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Abstract

Learning scientific document representations001
can be substantially improved through con-002
trastive learning objectives, where the chal-003
lenge lies in creating positive and negative004
training samples that encode the desired sim-005
ilarity semantics. Prior work relies on discrete006
citation relations to generate contrast samples.007
However, discrete citations enforce a hard cut-008
off to similarity. This is counter-intuitive to009
similarity-based learning, and ignores that sci-010
entific papers can be very similar despite lack-011
ing a direct citation – a core problem of find-012
ing related research. Instead, we use con-013
trolled nearest neighbor sampling over cita-014
tion graph embeddings for contrastive learn-015
ing. This control allows us to learn contin-016
uous similarity, to sample hard-to-learn neg-017
atives and positives, and also to avoid colli-018
sions between negative and positive samples019
by controlling the sampling margin between020
them. The resulting method SciNCL out-021
performs the state-of-the-art on the SciDocs022
benchmark. Furthermore, we demonstrate that023
it can train (or tune) models sample-efficiently,024
which improves compute efficiency, and that it025
can be combined with recent training-efficient026
methods. Perhaps surprisingly, even training a027
general-domain language model this way out-028
performs baselines pretrained in-domain.029

1 Introduction030

Pretrained language models (PLMs) achieve state-031

of-the-art results through fine-tuning on many NLP032

tasks (Rogers et al., 2020). However, the sentence033

or document embeddings derived from PLMs are034

of lesser quality compared to simple baselines like035

GloVe (Reimers and Gurevych, 2019), as their em-036

bedding space suffers from being anisotropic, i.e.037

poorly defined in some areas (Li et al., 2020).038

One approach that has recently gained attention039

is the combination of PLMs with contrastive fine-040

tuning to improve the semantic textual similarity041

between document representations (Wu et al., 2020;042

sample 
induced
margin

easy negatives

Figure 1: Starting from a query paper in a citation
graph embedding space. Hard positives are cita-
tion graph embeddings that are sampled from a similar
(close) context of , but are not so close that their gra-
dients collapse easily. Hard (to classify) negatives
(red band) are close to positives (green band) up to a
sampling induced margin. Easy negatives are very
dissimilar (distant) from the query paper .

Gao et al., 2021). These contrastive methods learn 043

to distinguish between pairs of similar and dissimi- 044

lar texts. As part of metric learning, they tradition- 045

ally focused on defining new loss functions, while 046

Musgrave et al. (2020) showed that newer metric 047

losses lead to insignificant performance gains when 048

compared fairly. Instead, recent works on self and 049

supervised contrastive learning has started to focus 050

on developing techniques that generate better posi- 051

tive and negative data augmentations for efficient 052

contrastive learning (Tian et al., 2020; Rethmeier 053

and Augenstein, 2021; Shorten et al., 2021). 054

In this paper, we focus on learning scientific 055

document representations (SDRs). The core distin- 056

guishing feature of this domain is the presence of 057

citation information. SDR methods like SciBERT 058

(Beltagy et al., 2019) pretrain a Transformer on 059

domain-specific text. The current state-of-the-art 060

by Cohan et al. (2020) uses discrete citation infor- 061
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mation to generate positive and negative samples062

for contrastive fine-tuning of SciBERT via a triplet063

loss (Schroff et al., 2015). Cited papers are used to064

generate positive samples, while non-cited papers065

are negative samples.066

This discrete cut-off to similarity is counter-067

intuitive to (continuous) similarity-based learning.068

It encourages overfitting to human similarity anno-069

tations, i.e. citations, which may reflect politeness070

and policy rather than semantic similarity (Paster-071

nack, 1969). Such sample generation may also072

cause positive and negative samples to collide be-073

tween cited papers, which Wang and Isola (2020)074

have shown to degrade contrastive optimization.075

Instead, the generation of non-colliding contrastive076

samples should be based on a continuous similarity077

function that allow us to find semantically similar078

papers, despite a lack of direct citation.079

Contributions:080

• We propose neighborhood contrastive learn-081

ing for scientific document representations082

with citation graph embeddings (SciNCL).083

• We sample similar and dissimilar papers from084

neighboring citation graph embeddings, such085

that both are hard to learn to avoid long train-086

ing times and gradient collapse.087

• As in recent contrastive learning works, we088

address sample generation semantics based089

on contrastive learning theory insights rather090

than designing new loss functions.091

• We compare against the state-of-the-art ap-092

proach SPECTER (Cohan et al., 2020) and093

other strong methods on the SCIDOCS bench-094

mark and find that SciNCL outperforms095

SPECTER on average and on 9 of 12 tasks.096

• Finally, we demonstrate that with SciNCL, us-097

ing only 1% of the training data, starting with098

a general-domain language model, or training099

only the bias terms of the model is sufficient100

to outperform the baselines.101

• Our code and models are publicly available.1102

2 Related Work103

Contrastive Learning pulls representations of104

similar data points (positives) closer together, while105

representations of dissimilar documents (negatives)106

are pushed apart. A common contrastive objective107

is the triplet loss (Schroff et al., 2015) that Cohan108

1Anonymous https://github.com/f4g2/s

et al. (2020) used for scientific document represen- 109

tation learning, as we describe below. However, as 110

Musgrave et al. (2020); Rethmeier and Augenstein 111

(2021) point out, contrastive objectives work best 112

when specific requirements are respected. (Req. 113

1) Views of the same data should introduce new 114

information, i.e. the mutual information between 115

views should be minimized (Tian et al., 2020). We 116

use citation graph embeddings to generate contrast 117

label information that supplements text-based simi- 118

larity. (Req. 2) For training time and sample effi- 119

ciency, negative samples should be hard to classify, 120

but should also not collide with positives (Saunshi 121

et al., 2019). (Req. 3) Recent works like Musgrave 122

et al. (2020); Khosla et al. (2020) use multiple pos- 123

itives. However, positives need to be consistently 124

close to each other (Wang and Isola, 2020), since 125

positives and negatives may otherwise collide, e.g., 126

Cohan et al. (2020) consider only ‘citations by the 127

query’ as similarity signal and not ‘citations to the 128

query’. Such unidirectional similarity does not 129

guarantee that a negative paper (not cited by the 130

query) may cite the query paper and thus could 131

cause collisions, the more we sample. Our method 132

treats both citing and being cited as positives (Req. 133

2), while it also generates hard negatives and hard 134

positives (Req. 2+3). Hard negatives are close to 135

but do not overlap positives (red band in Fig. 1). 136

Hard positives are close, but not trivially close to 137

the query document (green band in Fig. 1). 138

Scientific Document Representations based on 139

Transformers (Vaswani et al., 2017) and pretrained 140

on domain-specific text dominate today’s scientific 141

document processing. There are SciBERT (Belt- 142

agy et al., 2019), BioBERT (Lee et al., 2019), or 143

SciGPT2 (Luu et al., 2021), to name a few. Re- 144

cent works modify these domain PLMs to support 145

cite-worthiness detection (Wright and Augenstein, 146

2021), similarity (Ostendorff et al., 2020) or fact 147

checking (Wadden et al., 2020). 148

Aside from text, citations are a common signal 149

for the similarity of research papers. Paper (node) 150

representations can be learned using the citation 151

graph (Wu et al., 2019; Perozzi et al., 2014; Grover 152

and Leskovec, 2016). Especially for recommenda- 153

tions of papers or citations, hybrid combinations of 154

text and citation features are often employed (Han 155

et al., 2018; Jeong et al., 2020; Molloy et al., 2020; 156

Färber and Sampath, 2020). 157

Closest to SciNCL are Citeomatic (Bhagavatula 158

et al., 2018) and SPECTER (Cohan et al., 2020). 159

2

https://github.com/f4g2/s


While Citeomatic relies on bag-of-words for its160

textual features, SPECTER is based on SciBERT.161

Both leverage citations to learn a triplet-based docu-162

ment embedding model, whereby positive samples163

are papers cited in the query. Easy negatives are164

random papers not cited by the query. Hard nega-165

tives are citations of citations – papers referenced166

in positive citations of the query, but are not cited167

directly by it. Citeomatic also uses a second type168

of hard negatives, which are the nearest neighbors169

of query a that are not cited by it.170

Unlike our approach, Citeomatic does not use the171

neighborhood of citation embeddings, but instead172

relies on the actual document embeddings from the173

previous epoch. Despite being related to SciNCL,174

the sampling approaches employed in Citeomatic175

and SPECTER do not account for the pitfalls of us-176

ing discrete citations as signal for paper similarity.177

Our work addresses this issue.178

3 Methodology179

Our goal is to learn task-independent represen-180

tations for scientific documents. To do so we181

sample three document representation vectors and182

learn their similarity. For a given query paper183

vector dQ, we sample a positive (similar) paper184

vector d+ and a negative (dissimilar) paper vec-185

tor d−. This produces a ‘query, positive, negative’186

triple (dQ,d+,d−) – represented by ( , , )187

in Fig. 1. To learn paper similarity, we need to188

define three components: (§3.1) how to calculate189

document vectors d for the loss over triplets L;190

(§3.2) how citations provide similarity between pa-191

pers; and (§3.3) how negative and positive papers192

(d−,d+) are sampled as (dis-)similar documents193

from the neighborhood of a query paper dQ.194

3.1 Contrastive Learning Objective195

Given the textual content of a document d (paper),196

the goal is to derive a dense vector representation197

d that best encodes the document information and198

can be used in downstream tasks. A Transformer199

language model f (SciBERT; Beltagy et al. (2019))200

encodes documents d into vector representations201

f(d) = d. The input to the language model is the202

title and abstract separated by the [SEP] token.2203

The final layer hidden state of the [CLS] token is204

then used as a document representation f(d) = d.205

2Cohan et al. (2019) evaluated other inputs (venue or
author) but found the title and abstract to perform best.

Training with a masked language modeling ob- 206

jectives alone has been shown to produce sub- 207

optimal document representations (Li et al., 2020; 208

Gao et al., 2021). Thus, similar to the SDR state- 209

of-the-art method SPECTER (Cohan et al., 2020), 210

we continue training the SciBERT model (Beltagy 211

et al., 2019) using a self-supervised triplet margin 212

loss (Schroff et al., 2015): 213

L = max
{
‖dQ−d+‖2−‖dQ−d−‖2+ξ, 0

}
214

Here, ξ is a slack term (ξ = 1 as in SPECTER) 215

and ‖∆d‖2 is the L2 norm, used as a distance func- 216

tion. However, the SPECTER sampling method 217

has significant drawbacks. We will describe these 218

issues and our contrastive learning theory guided 219

improvements in detail below in §3.2. 220

3.2 Citation Neighborhood Sampling 221

Compared to the textual content of a paper, cita- 222

tions provide an outside view on a paper and its 223

relation to the scientific literature (Elkiss et al., 224

2008), which is why citations are traditionally used 225

as a similarity measure in library science (Kessler, 226

1963; Small, 1973). However, using citations as a 227

discrete similarity signal, as done in Cohan et al. 228

(2020), has its pitfalls. Their method defines pa- 229

pers cited by the query as positives, while paper 230

citing the query could be treated as negatives. This 231

means that positive and negative learning infor- 232

mation collides between citation directions, which 233

Wang and Isola (2020) have shown to deteriorate 234

performance. Furthermore, a cited paper can have a 235

low similarity with the citing paper given the many 236

motivations a citation can have (Teufel et al., 2006). 237

Likewise, a similar paper might not be cited. 238

To overcome these limitations, we learn citation 239

embeddings first and then use the citation neighbor- 240

hood around a given query paper dQ to construct 241

similar (positive) and dissimilar (negative) samples 242

for contrast by using neighborhood information 243

from either KNN (I) or a distance metric SIM (II- 244

IV) as detailed in §3.3. This builds on the intuition 245

that nodes connected by edges should be close to 246

each other in the embedding space (Perozzi et al., 247

2014; Grover and Leskovec, 2016). Using citation 248

embeddings allows us to: (1) sample paper similar- 249

ity on a continuous scale, which makes it possible 250

to: (2) define hard to learn positives, as well as (3) 251

hard or easy to learn negatives. Points (2-3) are 252

important in making contrastive learning efficiently 253

as will describe below in §3.3. 254
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3.3 Positives and Negatives Sampling255

Positive samples d+ should be semantically sim-256

ilar to the query paper dQ, i.e. sampled close to257

the query embedding dQ. Additionally, as Wang258

and Isola (2020) find, positives should be sam-259

pled from comparable locations (distances from260

the query) in embedding space and be dissimilar261

enough from the query embedding, such that gra-262

dients do not collapse (become 0). Therefore, we263

sample positive (similar) papers within a narrow264

range (k+ − c+, k+] around the query vector, i.e.265

the green band in Fig. 1. When sampling from266

KNN neighbors, we use a small k+ to find posi-267

tives and later analyze the impact of k+ in Fig. 2.268

Negative samples can be divided into easy269

and hard negative samples (light and dark red in270

Fig. 1). Sampling more hard negatives is known to271

improve contrastive learning (Bucher et al., 2016;272

Wu et al., 2017). However, we make sure to sample273

hard negatives (red band in Fig. 1) such that they274

are close to potential positives but do not collide275

with positives (green band), by not sampling be-276

tween them to ‘induce a margin’. We do so, since277

Saunshi et al. (2019) showed that sampling a larger278

number of hard negatives only improves perfor-279

mance if the negatives do not collide with positive280

samples, since collisions make the learning signal281

noisy. That is, in the margin between hard nega-282

tives and positives we expect positives and nega-283

tives to collide, thus we avoid sampling from this284

region. To generate a broad self-supervised citation285

similarity signal for contrastive SDR learning, we286

also sample easy negatives that are farther from the287

query than hard negatives. For negatives, the k−288

should be large when sampling via KNN, while the289

similarity threshold t− should be small, to ensure290

samples are dissimilar from the query paper.291

3.4 Sampling Strategies292

As described in §3.2 and §3.3, our approach im-293

proves upon the method by Cohan et al. (2020).294

Therefore, we reuse their sampling parameters295

(5 triplets per query paper) and then further op-296

timizing our methods’ hyperparameters. For exam-297

ple, to train the triplet loss, we generate the same298

amount of (dQ,d+,d−) triples per query paper as299

SPECTER (Cohan et al., 2020). To be precise, this300

means we generate c+=5 positives (as explained301

in §3.3). We also generate 5 negatives, three easy302

negatives c−easy=3 and two hard negatives c−hard=2,303

as described in §3.3.304

Below, we describe four strategies (I-IV) for sam- 305

pling triplets. These either sample neighboring pa- 306

pers from citation embeddings (I-II), by random 307

sampling (III), or using both strategies (IV). For 308

each strategy, let c′ be the number of samples for 309

either positives c+, easy negatives c−easy, or hard 310

negatives c−hard. 311

Citation Graph Embeddings: We train a graph 312

embedding model fc on citations extracted from the 313

Semantic Scholar Open Research Corpus (S2ORC; 314

Lo et al. (2020)) to get citation embeddings C. 315

S2ORC contains 52.6M nodes (papers) and 467K 316

edges (citations). At this scale, many existing graph 317

embedding frameworks require substantial comput- 318

ing resources. Hence, we utilize PyTorch BigGraph 319

(Lerer et al., 2019), which allows for training with 320

modest hardware requirements. Our method per- 321

forms well using the default training settings from 322

Lerer et al. (2019), but given more computational 323

resources, careful tuning may produce even better- 324

performing graph embeddings. Nonetheless, we 325

conducted a narrow parameter search using the 326

S2ORC link prediction task – see Appendix A.2. 327

(I) K-nearest neighbors (KNN): Assuming a 328

given citation embedding model fc and a search in- 329

dex (e.g., FAISS §4.3), we run KNN(fc(d
Q), C) 330

and take c′ samples from a range of the (k − c′, k] 331

nearest neighbors around the query paper dQ with 332

its neighborsN={n1, n2, n3, . . . }, whereby neigh- 333

bor ni is the i-th nearest neighbor citation. For in- 334

stance, for c′=3 and k=10 the corresponding sam- 335

ples would be the three neighbors descending from 336

the tenth neighbor: n8, n9, and n10. In practice, we 337

sample the neighbors N only once via [0; max(k)], 338

and then generate triples by range-selection in N ; 339

i.e. positives = (k+ − c+; k+], and hard negatives 340

= (k−hard − c−hard; k−hard]. 341

(II) Similarity threshold (SIM): Take c′ papers 342

that are within the similarity threshold t of a query 343

paper dQ such that s(fc(dQ), fc(di)) < t, where 344

s is the cosine similarity function. For example, 345

given the similarity scores S={0.9, 0.8, 0.7, 0.1} 346

(ascending order, the higher the similarity is the 347

closer the candidate embedding to the query em- 348

bedding is) with c′=2 and t=0.5, the two candi- 349

dates with the largest similarity scores and smaller 350

than the threshold would be 0.8 and 0.7. The cor- 351

responding papers would be selected as samples. 352
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(III) Random sampling Sample any c′ papers353

without replacement from the corpus.354

(IV) Filtered random Like (III) but excluding355

the papers that are retrieved by KNN or SIM, i.e.,356

all neighbors within the largest k or ni with i<=k357

are excluded.358

The KNN and SIM sampling strategies intro-359

duce hyperparameters (k or t) that allow for the360

controlled sampling of positives or negatives with361

different difficulty (from easy to hard depending on362

the hyperparameter). Specifically, in Fig. 1 these363

hyperparameters define the tunable sample induced364

margin between positives and negatives, as well as365

the width and position of the positive sample band366

(green) and negative sample band (red) around the367

query sample. Besides the strategies above, we368

experiment with k-means clustering and sorted ran-369

dom sampling, neither of which performs well (see370

negatives results in Appendix A.3).371

4 Experiments372

We next introduce our experimental setting includ-373

ing the data used for training and evaluation, as374

well as implementation details.375

4.1 Evaluation Dataset376

We evaluate the document representations on the377

SCIDOCS benchmark (Cohan et al., 2020). A key378

difference to other benchmarks is that embeddings379

are the input to the individual tasks without explicit380

fine-tuning. The SCIDOCS benchmark consists of381

the following four tasks:382

Document classification (CLS) with labels383

from Medical Subject Headings (MeSH) (Lip-384

scomb, 2000) and Microsoft Academic Graph385

(MAG) (Sinha et al., 2015) evaluated with the F1386

metric. Co-views and co-reads (USR) prediction387

based on the L2 distance between embeddings. Co-388

views are papers viewed in a single browsing ses-389

sion. Co-read refers to a user accessing the PDF390

of a paper. Both user activities are evaluated us-391

ing Mean Average Precision (MAP) and Normal-392

ized Discounted Cumulative Gain (nDCG). Direct393

and co-citation (CITE) prediction based on the394

L2 distance between the embeddings. MAP and395

nDCG are the evaluation metrics. Recommenda-396

tions (REC) generation based on embeddings and397

paper metadata to rank a set of “similar papers” for398

a given paper. An offline evaluation with histori-399

cal clickthrough data determines the performance400

using Precision@1 (P@1) and nDCG. 401

4.2 Training Data 402

We replicate the training data from SPECTER as 403

closely as possible. Unfortunately SPECTER’s 404

data is only provided as triples of Semantic Scholar 405

paper IDs (Ammar et al., 2018). To obtain pa- 406

per title, abstract, and citations, we try mapping 407

SPECTER’s papers to S2ORC. We successfully 408

map 96.1% of the query papers and 69.3% of 409

the corpus from which positives and negatives are 410

sampled. To account for the missing papers, we 411

randomly sample papers from S2ORC such that 412

the absolute number of papers is identical with 413

SPECTER. The SCIDOCS papers are excluded. 414

The ratio of training triples per query remains the 415

same (§3.4). 416

4.3 Training and Implementation 417

We replicate the training setup from SPECTER as 418

closely as possible. We implement SciNCL using 419

Huggingface Transformers (Wolf et al., 2020), ini- 420

tialize the model with SciBERT’s weights (Beltagy 421

et al., 2019), and train via the triplet loss (Equa- 422

tion 3.1). The optimizer is Adam with weight de- 423

cay (Kingma and Ba, 2015; Loshchilov and Hutter, 424

2019) and learning rate λ=2−5. To explore the 425

effect of compute efficient fine-tuning we also train 426

a BitFit model (Zaken et al., 2021) with λ=1−4 427

(§7.2). We train SciNCL on two NVIDIA GeForce 428

RTX 6000 (24G) for 2 epochs (approx. 24 hours 429

of training time) with batch size 8 and gradient ac- 430

cumulation for an effective batch size of 32 (same 431

as SPECTER). Training the S2ORC graph embed- 432

dings takes approx. 6 hours. The KNN and SIM 433

strategies are implemented with FAISS (Johnson 434

et al., 2021) using a flat index (exhaustive search) 435

and take less than 30min to compute. 436

4.4 Baseline Methods 437

We compare to 10 prior approaches: Doc2Vec (Le 438

and Mikolov, 2014), weighted sum of in-domain 439

fastText word embeddings (Bojanowski et al., 440

2017), averaged contextualized token-level repre- 441

sentations from ELMO (Peters et al., 2018), BERT 442

(Devlin et al., 2019) a state-of-the-art PLM pre- 443

trained on general-domain text, BioBERT-Base- 444

Cased-v1.2 (Lee et al., 2019) a BERT variations 445

for biomedical text, SciBERT (Beltagy et al., 446

2019) a BERT variation for scientific text, Cite- 447

BERT (Wright and Augenstein, 2021) a SciBERT 448

variation fine-tuned on cite-worthiness detection, 449
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Task→ Classification User activity prediction Citation prediction
Recomm.

Avg.Subtask→ MAG MeSH Co-View Co-Read Cite Co-Cite
Model ↓ / Metric→ F1 F1 MAP nDCG MAP nDCG MAP nDCG MAP nDCG nDCG P@1

Doc2Vec* (2014) 66.2 69.2 67.8 82.9 64.9 81.6 65.3 82.2 67.1 83.4 51.7 16.9 66.6
fastText-sum* (2017) 78.1 84.1 76.5 87.9 75.3 87.4 74.6 88.1 77.8 89.6 52.5 18.0 74.1
ELMo* (2018) 77.0 75.7 70.3 84.3 67.4 82.6 65.8 82.6 68.5 83.8 52.5 18.2 69.0
Citeomatic* (2018) 67.1 75.7 81.1 90.2 80.5 90.2 86.3 94.1 84.4 92.8 52.5 17.3 76.0
SGC* (2019) 76.8 82.7 77.2 88.0 75.7 87.5 91.6 96.2 84.1 92.5 52.7 18.2 76.9
BERT (2019) 79.9 74.3 59.9 78.3 57.1 76.4 54.3 75.1 57.9 77.3 52.1 18.1 63.4
SciBERT* (2019) 79.7 80.7 50.7 73.1 47.7 71.1 48.3 71.7 49.7 72.6 52.1 17.9 59.6
BioBERT (2019) 77.2 73.0 53.3 74.0 50.6 72.2 45.5 69.0 49.4 71.8 52.0 17.9 58.8
CiteBERT (2021) 78.8 74.8 53.2 73.6 49.9 71.3 45.0 67.9 50.3 72.1 51.6 17.0 58.8
SPECTER* (2020) 82.0 86.4 83.6 91.5 84.5 92.4 88.3 94.9 88.1 94.8 53.9 20.0 80.0
SciNCL (ours) 81.5 88.8 85.5 92.4 87.6 93.9 93.2 97.1 91.6 96.4 53.6 19.3 81.8
± σ w/ ten seeds .497 .125 .166 .101 .247 .153 .597 .26 .325 .147 .337 .626 .172

Table 1: Results on the SCIDOCS benchmark. Our approach surpasses the previous best avg. score by 1.8 points
and also outperforms the baselines in 9 of 12 task metrics. Our scores are reported as mean and standard deviation
σ over ten random seeds. Baseline scores with * are taken from Cohan et al. (2020).

the graph-convolution approach SGC (Wu et al.,450

2019), Citeomatic (Bhagavatula et al., 2018), and451

SPECTER (Cohan et al., 2020). If not otherwise452

mentioned, all BERT variations are used in their453

base-uncased versions.454

5 Overall Results455

Tab. 1 shows our main results, comparing SciNCL456

with the best validation performance against prior457

approaches. SciNCL achieves an average perfor-458

mance of 81.8 across all metrics, which is a 1.8459

point absolute improvement over the next-best base-460

line. We find the best validation performance when461

positives and hard negative are sampled with KNN,462

whereby positives are k+=25, and hard negatives463

are k−hard=4000 (§6). Easy negatives are generated464

through filtered random sampling. As random sam-465

pling accounts for a large fraction of the triples (in466

the form of easy negatives), we report the mean467

scores and standard deviation based on ten random468

seeds (seed ∈ [0, 9]).469

For MAG classification, SPECTER achieves the470

best result with 82.0 F1 followed by SciNCL with471

81.5 F1 (-0.5 points). For MeSH classification,472

SciNCL yields the highest score with 88.8 F1 (+2.4473

compared to SPECTER). Both classification tasks474

have in common that the chosen training settings475

lead to over-fitting. Changing the training by us-476

ing only 10% training data, SciNCL yields 82.4477

F1@MAG (Tab. 2). In all user activity and citation478

tasks, SciNCL yields higher scores than all base-479

lines. It is notable that SciNCL also outperforms 480

SGC on direct citation prediction, where SGC out- 481

performs SPECTER in terms of nDCG. 482

On the recommender task, SPECTER yields the 483

best nDCG and P@1, whereas SciNCL is slightly 484

worst with 53.6 nDCG and 19.3 P@1 (-0.3 nDCG 485

and -0.7 P@1 compared to SPECTER). The rec- 486

ommendation task shows the strongest effect of 487

random seeds (σ of 0.3 nDCG and 0.6 P@1). 488

The performance difference between SciNCL and 489

SPECTER is close to or within the standard devia- 490

tion. Hence, it remains unclear whether the differ- 491

ence is significant, since Cohan et al. (2019) do not 492

report standard deviations. In contrast to the clas- 493

sification tasks, training for more than two epochs 494

leads to further improvement on the recommen- 495

dation task (currently under-fitting). As a result, 496

one should adjust the training settings accordingly 497

when aiming only for this particular task. 498

Regarding the PLM baselines, we observe that 499

the general-domain BERT, with a score of 63.4, 500

outperforms the domain-specific BERT variants, 501

namely SciBERT (59.6), BioBERT (58.8), and 502

CiteBERT (58.8). Still, all PLMs without con- 503

trastive objectives yield substantially worse results 504

(even compared to Doc2Vec or fastText). This em- 505

phasizes the anisotropy problem of embeddings 506

directly extracted from current PLMs. 507

In summary, we show that SciNCL’s triple selec- 508

tion on average leads to an improved performance 509

on SCIDOCS, with most gains being observed for 510
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user activity and citation tasks. Examples of the511

generated triples are shown in Appendix A.5.512

6 Impact of Sample Difficulty513

The benefit of SciNCL is that the hyperparameters514

of the sampling strategies can be tuned (§3.3) to515

learn without sample collisions. In this section, we516

present the results of this tuning procedure. We517

optimize the sampling strategies for positives and518

negatives with partial grid search on a random sam-519

ple of 10% of the original training data (sampling520

based on queries). Our experiments show that op-521

timizations on this subset correlate with the entire522

dataset. The scores in Fig. 2 and 3 are reported as523

the mean over three random seeds including stan-524

dard deviations.525

6.1 Positive Samples526
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Figure 2: Results on the validation set w.r.t. positive
sampling with KNN when using 10% training data.

Fig. 2 shows the average scores on the SCIDOCS527

validation set depending on the selection of posi-528

tives with the KNN strategy. We only change k+,529

while negative sampling remains fixed to its best530

setting (§6.2). The SIM strategy is omitted for pos-531

itive sampling since it yields a poor performance532

throughout all tasks (Appendix A.3)533

The performance is relatively stable for k+<100534

with peak at k+=25, for k+>100 the performance535

declines as k+ increases. Wang and Isola (2020)536

state that positive samples should be semantically537

similar to each other, but not too similar to the538

query. For example, at k+=5, positives may be539

a bit “too easy” to learn, such that they produce540

less informative gradients than the optimal setting541

k+=25. Similarly, making k+ too large leads to542

the sampling induced margin being too small, such543

that positives collide with negative samples, which544

creates contrastive label noise that degrades perfor- 545

mance Saunshi et al. (2019). 546

Another observation is the standard deviation σ: 547

One would expect σ to be independent of k+ since 548

random seeds affect only the negatives. However, 549

positives and negatives interact with each other 550

through the triplet margin loss. Therefore, σ is also 551

affected by k+. 552

6.2 Hard Negative Samples 553
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Figure 3: Results on the validation set w.r.t. hard nega-
tive sampling with KNN using 10% training data.

Fig. 3 presents the validation results with KNN 554

strategy and k−hard and the best setting for posi- 555

tives (k+=25). The performance increases with 556

increasing k−hard, until the performance plateaus 557

for 2000<k−hard<4000 with a peak at k−hard=4000. 558

This plateau can also be observed in the test 559

performance, where k−hard=2000 and k−hard=3000 560

yield a marginally lower score of 81.7 (Tab. 2). 561

For k−hard>4000, the performance starts to decline 562

again. This suggests that for large k−hard the samples 563

are not “hard enough”. The need for hard negatives 564

confirms the findings of Cohan et al. (2020). 565

Intuitively, the KNN strategy should suffer from 566

a centrality or hubness problem. How many neigh- 567

bors are semantically similar strongly depends on 568

the query paper itself. A popular and frequently 569

cited paper has many more similar neighbors than 570

a niche paper. To test this assumption, we also eval- 571

uate the SIM strategy that should account for the 572

hubness problem. However, SIM underperforms 573

with a score of 81.5 (Tab. 2) independent from dif- 574

ferent similarity thresholds (Appendix A.3). 575

6.3 Easy Negative Samples 576

Filtered random sampling of easy negatives yields 577

the best validation performance compared pure ran- 578

dom sampling (Tab. 2). However, the performance 579
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CLS USR CITE REC Avg. ∆

SciNCL 85.0 89.0 94.7 36.5 81.8 –
SPECTER 84.2 88.4 91.5 36.9 80.0 -1.8
k−hard=2000 85.1 88.9 94.7 36.3 81.7 -0.1
k−hard=3000 84.7 88.8 94.7 36.2 81.7 -0.1
hard neg. w/ SIM 84.4 88.8 94.5 35.8 81.5 -0.2
easy neg. w/ random 85.2 88.9 94.7 36.5 81.8 0.0
Init. w/ BERT-Base 84.2 88.5 93.9 37.3 81.3 -0.5
Init. w/ BERT-Large 85.0 88.7 94.1 36.3 81.5 -0.3
Init. w/ BioBERT 84.2 88.8 93.9 37.8 81.5 -0.3
1% training data 85.6 88.2 92.6 36.1 80.8 -1.0
10% training data 85.9 88.7 93.7 36.3 81.4 -0.8
BitFit training 85.8 88.7 93.7 35.7 81.3 -0.5

Table 2: Ablations. Numbers are averages of metrics
for each task of the SCIDOCS test set, average score
over all metrics, and absolute difference to SciNCL.

difference is marginal. When rounded to one dec-580

imal, their average test scores are identical. The581

marginal difference is caused by the large corpus582

size and the resulting small probability of randomly583

sampling one paper from the KNN results. But584

without filtering, the effect of random seeds in-585

creases, since we find a higher standard deviation586

compared to the one with filtering.587

As a potential way to decrease randomness, we588

experiment with other approaches like k-means589

clustering but find that they decrease the perfor-590

mance (Appendix A.3).591

7 Ablation Analysis592

In addition to sample difficulty, we evaluate the593

performance impact of data quantity, trainable pa-594

rameters, and language model initialization.595

7.1 Initial Language Models596

Tab. 2 shows the effect of initializing the model597

weights not with SciBERT but with general-domain598

PLMs (BERT-Base and BERT-Large) or with599

BioBERT. The initialization with other PLMs600

decreases the performance. However, the de-601

cline is marginal (BERT-Base -0.5, BERT-Large602

-0.3, BioBERT -0.3) and all PLMs outperform603

the SPECTER baseline. For the recommenda-604

tion task, in which SPECTER is superior over605

SciNCL, BioBERT and BERT-Base both outper-606

form SPECTER. This indicates that the improved607

triple mining of SciNCL has a greater domain adap-608

tion effect than pretraining on domain-specific lit-609

erature. Given that pretraining of PLMs requires610

a magnitude more resources than the fine-tuning 611

with SciNCL, our approach can be a solution for 612

resource-limited use cases. 613

7.2 Data and Compute Efficiency 614

The last three rows of Tab. 2 show the results regard- 615

ing data and compute efficiency. Training SciNCL 616

with only 10% of the original data yields a score of 617

81.4 (-0.8 points). Even with only 1% training data 618

(7300 triples), SciNCL achieves a score of 80.8 619

that is 1.0 points less than with 100% but still 0.8 620

points more than the SPECTER baseline. With this 621

data efficiency, one could manually create a triplet 622

dataset or use existing expert-annotated datasets 623

like Brown et al. (2019). 624

Lastly, we evaluate BitFit training (Zaken et al., 625

2021), which only trains the bias terms of the model 626

while freezing all other parameters. This corre- 627

sponds to training only 0.1% of the original param- 628

eters. With BitFit, SciNCL yields a considerable 629

score of 81.3 (-0.5 points). As a result, SciNCL 630

could be trained on the same hardware with even 631

larger (general-domain) language models (§7.1). 632

8 Conclusion 633

We present a novel approach for contrastive learn- 634

ing of scientific document embeddings that ad- 635

dresses the challenge of selecting informative posi- 636

tive and negative samples. By leveraging citation 637

graph embeddings for sample generation, SciNCL 638

achieves a score of 81.8 on the SCIDOCS bench- 639

mark, a 1.8 point improvement over the previous 640

best method SPECTER. This is purely achieved by 641

introducing tunable sample difficulty and avoiding 642

collisions between positive and negative samples, 643

while existing PLM and data setups can be reused. 644

Our work highlights the importance of sample 645

generation in a contrastive learning setting. We 646

show that 1% of training data is already sufficient 647

to outperform SPECTER, whereas the remaining 648

99% provide only 1.0 additional points (80.8 to 649

81.8). We also demonstrate that in-domain lan- 650

guage model pretraining (like SciBERT) is ben- 651

eficial, while general-domain PLMs can achieve 652

a comparable performance and even outperform 653

SPECTER. This indicates that controlling sample 654

difficulty and avoiding collisions is more effective 655

than in-domain pretraining, especially in scenarios 656

where training a PLM from scratch is infeasible. 657
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A Appendix963

A.1 Citation Data964

The version identifier of S2ORC is 20200705v1.965

The full citation graph consists of 52.6M nodes966

(papers) and 467K edges (citations).967

A.2 Graph Embedding Evaluation968

To evaluate the underlying citation graph embed-969

dings, we experiment with a few of BigGraph’s970

hyperparameters. We trained embeddings with dif-971

ferent dimensions d={128, 512, 768} and different972

distance measures (cosine similarity and dot prod-973

uct) on 99% of the data and test the remaining974

1% on the link prediction task. An evaluation of975

the graph embeddings with SCIDOCS is not pos-976

sible since we could not map the papers used in977

SCIDOCS to the S2ORC corpus. All variations978

are trained for 20 epochs, margin m=0.15, and979

learning rate λ=0.1 (based on the recommended980

settings by Lerer et al. (2019)).981

Table 3: Link prediction performance of BigGraph em-
beddings trained on S2ORC citation graph with differ-
ent dimensions and distance measures.

Dim. Dist. MRR Hits@1 Hits@10 AUC

128 Cos. 54.09 43.39 75.21 85.75
128 Dot 89.75 85.84 96.13 97.70
512 Dot 94.60 92.47 97.64 98.64
768 Dot 95.12 93.22 97.77 98.74

Tab. 3 shows the link prediction performance982

measured in MRR, Hits@1, Hits@10, and AUC.983

Dot product is substantially better than cosine simi-984

larity as distance measure. Also, there is a positive985

correlation between the performance and the size986

of the embeddings. The larger the embedding size987

the better link prediction performance. Graph em-988

beddings with d=768 were the largest possible size989

given our compute resources (available disk space990

was the limiting factor).991

A.3 Negative Results992

We tried additional sampling strategies and model993

modification of which none led to an performance994

improvement.995

KNN with interval large than c Our best results996

are achieved with KNN where the size of the neigh-997

bor interval (k − c′; k] is equal to the number of998

samples c′ that the strategy should generate. In999

addition to this, we also experimented with large1000

intervals, e.g., (1000; 2000], from which c′ papers1001

are randomly sampled. This approach yields com- 1002

parable results but suffers from a larger effect of 1003

randomness and is therefore more difficult to opti- 1004

mize. 1005

K-Means Cluster for Easy Negatives Easy neg- 1006

atives are supposed to be far away from the query. 1007

Random sampling from a large corpus ensures this 1008

as our results show. As an alternative approach, 1009

we tried k-means clustering whereby we selected 1010

easy negatives from the centroid that has a given 1011

distance to the query’s centroid. 1012
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Figure 4: Results on the validation set w.r.t. hard nega-
tive sampling with SIM using 10% training data.

Hard Negatives With Similarity Threshold 1013

As shown in Tab. 2, hard negative sampling with k 1014

nearest neighbors outperforms absolute similarity 1015

sampling. Fig. 4 show the validation results for 1016

different similarity thresholds. A similar pattern as 1017

in Fig. 3 can be seen. When the negatives are closer 1018

to the query paper (larger similarity threshold t), 1019

the validation score decreases. 1020

Positives with Similarity Threshold Positive 1021

sampling with SIM performs poorly since even for 1022

small t+ < 0.5 many query papers do not have any 1023

neighbors within this similarity threshold (more 1024

than 40%). Solving this issue would require chang- 1025

ing the set of query papers which we omit for com- 1026

parability to SPECTER. 1027

Sorted Random Simple random sampling does 1028

not ensure if a sample is far or close to the query. 1029

To integrate a distance measure in the random sam- 1030

pling, we first sample n candidates, then order the 1031

candidates according to their distance to the query, 1032

and lastly select the c′ candidates that are the clos- 1033

est or furthest to the query as samples. 1034
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Mask Language Modeling Giorgi et al. (2021)1035

show that combining a contrastive loss with a mask1036

language modeling loss can improve text represen-1037

tation learning. However, in our experiments a1038

combined function decreases the performance on1039

SCIDOCS, probably due to the effects found by (Li1040

et al., 2020).1041

Graph Embedding Prediction Loss We com-1042

bine the triplet loss (Equation 3.1) with a MSE1043

loss of the predicted embedding and the graph em-1044

beddings. This approach yields a comparable per-1045

formance but adds additional computational com-1046

plexity and was therefore discarded for the final1047

experiments.1048

A.4 Task-specific Results1049

Fig. 5 and 6 present the validation performance like1050

in §6 but on a task-level and not as an average over1051

all tasks. The plots show that the optimal k+ and1052

k−hard values are partially task dependent.1053

A.5 Examples1054

Tab. 4 lists three examples of query papers with1055

their corresponding positive and negative samples.1056

The complete set of triples that we use during train-1057

ing are available in our code repository1.1058
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Figure 5: Task-level validation performance w.r.t. k+ with KNN strategy using 10% training data.
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Figure 6: Task-level validation performance w.r.t. k−hard with KNN strategy using 10% training data.
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Table 4: Example query papers with their positive and negative samples.

Query: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Positives:

• A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference
• Looking for ELMo’s Friends: Sentence-Level Pretraining Beyond Language Modeling
• GLUE : A MultiTask Benchmark and Analysis Platform for Natural Language Understanding
• Dissecting Contextual Word Embeddings: Architecture and Representation
• Universal Transformers

Negatives:

• Planning for decentralized control of multiple robots under uncertainty
• Graph-Based Relational Data Visualization
• Linked Stream Data Processing
• Topic Modeling Using Distributed Word Embeddings
• Adversarially-Trained Normalized Noisy-Feature Auto-Encoder for Text Generation

Query: BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Positives:

• Exploring Word Embedding for Drug Name Recognition
• A neural joint model for entity and relation extraction from biomedical text
• Event Detection with Hybrid Neural Architecture
• Improving chemical disease relation extraction with rich features and weakly labeled data
• GLUE : A MultiTask Benchmark and Analysis Platform for Natural Language Understanding

Negatives:

• Weakly Supervised Facial Attribute Manipulation via Deep Adversarial Network
• Applying the Clique Percolation Method to analyzing cross-market branch banking ...
• Perpetual environmentally powered sensor networks
• Labelling strategies for hierarchical multi-label classification techniques
• Domain Aware Neural Dialog System

Query: A Context-Aware Citation Recommendation Model with BERT and Graph Convolutional Networks

Positives:

• Content-based citation analysis: The next generation of citation analysis
• ScisummNet: A Large Annotated Dataset and Content-Impact Models for Scientific Paper ...
• Citation Block Determination Using Textual Coherence
• Discourse Segmentation Of Multi-Party Conversation
• Argumentative Zoning for Improved Citation Indexing

Negatives:

• Adaptive Quantization for Hashing: An Information-Based Approach to Learning ...
• Trap Design for Vibratory Bowl Feeders
• Software system for the Mars 2020 mission sampling and caching testbeds
• Applications of Rhetorical Structure Theory
• Text summarization for Malayalam documents — An experience
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