplane is defined as active if it is of nonzero feature gap.

From the definition, a TN of intrinsic computational complexity m has at most m active hyperplanes,
because the TN only has m channels, and each channel causes only one active hyperplane (some
active hyperplanes may be the same). In contrast, a TGN of intrinsic computational complexity C = ℓ
has at least ℓ/2 active hyperplanes. If two channels introduce the same active hyperplane, they have
anti-parallel vectors. Then, at most two channels introduce the same active hyperplane, and thus, a
TGN of intrinsic computational complexity ℓ has at least ℓ/2 active hyperplanes.

When a TN and a TGN represent equal output functions, they have equal numbers of active hy-
perplanes. Thus, the intrinsic computational complexity of the TN is larger than the number of
active hyperplanes, while the number of active hyperplanes is larger than half the TGN’s intrinsic
computational complexity. It implies that the TGN’s intrinsic computational complexity is at most
double that of the TN. The proof is completed.

6 CONCLUSION

This paper studies the required computational complexities in inference of equivariant networks to
achieve a desired expressivity. We compare three classes of ReLU networks: two-layer layer-wise
equivariant networks (TENs), two-layer group-averaging networks (TGNs), and two-layer networks
without any equivariant restrictions (TNs), based on a new notion intrinsic computational complexity.
We prove that any invariant output function of TNs can be represented by a TEN or a TGN. The
TEN and the TGN aforementioned have equal intrinsic computational complexities which are at most
double intrinsic computational complexity of the TN. Then, we prove that TENs can achieve the
inference speeds coincident with their intrinsic computational complexities, while TGNs have strictly
larger computing costs in practice. We also prove an equivariance no-free-lunch theorem: when more
equivariance is desired, more computation is required.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall Hill. Equivariant point network for 3d
point cloud analysis. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International Conference
on Machine Learning (ICML). PMLR, 2016.

Taco S. Cohen and Max Welling. Steerable CNNs. In International Conference on Learning
Representations (ICLR), 2017.

Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homoge-
neous spaces. Neural Information Processing Systems (NeurIPS), 2019.

Stephan Eismann, Raphael JL Townshend, Nathaniel Thomas, Milind Jagota, Bowen Jing, and Ron O
Dror. Hierarchical, rotation-equivariant neural networks to select structural models of protein
complexes. Proteins: Structure, Function, and Bioinformatics, 2021.

Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models.
International Conference on Machine Learning (ICML), 2021.

Felix A Faber, Alexander Lindmaa, O Anatole Von Lilienfeld, and Rickard Armiento. Machine
learning energies of 2 million elpasolite (a b c 2 d 6) crystals. Physical review letters, 2016.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivari-
ant multilayer perceptrons for arbitrary matrix groups. In International Conference on Machine
Learning (ICML). PMLR, 2021.

Lingshen He, Yiming Dong, Yisen Wang, Dacheng Tao, and Zhouchen Lin. Gauge equivariant
transformer. Neural Information Processing Systems (NeurIPS), 2021.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International Conference on Machine Learning (ICML). PMLR,
2022.

Zhongyu Huang, Yingheng Wang, Chaozhuo Li, and Huiguang He. Going deeper into permutation-
sensitive graph neural networks. International Conference on Machine Learning (ICML), 2022.

Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and
Hyunjik Kim. Lietransformer: Equivariant self-attention for lie groups. In International Conference
on Machine Learning (ICML). PMLR, 2021.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. International Conference on Learning Representations (ICLR), 2020.

Hannah Lawrence, Kristian Georgiev, Andrew Dienes, and Bobak Kiani. Implicit bias of linear
equivariant networks. International Conference on Machine Learning (ICML), 2022.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution
on x-transformed points. Neural Information Processing Systems (NeurIPS), 31, 2018.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International Conference on Machine Learning (ICML). PMLR, 2019.

Michelle Ntampaka, Hy Trac, Dougal J Sutherland, Sebastian Fromenteau, Barnabás Póczos, and
Jeff Schneider. Dynamical mass measurements of contaminated galaxy clusters using machine
learning. The Astrophysical Journal, 2016.

Omri Puny, Matan Atzmon, Heli Ben-Hamu, Edward J Smith, Ishan Misra, Aditya Grover, and Yaron
Lipman. Frame averaging for invariant and equivariant network design. International Conference
on Learning Representations (ICLR), 2022.

10

Under review as a conference paper at ICLR 2023

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In International Conference on Machine Learning
(ICML). PMLR, 2017.

Siamak Ravanbakhsh. Universal equivariant multilayer perceptrons. In International Conference on
Machine Learning (ICML). PMLR, 2020.

Siamak Ravanbakhsh, Junier Oliva, Sebastian Fromenteau, Layne Price, Shirley Ho, Jeff Schneider,
and Barnabás Póczos. Estimating cosmological parameters from the dark matter distribution. In
International Conference on Machine Learning (ICML). PMLR, 2016.

David W Romero and Jean-Baptiste Cordonnier. Group equivariant stand-alone self-attention for
vision. arXiv preprint arXiv:2010.00977, 2020.

Akiyoshi Sannai, Masaaki Imaizumi, and Makoto Kawano. Improved generalization bounds of
group invariant/equivariant deep networks via quotient feature spaces. In Uncertainty in Artificial
Intelligence (UAI). PMLR, 2021.

Hanns Schulz-Mirbach. Constructing invariant features by averaging techniques. In International
Conference on Pattern Recognition (ICPR). IEEE, 1994.

Jean-Pierre Serre. Linear representations of finite groups. Springer, 1977.

Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jianhua Yao,
Daniel Mollura, and Ronald M Summers. Deep convolutional neural networks for computer-aided
detection: Cnn architectures, dataset characteristics and transfer learning. IEEE transactions on
medical imaging, 2016.

Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. Neural Information
Processing Systems (NeurIPS), 2019.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant cnns. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
networks: Deep translation and rotation equivariance. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets. arXiv preprint arXiv:1703.06114, 2017.

11

Under review as a conference paper at ICLR 2023

A APPENDIX

This appendix collects all detailed proofs.

A.1 PROOF OF LEMMA 5.1

Denote M = {ρTg α/∥ρTg α∥ : g ∈ G} and N = {ρTg β/∥ρTg β∥ : g ∈ G}, where α and β are two
nonzero vectors in Rn. Then we prove that M ∩N = ∅ or M = N .

If M ∩ N ̸= ∅, there exist group elements g0, h0 ∈ G such that ρTg0α/∥ρ
T
g0α∥ = ρTh0

β/∥ρTh0
β∥.

Then, for any element ρTg α/∥ρTg α∥ ∈M , there exists ρT
h0g

−1
0 g

β/∥ρT
h0g

−1
0 g

β∥ ∈ N such that

ρT
h0g

−1
0 g

β = ρTg ρ
T
g−1
0
ρTh0

β =
∥ρTh0

β∥
∥ρTg0α∥

· ρTg α and
ρT
h0g

−1
0 g

β

∥ρT
h0g

−1
0 g

β∥
=

ρTg α

∥ρTg α∥
.

It implies that M ⊂ N . Inversely, we can prove that N ⊂ M in the same way. Hence, combining
M ⊂ N and N ⊂M , we have M = N and thus complete this proof.

Moreover, when denoting M̃ = {ρTg α : g ∈ G}}, we can also prove that |M̃ | = |M |. If there exist
g, h ∈ G such that ρTg α/∥ρTg α∥ = ρThα/∥ρThα∥, we have ρTg α = cρThα with some positive number
c since they have the same direction. Then, we have ρTgh−1α = cα and

(ρTgh−1)|G|α = (ρTgh−1)|G|−1cα = (ρTgh−1)|G|−2c2α = · · · = c|G|α.

Meanwhile, since (gh−1)|G| = e ∈ G, we have (ρTgh−1)|G|α = ρTe α = α. It implies that c|G| = 1

and thus c = 1. Finally, we have that ρgα = ρhα ⇔ ρgα
∥ρgα∥ = ρhα

∥ρgα∥ , which indicates that

|M̃ | = |M |. The proof is completed.

A.2 PROOF OF THEOREM 4.2

We do not repeat the proof shown in Section 5.1 and only prove that the constructed two-layer network
is a TEN, i.e., we prove the equivariant constraints ψg ◦W (1) =W (1) ◦ ρg and W (2) ◦ ψg =W (2).
Given the group representation ψ as

ψ =

m⊕
i=1

IndGHi
1 : G→ R

∑m
i=1 |Mi|, where ψgρTHigjαi = ρTHi(gjg)

αi,

we have that

ψg ◦W (1) = ψg ◦



αT1 ρH1g1

αT1 ρH1g2
...

αT1 ρH1g|M1|
...

αTmρHmg1

αTmρHmg2
...

αTmρHmg|Mm|


=



αT1 ρH1g1g

αT1 ρH1g2g

...
αT1 ρH1g|M1|g

...
αTmρHmg1g

αTmρHmg2g

...
αTmρHmg|Mm|g


=



αT1 ρH1g1

αT1 ρH1g2
...

αT1 ρH1g|M1|
...

αTmρHmg1

αTmρHmg2
...

αTmρHmg|Mm|


◦ ρg =W (1) ◦ ρg,

and

W (2) ◦ ψg =
[
(σ1

|M1| . . .
σ1

|M1|)IndGH1
1 . . . (σm

|Mm| . . .
σm

|Mm|)IndGHm
1
]

=
[σ1

|M1| . . .
σ1

|M1| . . .
σm

|Mm| . . .
σm

|Mm|
]
=W (2).

The proof is completed.

12

Under review as a conference paper at ICLR 2023

A.3 PROOF OF LEMMA 5.2

For simplicity, we denote ei ∈ Rn as the vector (0, . . . , 1, . . . , 0)T , where the i-th entry is 1 and
other entries are all 0. Since ψg ◦ σ = σ ◦ ψg , we have ψσ(x) = σ(ψx) for all x ∈ Rn.

If there are two nonzero entries ψij < ψik in the same row of ψg, we can set x = ej − ek and then
we have (ψgσ(x))i = (ψgej)i = ψij while (σ(ψgx))i = σ(ψij − ψik) = 0. That implies ψij = 0,
which contradicts. Thus, each row has at most one nonzero entry. Hence, there are at most n nonzero
entries of ψg .

Since ψg is invertible, each row and each column of ψg have at least one nonzero entry. It implies
that there are at least n nonzero entries of ψg . Thus, there are exactly n nonzero entries of ψg and ψg
is a generalized permutation matrix diag(λ1g, . . . , λ

m
g)Pg .

Moreover, when ψij ̸= 0, we can set x = ej . Then σ(ψx) = ψσ(x) implies that σ(ψij) = ψij .
From the definition of ReLU, we have that ψij > 0. The proof is completed.

A.4 PROOF OF LEMMA 5.3

The equivariant constraint W (2) ◦ψg =W (2) implies that βi(ψg)ij = βj for all (ψg)ij ̸= 0. For any
i and j in the same orbit, there exists group element g ∈ G such that (ψg)ij ̸= 0. Thus, if there is
some βi equal to 0, then βj = 0 for all js in the same orbit with i. Therefore, we can remove all there
channels and get a new equivariant network of the same output function and a smaller computational
complexity. In this sense, we can assume without loss of generality that βi ̸= 0 for all i ∈ [m].

Besides, the constraint βi(ψg)ij = βj implies that βi/∥βi∥ = βj/∥βj∥ and (ψg)ij =
∥βj∥
∥βi∥ for all i, j

in the same orbit and (ψg)ij ̸= 0. Hence, since the value of the nonzero entry (ψg)ij is independent
of the group element g, we can denote it by ψij for simplicity.

The proof is completed.

A.5 PROOF OF THEOREM 4.3

Since we can extend the group representation P to act on the coordinate set [m], the nonzero entry of
ψg can be characterized as ψi,P−1

g (i) for all i ∈ [m]. Then the output function of TENs becomes

F (x) =W2σ(W1x) =W2σ(QW1x)

=
1

|G|
[β1 . . . βm]σ

(∑
g∈G

ψ−1
g

α
T
1
...
αTm

 ρgx)

=
1

|G|
[β1 . . . βm]σ

(∑
g∈G


αT

Pg(1)

ψPg(1),1

...
αT

Pg(m)

ψPg(m),m

 ρgx
)

=
1

|G|

m∑
k=1

βkσ
∑
g∈G

〈 αPg(k)

ψPg(k),k
, ρgx

〉
=

1

|G|

m∑
k=1

βk
∥βk∥

σ
∑
g∈G

〈∥βk∥αPg(k)

ψPg(k),k
, ρgx

〉
=

1

|G|

m∑
k=1

βk
∥βk∥

σ
∑
g∈G

〈
∥βPg(k)∥αPg(k), ρgx

〉
.

13

Under review as a conference paper at ICLR 2023

Moreover, since βk has the same direction βk

∥βk∥ for all ks in the same orbit, we have

1

|G|

m∑
k=1

βk
∥βk∥

σ
∑
g∈G

〈
∥βPg(k)∥αPg(k), ρgx

〉

=
1

|G|

ℓ∑
i=1

σi
∑
k∈Ci

σ
∑
g∈G

〈
∥βPg(k)∥αPg(k), ρgx

〉

=

ℓ∑
i=1

σi
∑
k∈Ci

σ
〈∑
g∈G

ρTg
∥βPg(k)∥αPg(k)

|G|
, x

〉

=

ℓ∑
i=1

σi
∑
k∈Ci

σ
〈∑
g∈G

ρTg α̃Pg(k), x
〉
,

where α̃k = ∥βk∥
|G| ∗ αk for all k ∈ [m].

Moreover, we fix a ki in each orbit Ci, and denote the weight vector
∑
g∈G ρ

T
g α̃Pg(ki) by γi. Then

we have

ρTh γi = ρTh
∑
g∈G

ρTg α̃Pg(ki) =
∑
g∈G

ρTghα̃PghP
−1
h (ki)

=
∑
g∈G

ρTg α̃Pg [P
−1
h (ki)]

.

Denote Stab(ki) = {g ∈ G : Pg(ki) = ki} as the stabilizer subgroup with respect to ki. Then the set
Hi(k) = {g ∈ G : P−1

g (ki) = k} is of scale |G|/|Stab(ki)| for all k ∈ Ci. Hence, we have∑
g∈G

σ⟨ρTg γi, x⟩ =
∑
k∈Ci

∑
g∈Hi(k)

σ⟨ρTg γi, x⟩ =
∑
k∈Ci

|G|
|Stab(ki)|

σ
〈∑
g∈G

ρTg α̃Pg(k), x
〉
.

Finally, we have

ℓ∑
i=1

σi
∑
k∈Ci

σ
〈∑
g∈G

ρTg α̃Pg(k), x
〉
=

ℓ∑
i=1

σi
∑
g∈G

σ
〈
ρTg γ̃i, x

〉
,

where γ̃i is |Stab(ki)|
|G| ∗ γi for all i ∈ [ℓ]. This proof is completed.

A.6 PROOF OF THEOREM 4.4

We first verify that the feature gap ∆G(·, ·) is well-defined for two-layer networks. Besides, it is
worth noting that we only define the feature G(x) for the inner point x of each (open) cell. The
feature G(x) for x in the boundary can be any arbitrary value, which does not change our results.

Lemma A.1. For the function F (x) = βσ⟨α, x⟩ with β ∈ Rd and α ∈ Rn, we have

∆G(M,x) =


βαT if α is a normal vector of M and x/∥x∥ = α/∥α∥,
−βαT if α is a normal vector of M and x/∥x∥ = −α/∥α∥,
0 otherwise.

Proof. When α is a normal vector of M , then we have

∆G(M,α) = Ey∈M [lim
z→0

G(y + z ∗ α)−G(y − z ∗ α)] = Ey∈M [βαT − 0] = βαT ,

and

∆G(M,−α) = Ey∈M [lim
z→0

G(y − z ∗ α)−G(y + z ∗ α)] = Ey∈M [0− βαT] = −βαT .

When α is a normal vector of M0 ̸= M , the intersection of two hyperplanes M ∩ M0 is of
dimension (n− 2). Since M is of dimension n− 1, we have Ey∈M [·] = Ey∈M\(M∩M0)[·]. When

14

Under review as a conference paper at ICLR 2023

y ∈M\(M∩M0), we have limz→0G(y+z∗x)−G(y−z∗x) = 0 sinceG(y+z∗x) = G(y−z∗x)
for sufficiently small z ∈ R. Then we have

∆G(M,x) = Ey∈M
[
lim
z→0

G(y + z ∗ x)−G(y − z ∗ x)
]

= Ey∈M\(M∩M0)

[
lim
z→0

G(y + z ∗ x)−G(y − z ∗ x)
]
= 0.

The proof is completed.

Lemma A.2. The feature function G(F) and the feature gap ∆G(F) are additive, i.e.,

G
(m∑
i=1

Fi

)
=

m∑
i=1

G(Fi) and ∆G(
∑m

i=1 Fi) =

m∑
i=1

∆G(Fi).

Proof. From the definition of the feature function G, we have
m∑
i=1

Fi(x) =
〈[
G
(m∑
i=1

Fi

)]
(x), x

〉
and

m∑
i=1

Fi(x) =

m∑
i=1

〈
[G(Fi)](x), x

〉
=

〈 m∑
i=1

[G(Fi)](x), x
〉
.

Thus, we have that G
(∑m

i=1 Fi

)
=

∑m
i=1G(Fi).

Hence, for the feature gap ∆G, we have

∆G(
∑m

i=1 Fi)(M,x) = Ey∈M
[
lim
z→0

[
G
(m∑
i=1

Fi

)]
(y + z ∗ x)−

[
G
(m∑
i=1

Fi

)]
(y − z ∗ x)

]

=

m∑
i=1

Ey∈M
[
lim
z→0

[G(Fi)](y + z ∗ x)− [G(Fi)](y − z ∗ x)
]
=

m∑
i=1

∆G(Fi)(M,x).

The proof is completed.

Moreover, for the function F (x) =
∑m
i=1 βiσ(⟨αi, x⟩), a hyperplane M is of nonzero feature gap

∆G(M,x) if and only one of the weight vectors αi is its normal vector.

For the output function F1(x) =
∑m
i=1 βiσ(⟨αi, x⟩) of a TN of intrinsic computational complexity

C1 = m, it has at most C1 active hyperplanes.

Besides, we consider the function F2(x) =
∑ℓ
i=1 βi

∑
g∈G σ(⟨ρTg αi, x⟩) of a TGN of intrinsic

computational complexity C2. From the definition of intrinsic computational complexity, we can
assume no two weight vectors ρTg αi and ρThαj are of the same direction for all distinct i ̸= j. Since
the normal vectors of a hyperplane M have at most two different directions, the function F2 with C2
weight vectors of different directions has at least C2/2 active hyperplanes.

We denote the number of active hyperplanes by C when F1 = F2. Then, combining the above two
results, we have

C1 ≥ C ≥ C2/2.
It implies that the intrinsic computational complexity of the TGN is no larger than double that of the
TN. The proof is completed.

A.7 PROOF FOR EXAMPLE 4.5

We prove that the intrinsic computational complexity of the corresponding TEN/TGN is C = 6 and
the empirical computational complexity of the TGN is at least 8.

Given the function F (x, y) = σ(x) + σ(−y) + σ(−x+ y), we have

[QF](x, y) = (σ(x) + σ(−x) + σ(y) + σ(−y) + σ(−x+ y) + σ(x− y))/2.

The constructed TGN has an intrinsic computational complexity C = 6. Thus all TENs/TGNs of
the same output function have equal intrinsic computational complexities C = 6. Besides, since the
empirical computation complexity is a multiple of the group’s scale 4, thus it is no smaller than 8.

15

	Introduction
	Related Work
	Preliminaries
	Main Results
	Theoretical problem settings and measurements
	``Universal'' Expressivity and Equal Intrinsic Computation Complexities of TENs and TGNs
	Upper bounds of Intrinsic Computational Complexity of TENs and TGNs
	Which of TENs and TGNs can realize their intrinsic computational complexity?
	Equivariance No-Free-Lunch Theorem

	Proof Sketch
	Proof Sketch of Theorems 4.2
	Proof sketch of Theorem 4.3
	Proof sketch of Theorem 4.4

	Conclusion
	Appendix
	Proof of Lemma 5.1
	Proof of Theorem 4.2
	Proof of Lemma 5.2
	Proof of Lemma 5.3
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof for Example 4.5

