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Abstract

Evaluating an explanation’s faithfulness is de-001
sired for many reasons such as trust, in-002
terpretability and diagnosing the sources of003
model’s errors. In this work, which focuses004
on the NLI task, we introduce the methodol-005
ogy of Faithfulness-through-Counterfactuals,006
which first generates a counterfactual hypoth-007
esis based on the logical predicates expressed008
in the explanations, and then evaluates if the009
model’s prediction on the counterfactual is010
consistent with that expressed logic (i.e. if the011
new formula is logically satisfiable). In con-012
trast to existing approaches, this does not re-013
quire any explanations for training a separate014
verification model. We first validate the ef-015
ficacy of automatic counterfactual hypothesis016
generation, leveraging on the few-shot priming017
paradigm. Next, we show that our proposed018
metric performs well compared to other met-019
rics using simulatability studies as a proxy task020
for faithfulness. In addition, we conduct a sen-021
sitivity analysis to validate that our metric is022
sensitive to unfaithful explanations.023

1 Introduction024

How should we evaluate an explanation’s faithful-025

ness with respect to the task model? According026

to Jacovi and Goldberg (2020), faithful measures027

should focus on utility to the user and the idea that028

an explanation can be sufficiently faithful.1 Fun-029

damentally, the goal of interpretability research is030

to build user trust, identify the influence of cer-031

tain variables and allow users to understand how032

a model will behave on given inputs (Doshi-Velez033

and Kim, 2017; Lipton, 2018).034

In interpretable NLP, there is growing interest in035

tasks that require world and commonsense “knowl-036

edge” and “reasoning” (Danilevsky et al., 2020).037

1Jacovi and Goldberg (2020) originally posit that faith-
ful explanations should “accurately represents the reasoning
process behind the model’s prediction”, however also acknowl-
edge that this is “impossible to satisfy fully”.
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Figure 1: Overview of the proposed FTC approach, evaluat-
ing faithfulness of explanations through counterfactuals. If the
explanation is faithful to the model, the NLI label on the new
counterfactual hypothesis should change to Entailment. If
the model still predicts Contradiction, this indicates that
the explanation is not faithful to the model, i.e. the logic of
the explanation and the model are not consistent.

We focus on natural language inference (SNLI; 038

Bowman et al. (2015)), where extractive explana- 039

tions also known as rationales (DeYoung et al., 040

2019) are limited as they take a subset of the ex- 041

isting input. Instead, we require free-form nat- 042

ural language explanations to fill in the reason- 043

ing or knowledge gap for such tasks (Camburu 044

et al., 2018; Rajani et al., 2019). Our setting is 045

thus characterised by the post-hoc interpretation of 046

black-box classification models via generative ex- 047

planations. Our work follows the standard “predict- 048

and-explain” paradigm (Do et al., 2020). Here an 049

explanation generator generates the explanations 050

conditioned on the predicted task label.2 Without 051

faithfulness evaluations, the explanation approxi- 052

mately describes the internal process at best, and is 053

generated from superficial similarities between the 054

training data and the class label at worst.3 055

The central contribution of this paper is a 056

2Do et al. (2020) report little to no difference between
jointly predict and explain compared to predict then explain.
Note that the emphasis of this work is on evaluating the faith-
fulness of explanations rather than generating them.

3Preliminary experiments show that flipping the input class
label can change the form of the explanation.
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methodology grounded in first-order free logic057

(Lambert, 1967; Bencivenga, 2002),4 to verify058

a given explanations’ faithfulness. Our pro-059

posed approach generates a revised (counterfac-060

tual) hypothesis based on the logical propositions061

expressed in the explanation, and evaluates the log-062

ical satisfiability (Boolos et al., 2002) of the new063

hypothesis. Consider the following example:064

Hypothesis: The dog is barking at the girl.
Explanation: The dog is an animal.
Counterfactual: The animal is barking at the girl.

065

066

If the explanation is logically consistent (faith-067

ful) to the model, then the revised counterfactual068

hypothesis which replaces ‘dog’ with ‘animal’ in069

the original hypothesis, should be satisfiable, since070

‘dog is an animal’. However, if the explanation071

is inconsistent with the model, then the resulting072

hypothesis is unsatisfiable and the explanation is073

unfaithful. We describe this formally in Section 2.074

Compared to previous automatic metrics (LAS;075

Hase et al. (2020), LRA; Wiegreffe et al. (2020)),076

our proposed method does not rely on an external077

verification model and therefore does not require078

explanation data for training.5 Our method directly079

queries the task model in question while crucially080

avoiding the confound of “label leakage”6 from the081

explanation (Hase et al., 2020). We expand on this082

discussion in Section 4. The contributions of this083

work are as follows:084

• We present a methodology for evaluating faith-085

fulness of free form explanations for NLI,086

grounded in first-order free logic (Subsec-087

tion 2.1, Subsection 2.2). Our method eval-088

uates the satisfiability of logical relations ex-089

pressed through a counterfactual hypothesis.090

• We introduce an automatic metric (Subsec-091

tion 2.3) and show its viability with human092

studies, indicating that a practical solution093

exists for the proposed (theoretical) method.094

We leverage few-shot priming for generating095

counterfactual hypothesis, achieving 0.71 −096

4This is an extension of predicate logic and should not be
confused with either predicate or propositional logic.

5“Faithfulness” measures which are tied to an external
verification model are potentially problematic as given a fixed
task model and explanation, one could in theory achieve two
different faithfulness scores if the verification model changes.

6Label leakage occurs because of superficial similarities
between the syntatic form of the explanation and the task label.
For instance the explanations “A is a B” and “A is not a B” are
highly associated with the Entailment and Contradiction label.

Label Propositions Description

E u⇒ x hypothesis implied by premise
C u⇒ ¬x hypothesis contradicts premise
N u

(?)
=⇒ x hypothesis neither contradicts

or is entailed by premise

Table 1: Mapping NLI task labels to propositions. ⇒
indicates logical implication, ¬ indicates logical nega-
tion, and (?)

=⇒ indicates truth-valueless.

0.88 METEOR score for human and gener- 097

ated explanations (Subsection 3.2). 098

• We show a strong effect size for simulatability 099

of the counterfactual hypothesis as a proxy 100

test of faithfulness, and achieve 0.69 − 0.78 101

ρ-statistic on Wilcoxon rank-sum test (Sub- 102

section 3.3). A further sensitivity analysis 103

indicates that our method is sensitive to patho- 104

logical explanations that were generated by 105

removing inputs to the explanation generator, 106

as compared to other existing faithfulness met- 107

rics (Subsection 3.4). 108

2 Method 109

2.1 Problem Formulation 110

Natural Language Inference (NLI) is typically cast 111

as a classification task; given a premise u and a 112

hypothesis x, the classifier f predicts the label y, 113

where y ∈ {E,C,N}. Here E indicates entailment, 114

C contradiction, and N neutral, for the relationship 115

between u and x. f can therefore be viewed as a 116

black-box function approximating the solution to a 117

logical satisfiability problem. 118

Testing Predicate Relations in Explanations. 119

An explanation z can express one or more logi- 120

cal predicate relations (R), which describes the 121

relationship between two variables A and B that 122

are expressed in x and u respectively (see Table 2 123

col 4 for examples). This is denoted as R(A,B). 124

A “faithful” explanation with respect to a task 125

model f , is one that expresses predicate relations 126

R(A,B) that are consistent with f ’s predictions. 127

The central idea of this work, is to automatically 128

verify this using a counterfactual hypothesis, xcf 129

and its derived associated counterfactual label (the 130

expected satisfiability result). If f(u, xcf) does not 131

result in the associated counterfactual label, then 132

the explanation is not faithful to f . 133

First-order Free Logic in NLI. In order to de- 134

duce the associated label for xcf, we must address 135
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Label (y) Propositional
Formula Explanation (z) R(A,B)

Propositional
Formula (cf) Label (ycf)

E u⇒ x A is the same as B A⇔ B u⇒ xcf E
C u⇒ ¬x A is not B ¬(A⇔ B) u⇒ ¬(¬xcf) E

N u
(?)
=⇒ x A does not imply B ¬(A⇒ B)

u⇒ xcf[A] E

u
(?)
=⇒ xcf

[B] N

Table 2: From the original hypothesis x and logical predicate relations R(A,B) expressed in the explanation, we
generate the counterfactual hypothesis xcf (2 cases xcf

[A] and xcf
[B] for y = N). The resulting counterfactual label ycf

is logically derived from the propositions Subsection 2.2. Table 3 shows examples of this process.

the issue of logical deduction for Neutral, which136

has no corresponding expression in classical pred-137

icate logic. We observe that the ternary label in138

NLI parallels first-order free logic, which has three139

distinct logical forms, positive, negative and neu-140

tral (Lambert, 1967; Nolt, 2021). In contrast to141

classical logic which requires each singular term to142

denote a Boolean variable in the domain, free logic143

may have formula which are truth-valueless (Nolt,144

2021), i.e., it is not known whether they are True or145

False.7 Table 1 shows the task label, propositions146

and their meaning in Free Logic.147

2.2 Satisfiabilty of the Counterfactual148

In this section, we derive what the counterfac-149

tual hypothesis and associated counterfactual label150

would be for each original label assuming logical151

formulas and discrete variables where exact sub-152

stitution is possible. Subsection 2.4 describes our153

suggested approach to handle Natural Language154

where discrete substitution no longer holds.155

Axiom 1. Substitution for formulas (Fitting, 2012)156

For any variables A and B and any formula x[A]157

containing A, if x[B\A] is obtained by replacing158

any number of free occurrences of A in x with B,159

then for A⇔ B, x[A] ⇔ x[B\A].160

Assumption 1. The hypothesis x and premise u161

contain n free variables, of which the variables162

A and B are members in u and x. We denote the163

membership of A ⊆ x as x[A].164

Assumption 2. Given R(A,B), the counterfac-165

tual hypothesis can be constructed by applying Ax-166

iom 1 replacing A with B, denoted x[B\A] = xcf .8167

Assumption 3. The predicate relation expressed168

in R(A,B) is a sufficient condition, to explain the169

7Truth-valueless formulas are often said to have “truth-
value gaps”. Informally, this can be interpreted as there being
insufficient information on the truth-values of logical variables
to conclude the relationship between u and x (Nolt, 2021).

8Equivalence formulas may be substituted for one another
without changing that formula’s truth value (Fitting, 2012).

model’s predicted label. 170

We formally derive the associated counterfactual 171

label ycf (expected satisfiability result) of the new 172

counterfactual hypothesis xcf. Figure 1 and Table 3 173

show examples for this process. The proofs follow 174

the following high-level structure: 175

1. Substitution of variables A and B (Axiom 1 and 176

Assumption 1) to construct xcf (Assumption 2). 177

2. Examine the predicate relationship R(A,B) 178

and derive the logical relationship between the xcf 179

and the premise u. 180

Proposition 1. If the original label is E, then the 181

associated counterfactual label is E. 182

Proof. By Assumption 1, the logical proposition 183

represented by E is u⇒ x[A]. Since A⇔ B, then 184

u ⇒ x[B\A], by Axiom 1, u ⇒ xcf. Therefore 185

we have the resulting propositional formula and 186

associated counterfactual label (u⇒ x)⇔ (u⇒ 187

xcf), i.e. (y = E)⇔ (ycf = E). 188

Proposition 2. If the original label is C, then the 189

associated counterfactual label is E. 190

Proof. By Assumption 1, the logical proposition 191

represented by C is (u ⇒ ¬x[A]). Since ¬(A ⇔ 192

B) is equivalent to (A ⇔ ¬B), then by Axiom 193

1, u ⇒ ¬(x[¬B\A]). However it is not possible to 194

test for the “negation of” variables as negation is 195

not seen in training data for NLI. Under Assump- 196

tion 3,9 if the explanation ¬(A⇔ B) sufficiently 197

explains the label, then having x[B\A] negates (or 198

‘flips’) the label to Entailment u ⇒ ¬¬(x[B\A]). 199

Therefore we have the result (u ⇒ ¬x) ⇔ (u ⇒ 200

¬¬(xcf)), i.e., (y = C)⇔ (ycf = E). 201

Proposition 3. If the original label is N, then there 202

are two associated counterfactual labels, E, and N. 203

9The violation of Assumption 3, can result in partially ‘un-
faithful’ explanations that do not provide enough information
to explain model prediction.
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Original f(u,There are people playing the piano)→ Contradiction
Counterfactual f(u,There are people playing woodwind instruments.)→ Entailment

Explanation “The people in the photo are not playing the piano. They are instead playing
other woodwind instruments.”
:= ¬(playing the piano ⇔ playing other woodwind instruments)

Original f(u,Two skateboarders navigate a curve.)→ Entailment
Counterfactual f(u,Two skateboarders round a curve.)→ Entailment

Explanation “To navigate a curve is to round it.”
:= (navigate a curve ⇔ round a curve)

Original f(u, People are shopping in the city.→ Neutral
Counterfactual f(u, People are walking down a city sidewalk.)→ Entailment
Counterfactual f(u, People are shopping.)→ Neutral

Explanation “People can walk down a city sidewalk for reasons other than shopping.”
:= ¬(walk down a city sidewalk ⇒ shopping)

Table 3: Examples of counterfactual hypothesis rewrites from the explanation in SNLI-VE dataset (Do et al., 2020). f(u, x)→ y
shows the expected model prediction given the premise (u) and either original or counterfactual hypothesis. Note that Neutral
can still result in Neutral (Subsection 2.2: Proposition 3).

Two conditions arise because ¬(A⇒ B)⇔ A204

AND ¬B. In the interest of space, we present the205

proof for Proposition 3 in the Appendix. Table 2206

summarises the original propositional formula in207

the hypothesis x and premise u, the predicate rela-208

tions R(A,B) and the associated ycf.209

2.3 Proposed Metric: FTC210

We introduce the metric Faithfulness-Through-211

Counterfactuals (FTC), to capture the difference212

in model predicted probabilities p(ŷcf) from the213

associated counterfactual label ycf.214

FTC = 1− d(p(ŷcf), p(ycf)) (1)215

Choice of Distance Function (d) We consider216

three metrics for d, 1[argmax(p(ŷcf)) == ycf] de-217

noted FTC-δ, KL Divergence (FTC-K) and Wasser-218

stein distance (FTC-W) with symmetrical distance219

of 1 between E and C, and 0 ≥ α ≥ 1 between N220

and the two other labels.221

2.4 Generating Counterfactual Hypothesis222

In the previous section, we had assumed that the223

logical variables A and B are substitutable in x224

directly. Indeed generating a counterfactual hy-225

pothesis would be trivial if A and B could be di-226

rectly extracted from the explanation, and directly227

substituted in the hypothesis.10 However, open do-228

main semantic parsing is an unsolved problem (Lee229

et al., 2021) of which to our knowledge, there is230

10Consider the hypothesis: “the boy is outside” and the
explanation: “A tire swing is usually installed outside”. Naive
substitution would result in “the boy is a tire swing”.

Original Hypothesis

Counterfactual Hypothesis

Explanation

A B

extract:
(regex or FSP)

transform:
(regex or FSP)

Standing on a snake is not the 
same as sitting on a fake alligator

The woman is 
standing on a snake

The woman is sitting on a fake alligator

standing on a snake sitting on a fake alligator

extracts spans 
corresponding to logical 

variables A and B

rewrites (or replaces) the 
span, corresponding to 
variable A, with a span, 

corresponding to variable B

Figure 2: Two step counterfactual rewriting of the hy-
pothesis, according to the explanation. We implement
extract and transform steps using regular expressions
(regex) and few-shot priming (FSP) models.

no off-the-shelf solution which does not require 231

fine-tuning on a train set.11 Hence, we propose to 232

leverage on advances in few-shot priming (Brown 233

et al., 2020) which only requires several handwrit- 234

ten examples and no further fine-tuning. This is 235

compared against the baseline of parsing via ‘ex- 236

tract and transform’ using regex (experiment de- 237

scribed in Subsection 3.2). 238

Extract and Transform with Regex We adopt 239

and extend templates identified by Camburu et al. 240

(2019) for explanations, who noted that these tem- 241

plates are a “natural consequence of the task and 242

11We experimented with dependency parses from Spacy
and Stanford NLP which gave many irrelevant extractions.
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dataset”. Regex methods perform a rule-based span243

extraction and replacement (we allow for stemmed244

word replacement). Extraction rules are shown in245

Appendix (Tables 15 to 17).246

Extract and Transform with Few-shot Priming247

We compare the brittle regex pipeline with the mod-248

ern paradigm of in-context few-shot priming. This249

is an attractive option in our setting where we do250

not have prior training data for generating coun-251

terfactual hypothesis, and the task appears to be252

related to manipulation of text strings.253

We thus consider a two step process of 1) extract-254

ing the logical spans, i.e., A and B in Table 2 from255

the explanation, and 2) modifying the hypothesis256

given these extracted spans.12 Given a sequence of257

priming examples of how to extract spans from the258

explanation in the prefix, the model should perform259

the extraction given a test explanation.260

Reducing Natural Language Artifacts with xcf261

Previous attempts to test the explanation directly262

as input to a trained model, are subject to con-263

founds of “label leakage” because of the close as-264

sociation between label and syntatic form of the265

explanation (Pruthi et al., 2020). Crucially, our pro-266

posed method sidesteps this confound by applying267

logical satisfiability checks via predicate relations268

R(A,B). In theory, the construction of xcf should269

preserve the syntatic structure of the original hy-270

pothesis, while only changing the semantics of A271

and B. Potential limitations of our method are272

discussed in Appendix: Subsection 6.7.273

3 Experiments and Results274

We validate our automatic method through three275

sets of experiments.276

i) Evaluating the quality of generated counter-277

factual hypothesis from a few-shot generator278

Hmodel (Subsection 3.2).279

ii) Evaluating the proposed metric (FTC) on sim-280

ulatability of human generated xcf, and com-281

paring this to existing faithfulness metrics in282

the literature (Subsection 3.3).283

iii) Studying the sensitivity of our proposed ap-284

proach compared to other metrics given patho-285

logical explanations (Subsection 3.4).286

12This two step-process is necessary as preliminary exper-
iments show that even few-shot priming models with 175B
parameters (academic access GPT3) are not able to construct
counterfactual hypothesis in a single step.

3.1 Experimental Setup 287

Datasets We consider logical entailment datasets, 288

e-SNLI (Camburu et al., 2018) and e-SNLI-VE (Do 289

et al., 2020) which are the only explainable logical 290

entailment datasets available at point of writing 291

(Wiegreffe and Marasović, 2021). e-SNLI consists 292

of crowdsourced explanations for SNLI. e-SNLI- 293

VE replaces the textual premise u of SNLI with 294

Flickr30k images (Young et al., 2014). To avoid 295

trivial word overlap between u and xcf, we adopt 296

the image representation for the premise u in our 297

experiments for Subsection 3.3 and Subsection 3.4. 298

Note that Subsection 3.2 only requires x and z.13 299

Models For the task model f , we adopt a state- 300

of-art multimodal model, CLIP (Radford et al., 301

2021), and fine-tune a 2-layer MLP to train a pre- 302

dictor f(u, x)→ y. For the explanation generator, 303

g, we follow Do et al. (2020) and fine-tune a modi- 304

fied GPT2 (Radford et al., 2019). Training details 305

are in Appendix: Subsection 6.3. For the coun- 306

terfactual hypothesis generator,Hmodel we adopt a 307

pretrained GPT2-XL and GPT-Neo1.3B and 2.7B 308

(Black et al., 2021) without further fine-tuning, and 309

apply only handwritten prompts. Prompt examples 310

were randomly sampled from the training set and 311

we used 20 prompts for each label.14 312

3.2 Quality of Counterfactual Hypothesis 313

As the feasibility of our automatic approach de- 314

pends on the quality of counterfactual generation, 315

we evaluate x̂cf ← Hmodel(x, z) against gold coun- 316

terfactuals, xcf∗ ← Hhuman(x, z), where Hhuman 317

refers to the human annotator,Hmodel refers to our 318

automated hypothesis generator, z refers to expla- 319

nations and x refers to the original hypothesis. We 320

randomly sample 300 examples from the validation 321

set (100 each for E, C, N) and ask annotators to 322

write counterfactual hypothesis for human gener- 323

ated explanations, z∗ and model generated explana- 324

tions ẑ. Annotators are asked to revise x such that 325

the logic in z is expressed in the new counterfac- 326

tual xcf (Appendix:Figure 3). We show annotators 327

the same set of examples that were used to prompt 328

Hmodel. We obtain three annotations per datapoint 329

for multiple reference sentences.15 330

13All experiment code will be available at anonymous.io.
14Further details are available in Appendix:Subsection 6.3

and example of prompt templates(Appendix:Subsection 6.12)
15“A young boy wearing a white shirt on a beach” and “A

young boy on a beach wearing a white shirt” are both valid.
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Human Explanations z∗ 7→ xcf Generated Explanations ẑ 7→ xcf

Extract Transform C E N[A] N[B] C E N[A] N[B]

regex regex 0.690 0.638 0.010 0.012 0.744 0.701 0.473 0.418
regex Neo2.7B 0.690 0.709 0.710 0.752 0.840 0.860 0.805 0.714
Neo2.7B regex 0.801 0.691 0.509 0.565 0.893 0.781 0.669 0.584
Neo2.7B Neo2.7B 0.822 0.782 0.743 0.754 0.870 0.881 0.807 0.709

Table 4: METEOR scores for Hypothesis Revision by either using regex, GPT-Neo, or a combination of both. Bold is applied
column-wise. We show the breakdown of revised hypothesis by class label (Contradiction C, Entailment E and Neutral N), and
also whether the explanations are human or model generated. Note that there are two counterfactual hypothesis generated for N,
N[A] and N[B] which correspond to xcf

[A] and xcf
[B] as described in Subsection 2.2: Proposition 3.

Experiment Conditions As described in Sub-331

section 2.4, we adopt a two-step process of ‘extract’332

and ‘transform’ for generating x̂cf ← Hmodel(x, z).333

We compare different combinations of either ex-334

tracting and transforming with regex or Hmodel.335

Our main results for the largest and best perform-336

ing model (GPT-Neo2.7B) is shown in Table 4, and337

additional results for GPT-Neo1.3B and GPT2-XL338

in Appendix: Table 11.339

Metric The evaluation metric used is METEOR340

(Banerjee and Lavie, 2005), that was found to cor-341

relate with human judgement (Kayser et al., 2021).342

METEOR computes harmonic mean of unigram343

precision and recall and accounts for stemming.344

As the validity of any text generation metric is de-345

batable (Deng et al., 2021), we further quantify346

the downstream effects of the automated process347

through Subsection 3.3.348

Results (Presented in Table 4).349

1. The combination of using models for both ex-350

tract and transform steps (last row) performs best351

in all cases with human explanations z∗, and close352

to best with model explanations, ẑ.353

2. The performance of most methods are better354

on ẑ than z∗ which might be explained by the355

more ‘standardised’ text format in ẑ. Brahman356

et al. (2020) reported that generator models tend to357

follow a similar format, supporting this interpreta-358

tion. The row regex-regex can be seen as a direct359

comparison of how ‘standardised’ ẑ is compared360

to z∗ as it indicates the performance for a brittle361

rule-based approach.362

3. For ease of rewriting each class (column-wise),363

C > E > N for z∗ in most cases, which highlight364

the relative complexity (N tends to be expressed365

in a less ‘straightforward’ manner) of extracting366

and transforming hypothesis with different types367

of explanations.368

3.3 Metric Validation via Simulatability of 369

Counterfactual Hypothesis 370

As described in Section 1, faithfulness metrics 371

should focus on utility to the user (Jacovi and Gold- 372

berg, 2020). One such practical utility of explana- 373

tions is that humans should be able to simulate the 374

model’s predictions given the explanations (Doshi- 375

Velez and Kim, 2017). However, instead of using 376

the raw explanation which has reported issues of la- 377

bel leakage (Pruthi et al., 2020; Hase et al., 2020),16 378

we consider simulatability on xcf ← Hhuman(z∗, x) 379

(obtained in Subsection 3.2). 380

There are two distinct outcome groups for the 381

simulatability study; human annotators either agree 382

or disagree with the model on xcf. We use the 383

Wilcoxon rank-sum test which is a nonparamet- 384

ric test for the null hypothesis that two groups are 385

equal. If Hmodel had produced exactly the same 386

xcf as the human Hhuman, then FTC (our metric) 387

should be very effective at separating the two out- 388

come groups, and the ρ ∈ [0, 1] would be very 389

close to 1. We compare with other faithfulness 390

metrics namely Label Adjusted Simulation (LAS; 391

Hase et al. (2020)) and Label Rationale Associa- 392

tion (LRA; Wiegreffe et al. (2020)), reviewed in 393

Section 4 and Appendix: Table 8. 394

We collect annotations for 100 data instances 395

grouped by each original label-class, and obtain 3 396

annotations per instance.17 Annotators are required 397

to rate whether (xcf, u) entails, contradicts, or is 398

neutral (Appendix:Figure 4). 399

Results (Presented in Table 5) 400

1. FTC variants have the highest ρ ∈ [0, 1] statis- 401

16Label leakage due to a nearly one-to-one correspondence
with the linguistic form of explanations and the label.

17We measure the inter-annotator agreement (IAA) using
Fleiss’ kappa, achieving a “moderate” agreement (Landis and
Koch, 1977) with κ = 0.51. More detailed IAA results are
provided in Appendix: Subsection 6.6. We aggregate the final
label using the majority vote.
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C E N[A] N[B]

LAS 0.490 0.516 0.522 0.500
LRA 0.544 0.564 0.477 0.659*
FTC-δ 0.756* 0.757* 0.629* 0.731*
FTC-K 0.788* 0.753* 0.687* 0.765*
FTC-W 0.762* 0.751* 0.694* 0.765*

Table 5: ρ-statistic ∈ [0, 1] for Wilcoxon rank-sum test
on different faithfulness metrics. A larger ρ-statistic indi-
cates a larger effect size. LRA: Label Adjusted Simulation,
LRA: Label Rationale Agreement, and FTC: Faithfulness-by-
Counterfactual (ours), and FTC-W and FTC-K (α = 0.7) are
the Wasserstein and Kl-divergence variants. * indicates sig-
nificance (p-value< 0.05). The test is conducted between the
two groups; data points where the human agrees vs disagrees
with the model’s prediction on counterfactual hypothesis.

tic (higher is better and indicates a larger effect402

size), which indicates that it is the most discrimina-403

tive metric for whether the human can simulate the404

model’s prediction given new counterfactual inputs.405

This is expected as the simulation procedure is sim-406

ilar to how FTC is calculated. However as reported407

in Subsection 3.2 discrepancies in the automated408

rewriting process affect the scoring of the metric in409

ways which are not easily captured by sentence gen-410

eration metrics (Table 4). The results show that the411

best-automatic rewriting process of adopting GPT-412

Neo2.7B achieves 0.63-0.79 ρ-statistic across C,413

E, N, giving us an indication of the downstream414

impact of 0.74 to 0.82 METEOR score.415

2. The ρ-statistic follows a similar trend to that416

previously observed in Subsection 3.2, C > E > N,417

which suggests that adopting METEOR Score to418

measure hypothesis rewrites is a reasonable mea-419

sure of downstream performance.420

3. KL-Divergence (FTC-K) and Wasserstein Dis-421

tance (FTC-W) perform slightly better than the422

naive Identity function (FTC-δ). This indicates that423

a soft computation over probabilities can account424

for some of the errors in the xcf rewriting process.425

4. With the exception of LRA on N[B], we find426

that other metrics have ρ approximately 0.5 across427

C, E, N. This indicates that the metric is rel-428

atively poorer at distinguishing between the two429

outcome groups, i.e. poorer simulatability results.430

Examining Inconsistent Explanations In cases431

where the human NLI label does not correspond432

to the logically derived NLI class in Table 2, our433

method suggests that the explanations are not faith-434

ful to the human’s NLI model. We find that human435

NLI labels correspond to the derived counterfactual436

label 54% to 87% of the time (Appendix:Table 10).437

x u y BER MET LAS LRA FTC-K

D D D 0.888 0.245 0.047 0.788 0.126D 0.885 0.233 -0.035 0.561 -0.200D 0.869 0.120 -0.063 0.298 -0.055D 0.865 0.097 0.068 0.630 -0.245

Table 6: Raw scores for different metrics, by perturbing
inputs to the explanation generator (sensitivity analy-
sis). x, u, and y refers to hypothesis, premise, and label
respectively. BER: BertScore, MET: METEOR, LAS:
Label Adjusted Simulation, LRA: Label Rationale As-
sociation, FTC-K (ours).

Appendix:Subsection 6.9 shows examples of these 438

cases, which we typically find to be due to expla- 439

nations of low quality, supporting the central thesis 440

of the paper. In the previous simulatability results, 441

we filter out poor explanations.18 442

3.4 Sensitivity Analysis 443

As a sanity check, good faithfulness metrics should 444

be sensitive towards unfaithful explanations, i.e. 445

they should perform worse on unfaithful explana- 446

tions compared to faithful ones. We perform a 447

sensitivity analysis on various faithfulness metrics 448

by examining their raw scores on unfaithful expla- 449

nations by construction. These are constructed by 450

leaving out all but one type of input to the explana- 451

tion generator. The ‘complete’ set of inputs are the 452

entailment label (y), hypothesis (x), and premise 453

(u). Note that the ‘complete’ set of inputs to the 454

explanation generator does not guarantee faithful 455

explanations, but they are guaranteed to be less 456

pathological than leaving out all but one type of 457

input. We additionally consider BertScore (Zhang 458

et al., 2019) and METEOR (Banerjee and Lavie, 459

2005) which are text similarity metrics evaluated 460

against the human explanation, and use FTC-K 461

variant which has an upperbound of 1 and a high 462

ρ-statistic in the previous experiment.19 463

Results (presented in Table 6) 464

1. FTC-K performs consistently better for the non- 465

pathological (first row 0.126) vs pathological ex- 466

planations (−0.200, −0.055, −0.245). The same 467

‘correct’ trend is observed for LRA 0.788 vs (0.561, 468

0.298, 0.630). 469

18Quantifying the extent of annotation errors for explana-
tions is outside of the scope of this work. We refer readers
to Valentino et al. (2021) who report that explanations are
valid logical relations 60% of the time and other times they
are either redundant or non-sensical due to annotation errors.

19As described in Subsection 2.3, FTC-K is 1 −
the KL term, which has lower bound 0 and no upper bound.
Hence the upper bound on FTC-K is 1.
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2. We find that an off-the-shelf BertScore (Zhang470

et al., 2019) has a suprisingly low range of values471

for the different conditions (0.865 to 0.888). ME-472

TEOR scores conditioned only on x are also very473

close to the full range of inputs (0.233 vs 0.245)474

indicating superficial word similarity of the expla-475

nations when conditioned on just x.476

3. LAS scores are in the ‘wrong’ direction, namely477

that explanations generated with all of the relevant478

inputs perform worse than just having the label.479

4 Related Work480

We outline existing methods which evaluate free-481

text generated Natural Language explanations, their482

assumptions of faithfulness, and describe how they483

operationalise these assumptions. We focus on484

LAS and LRA, which are used in our experiments,485

and provided more discussion of related work in486

Appendix:Subsection 6.4.487

4.1 Leakage Adjusted Simulation488

This method assumes explanations are faithful if489

they allow a model to be more simulatable. A490

model is simulatable to the extent that an observer,491

or simulator, can predict its outputs (Doshi-Velez492

and Kim, 2017; Hase et al., 2020; Kumar and Taluk-493

dar, 2020). From this perspective, one might use494

a simulator’s (either a human or model) accuracy495

with explanations as input, to measure explana-496

tion quality. However, as Hase et al. (2020) ar-497

gues, the simulator’s success does not reflect ex-498

planation quality when the explanation leaks the499

label to the simulator. They thus propose Leakage-500

adjusted Simulatability (LAS) which performs a501

macro-average of leakable and non-leakable expla-502

nations. However, a high occurrence of label leak-503

age may overwrite the effect of macro-averaging504

(Pruthi et al., 2020).505

4.2 Label Rationale Association506

According to Wiegreffe et al. (2020), “at a min-507

imum, rationales must be implicitly or explicitly508

tied to the model’s prediction.”. Their method tests509

whether label and explanations are similarly robust510

to noise in the input. Although designed to be511

highly generalisable to generative framework of ex-512

planations, this assumption may be overly general513

for more rigorous notions of faithfulness. Consider514

the scenario where merely changing the label to515

the generator results in “sufficiently different” ex-516

planations being generated (Kumar and Talukdar,517

2020), whether or not the original explanation was 518

actually faithful, LRA will assign this a high score. 519

4.3 Counterfactuals as Explanations 520

Our approach differs from the literature on Coun- 521

terfactuals as explanations (Mothilal et al., 2020; 522

Verma et al., 2020) as we do not generate counter- 523

factual explanations, but generate counterfactual 524

hypothesis based on the explantions. Camburu et al. 525

(2019) work has a similar flavor, where they “re- 526

verse” a hypothesis. However, they focus on show 527

the pathologies of a generator by searching for (ad- 528

versarial) input hypothesis that cause the model to 529

generate logically inconsistent explanations. Ge 530

et al. (2021) also constructs ‘counterfactual inputs’, 531

but search for existing features in the original input, 532

and consequently is only applicable to extractive 533

explanations. 534

4.4 Natural Logic vs Free Logic 535

Previous work on “Natural Logic” (MacCartney 536

and Manning, 2007) relies on natural language fea- 537

tures to guide inferences. For instance, changing 538

specific terms to more general ones preserves en- 539

tailment. This sidesteps the difficulties of translat- 540

ing sentences into First-order-Logic. Natural logic 541

systems (Angeli and Manning, 2014) have been 542

used in explainable fact verification (Krishna et al., 543

2021) which constructs “explanations” by present- 544

ing logical steps for inference. However these ap- 545

proaches still require a knowledge base to train or 546

mine truth values, e.g, “in Paris” ⊆ “in France”. In 547

contrast, our method does not require additional 548

training and is a procedurally lightweight method 549

relying on off-the-shelf pretrained models. 550

5 Conclusion 551

Measuring faithfulness of free-text explanations 552

with respect to a task model is a challenging prob- 553

lem due to confounds introduced by testing ex- 554

planations directly. In this work, we propose an 555

approach to evaluating explanations for NLI tasks 556

which uses the predicate logic expressed in expla- 557

nations to construct counterfactual hypothesis, and 558

tests the satisfiability of the resulting hypothesis. 559

Our experiments on validating counterfactual hy- 560

pothesis generation and simulatability of the coun- 561

terfactual hypothesis show that our proposed auto- 562

matic pipeline is a viable approximation to the theo- 563

retical method. Further, we show that our metric is 564

sensitive to pathologically unfaithful explanations. 565
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6 Appendix739

6.1 Notation Table740

f task model (CLIP)
g explanation generator (GPT2)
H counterfactual hypothesis generator
Hmodel counterfactual hypothesis generator (GPT-Neo)
Hhuman counterfactual hypothesis generator (human)
z∗ explanations (human)
ẑ explanations (generator g)
u premise
x hypothesis (original)
xcf hypothesis (counterfactual)
y∗ task label (human)
ŷ task label (model f )
y∗cf task label on counterfactual (expected)
ŷcf task label on counterfactual (model f )

Table 7: Summary of notation used in the paper

6.2 Satisfiability of the Counterfactual:741

Proposition 3742

If the original label is N, then there are two associ-743

ated counterfactual labels, E, and N.744

For N, as u
(?)
=⇒ x is truth-valueless under Open745

Universe Semantics (Russell, 2015)), the formula746

is either truth-valueless of every variables in x and747

u, or truth-valueless of some and false of others748

(Nolt, 2021). We start by considering the predicate749

relation R(A,B) = ¬(A⇒ B) which we rewrite750

as A ∧ ¬B, so that the two variables are separately751

testable (due to ∧ relation).752

For A, applying Assumption 1, we verify the753

satisfiability of u⇒ xcf
[A] where the counterfactual754

hypothesis is xcf
[A] = x[A\B]. We test the formula755

which excludes B but has A. The associated coun-756

terfactual result of ycf
[A] = E.757

Next we consider ¬B, with the counterfactual758

hypothesis xcf
[¬B] = x[¬B\A]. Since the original759

propositional formula was truth-valueless, the same760

conditions apply for u
(?)
=⇒ xcf

[¬B] which is still truth-761

valueless. The negation of a truth-valueless formula762

is still truth-valueless (Nolt, 2021)) hence u
(?)
=⇒763

xcf
[B] has the counterfactual label ycf = N.764

6.3 Experiment Details765

Dataset The dataset contains a reduced sample766

of the original 570k sentence pairs from SNLI767

where Do et al. (2020) apply various filtering meth-768

ods to remove noise that occurred from combining769

e-SNLI and SNLI-VE. The training/val/test splits770

are 401718/14340/14741. Additional details about771

e-SNLI-VE including distribution are available772

at https://openaccess.thecvf.com/content/ 773

ICCV2021/supplemental/Kayser_E-ViL_A_ 774

Dataset_ICCV_2021_supplemental.pdf. Our 775

use of this dataset is compatible with original 776

access conditions and in research contexts. 777

Package Details For all models, we used Hug- 778

gingface’s Transformers, v 4.12.2. For 779

Meteor Score calculation, we used NLTK v 780

3.6.1 which lower cases tokens. For BertScore 781

calculation, we used roberta-large and 782

the metric implementation from Huggingface’s 783

datasets v 1.15.1. For training and valida- 784

tion loop, we used PyTorch Lightning, v 785

1.5.2. 786

Training Details Models are trained with Adam 787

Optimizer (Kingma and Ba, 2014) with learn- 788

ing rate 10−5 and batch size 64. Models were 789

trained using with Early stopping was used with 790

patience=5 and threshold=0.0001. We 791

did not perform any hyperparameter search for this 792

work, and used default values for training the mod- 793

els from the packages. 794

Computational Budget The largest model used 795

was GPT-Neo 2.7B (2.7 Billion Parameters). The 796

GPU hardware for the experiments used was 797

NVIDIA’s Quadro RTX 6000. The multi- 798

modal CLIP model takes about a day to fine-tune. 799

To generate 14000 new counterfactual hypothesis 800

using pretrained GPT-Neo 2.7B takes about 1-2 801

hours. 802

Prompt Selection Details We report results 803

from a single run of random prompt selection, as 804

hand-labelling multiple random prompt sets is man- 805

ually intensive. A preliminary experiment compar- 806

ing randomly sampled prompt sets, versus obtain- 807

ing prompts using datapoints that are closest to 808

the cluster centers from k-means clustering (where 809

k=20) of the sentence unigram and bigram vectors, 810

yielded nearly identical scores for Table 3. With 811

a huge source dataset to sample from, we suspect 812

that both types of prompt set selection might be 813

close to random. 814

6.4 Related Work 815

Leakage Adjusted Simulatability For task in- 816

puts X = {xi}, model outputs Ŷ = {ŷi}, and 817

model explanations = Ê = {êi}, Leakage Adjusted 818

Simulatability (LAS) metric is computed as: 819
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LAS0 =
1

n0

∑
i:ki=0

(1[ŷi | xi, êi]− 1[ŷi|xi])820

LAS1 =
1

n0

∑
i:ki=1

(1[ŷi | xi, êi]− 1[ŷi|xi])821

LAS =
1

2
(LAS0 + LAS1)822

where ki = 1[ŷi | êi] is a leakage indicator,823

and n0 and n1 are the number of examples in non-824

leaking and leaking groups respectively (Hase et al.,825

2020).826

Following (Hase et al., 2020), we randomly drop827

out either êi or xi during training and can obtain828

the relevant conditional 1[ŷi | xi, êi], 1[ŷi | xi], or829

1[ŷi | êi] during inference time to compute LAS.830

We adopt the same set of final hyperparameters831

for dropout, 0.2 explanations only, 0.4 hypothesis832

and premise only, and 0.4 hypothesis, premise and833

explanations.834

Label Rationale Association We adopt the835

“Robustness Equivalence measure” which tests836

whether both label and explanations are similarly837

or disimilarly robust to noise in the input. Follow-838

ing (Wiegreffe et al., 2020), we measure changes839

in label prediction as the number of predicted dev840

set labels that flip, i.e., change from their original841

prediction to something else, and measure changes842

in rationale quality using simulatability. Their ap-843

proach aims to measure association between input844

perturbation and output explanation. They first845

add zero-mean Gaussian noiseN (0, σ2) to each in-846

put embedding at inference time, and measure the847

changes in label prediction by counting the number848

of predicted labels in the test set which flip. They849

then use the corresponding generated explanations,850

and get the task prediction change of a separate851

model that has been pretrained with explanations.852

The LRA is computed as:853

Fi = 1[(ŷi|xi) = (ŷi|x′i)] (2)854

Zi = 1[ŷi | xi, êi]− 1[ŷi|xi] (3)855

LRA =
1

n

n∑
i

1[Fi = Zi] (4)856

Teacher-Student Paradigm Pruthi et al. (2020)857

introduce a student-teacher paradigm, where they858

target a notion of faithfulness being tied to the use-859

fulness of explanations. They measure the extent860

to which explanations allow student models to sim- 861

ulate the teacher model on unseen examples for 862

which explanations are unavailable. Student mod- 863

els incorporate explanations in training (but not 864

prediction) procedures. The proposed framework 865

for evaluating explanation quality suggests that ex- 866

planations are effective if they help students learn 867

about the teacher. 868

Erasure The vast majority of prior work that 869

proposes models and evaluations of explanatory 870

methods for faithfulness focus on removing tokens 871

from the input text (DeYoung et al., 2019). This 872

method directly intervenes in the input hypothesis 873

by finding ‘important’ spans and is not applicable 874

to free-text explanations. Our method has a sim- 875

ilar spirit of doing direct interventions. However 876

instead of removing tokens, we generate a counter- 877

factual hypothesis which is grammatically close to 878

the original hypothesis, but with propositions from 879

the explanation. 880
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Tests task
model

Reliance on Third Party Resources Required

HS (Doshi-Velez and Kim, 2017) No Human verification Human annotators
LAS (Hase et al., 2020) No Model verification Training with explanations
TS (Pruthi et al., 2020) No Model verification Training with explanations
LRA (Wiegreffe et al., 2020) No Model verification Training with explanations
Faithfulness-through-
Counterfactuals

Yes Counterfactual hypothesis generator Manual prompts

Table 8: Comparison of existing faithfulness metrics for free-text explanations. HS: Human Simulation, LAS:
Leakage Adjusted Simulation, TS: Teacher-Student, LRA: Label Rationale Association. Compared to the other
models, our proposed method ’Faithfulness-through-Counterfactuals’ directly tests the task model without relying
on third party Human or model verification. The reliance on third party is via counterfactual hypothesis genera-
tor, which we validate the efficacy in Subsection 3.2. Additionally, our method relies a one-off manual prompts
generation which is cheaper than gathering explanation training data or relying on human annotators.

6.5 Annotation Details 881

We recruited annotators from the pool of Amazon Mechanical Turk workers who are located in the United 882

States. In the counterfactual hypotheses rewriting task (Subsection 3.2), we paid between $0.15 (for E and 883

C) and $0.20 (for N) per single rewrite, estimating that a sufficiently experienced worker can perform the 884

task in under 45 seconds, thus yield a minimum of $12 hourly rate. (We do not separately ask humans to 885

extract logical spans.) In the NLI label collection task (Subsection 3.3), we paid $0.10 per single NLI 886

label and estimated that each task should take a sufficiently experienced worker at most 30 seconds, thus 887

yielding a minimum of $12 hourly rate. 888

Figure 3: Interface shown to annotators in the counterfactual hypothesis rewriting task.

Figure 4: Interface shown to annotators in the NLI label collection task, mirroring the original SNLI protocol.
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6.6 Inter-annotator Agreement889

C 7→ E E 7→ E N[A] 7→ E N[B] 7→ N

0.462 0.353 0.368 0.279

Table 9: Fleiss’ kappa for agreement between three hu-
man annotators on the counterfactual label grouped by
the original label (LHS of 7→ in header row).

C 7→ E E 7→ E N[A] 7→ E N[B] 7→ N

0.534 0.867 0.756 0.790

Table 10: Accuracy of aggregated human label in pre-
dicting derived NLI label (RHS of 7→; Subsection 2.1).

6.7 Potential Limitations890

We document and discuss some potential limita-891

tions of our proposed approach.892

1. The suggested implementation (Subsection 2.4)893

relies on pre-trained models which are open-894

source,20 but requires GPU memory of >10Gb895

memory to host the 2.7B parameter model and896

<10Gb to host the 1.3B parameter model.897

2. Our metric is not directly differentiable as it898

involves discrete operations to generate the coun-899

terfactual hypothesis.900

3. While most classification problems can be re-901

formulated into ternary logic of E, C, N, it is902

more challenging to extend the notion of logical903

satisfiability for tasks that require open-ended text904

generation, and so the current work is limited to905

NLI task explanations.906

6.8 Potential Risks907

The proposed work is limited to investigating an908

evaluation methodology for faithfulness. Faithful-909

ness as defined in this work is limited in scope to910

the NLI task, and is concerned with the decisions911

being made by the model. It has no influence on the912

actual classification task. As far as we know, there913

are no known potential malicious or unintended914

harmful effects and uses (e.g., disinformation, gen-915

erating fake profiles, surveillance), environmental916

impact (e.g., training huge models), fairness con-917

siderations (e.g., deployment of technologies that918

could further disadvantage or exclude historically919

disadvantaged groups), privacy considerations (e.g.,920

a paper on model/data stealing), and security con-921

siderations (e.g., adversarial attacks).922

20https://huggingface.co/EleutherAI/
gpt-neo-2.7B

6.9 Low Quality Explanations 923

Figure 5: Example of low quality explanation where the coun-
terfactual hypothesis does not result in the expected logical label.

Hypothesis Man riding a motorcycle.
Explanation The man is on a lake with a monoboard,

which would be impossible to ride a mo-
torcycle on.

Counterfactual Man is on a lake with a monoboard.
Old→New Label Contradiction→ Neutral

Figure 6: Example of low quality explanation where the coun-
terfactual hypothesis does not result in the expected logical label.

Hypothesis A dog is sitting on a porch.
Explanation A dog cannot be running and sitting at

the same time.
Counterfactual A dog is running on a porch.
Old→New Label Contradiction→ Contradiction

Figure 7: Example of low quality explanation where the coun-
terfactual hypothesis does not result in the expected logical label.

Hypothesis Three ladies are gathered.
Explanation If three ladies are standing in the same room,

we can assume that they are gathered.
Counterfactual Three ladies are standing in the same room.
Old→New Label Entailment→ Contradiction
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6.10 Hypothesis Rewriting Validation 924

Human Explanations z∗ 7→ xcf Generated Explanations ẑ 7→ xcf

Extract Transform C E N[A\B] N[B\A] C E N[A\B] N[B\A]

regex regex 0.690 0.638 0.010 0.012 0.744 0.701 0.473 0.418

regex GPT2-xl 0.696 0.690 0.716 0.748 0.813 0.817 0.795 0.727
GPT2-xl regex 0.779 0.632 0.566 0.447 0.860 0.759 0.700 0.512
GPT2-xl GPT2-xl 0.766 0.716 0.592 0.643 0.813 0.810 0.743 0.725

regex Neo1.3B 0.684 0.675 0.734 0.723 0.798 0.834 0.806 0.702
Neo1.3B regex 0.774 0.643 0.473 0.414 0.886 0.787 0.668 0.565
Neo1.3B Neo1.3B 0.769 0.698 0.716 0.721 0.809 0.822 0.798 0.703

regex Neo2.7B 0.690 0.709 0.710 0.752 0.840 0.860 0.805 0.714
Neo2.7B regex 0.801 0.691 0.509 0.565 0.893 0.781 0.669 0.584
Neo2.7B Neo2.7B 0.822 0.782 0.743 0.754 0.870 0.881 0.807 0.709

Table 11: METEOR scores for Hypothesis Revision by either using regex, GPT-Neo, or a combination of both. Bold is applied
column-wise. We show the breakdown of revised hypothesis by class label (Contradiction C, Entailment E and Neutral N), and
also whether the explanations are human or model generated. Note that there are two counterfactual hypothesis generated for N
(N[A\B] and N[B\A]) as described in Subsection 2.2: Proposition 3. As expected, the performance of Neo2.7B > Neo1.3B >
regex for both z∗ and ẑ when the same ‘model’ is used for both extract and transform. Considering a combination of approaches
(row-wise), for ẑ, the best combination of (regex + Neo1.3B) performs close to the best combination of (regex + Neo2.7B),
which suggests that a smallerHmodel may be sufficiently competitive.

6.11 Sensitivity Analysis 925

FTC-W FTC-δ FTC-K
x u y gpt-gpt gpt-regex regex-gpt regex-regex gpt-gpt gpt-regex regex-gpt regex-regex gpt-gpt gpt-regex regex-gpt regex-regex

D D D 0.608 0.585 0.589 0.571 0.684 0.585 0.656 0.562 0.126 -0.112 0.032 -0.224D 0.539 0.534 0.536 0.394 0.591 0.522 0.584 0.281 -0.200 -0.299 -0.229 -1.407D 0.580 0.421 0.557 0.423 0.650 0.340 0.618 0.323 -0.055 -1.261 -0.182 -1.229D 0.553 0.445 0.551 0.447 0.621 0.396 0.613 0.375 -0.245 -1.111 -0.225 -1.080

Table 12: Raw scores for FTC metric variants by perturbing inputs to the explanation generator (sensitivity anal-
ysis). x, u, and y refers to hypothesis, premise, and label respectively. We vary different parts of the extract-
transform pipeline (either with regex-regex, regex-gpt, gpt-regex, gpt-gpt), using GPT-Neo2.7B. We find that all
columns have the first row as the largest number as expected, but FTC-K produces larger difference between the
first row and other rows.
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6.12 Prompt templates926

Explanation A B

Contradiction
Jail cells aren’t pastel-colored or a classroom. jail cells pastel-colored or a classroom
The two men cannot both be at a construction site and also never have been at a
construction site.

at a construction site never have been at a construction site.

One cannot be happy and angry at the same time. happy angry
a dog is not a cat. dog cat
Star is not balloon star balloon

Entailment
The guy on the phone is sitting at a desk. guy on the phone sitting at a desk
People is a generalization of many people. people many people
Jockeys are people, so jockeys riding horses are people riding horses. jockeys people
If people are sitting on blankets and the blankets are in the park, then the people are
sitting at the park as well, because they cannot be in a separate location from the
blankets they are sitting upon.

people sitting on blankets people sitting on blankets in the park

If your pausing for a photo then they are having their photo taken pausing for a photo having photo taken

Neutral
Looking on does not mean waiting for their turn and doesn’t mean they are at a
competition.

looking waiting for their turn and they are at a
competition

Just because a track athlete is carrying a large pole it does not mean they gets ready
for their turn at the pole vault.

A track athlete is carrying a large pole A track athlete gets ready for their turn at
the pole vault.

There is no evidence that the women talking to the man outside the building are sad The women talking to the man outside the
building

the women are sad

Just because he has a mop, does not mean he has a broom. he has a map he has a broom
No way to know that is alone because he lost his friends in a war. he is alone he lost his friends in a war

Table 13: Example of prompts for each label, Contradiction, Entailment and Neutral provided to a few-shot priming
model (GPT-Neo) for Extraction. We show the model 20 prompts in all experiments.

hyp_original hyp_cf A B

Contradiction / Entailment
They are waiting for parole in their jail cells. They are waiting for parole in their pastel-colored class-

room
jail cells pastel-colored class-

room
The two men have never been to a construction site. The two men are at a construction site. at a construction site never been to a con-

struction site
an angry man grills vegetables on a barbecue. A happy man grills vegetables on a barbecue. angry happy
There is a cat running There is a dog running cat dog
The young man is holding the balloon inside the large
stone building.

The young man is holding the star inside the large stone
building.

balloon star

Neutral

The skateboarders are waiting for their turn at a com-
petition.

A: The skateboarders are looking.;
B: The skateboarders are waiting for their turn. looking waiting for their turn

A track athlete gets ready for their turn at the pole
vault.

A: A track athlete carrying a large pole.;
B: A track athlete gets ready for their turn at the pole vault. carrying a large pole gets ready for their turn

at the pole vault

Three sad women standing outside a building talking
to a man.

A: Three talking to the man outside the building;
B: Three sad women the women talking to

the man outside the
building

the women are sad

There is an old man sitting alone because he lost his
friends in a war.

A: There is an old man sitting alone;
B: There is an old man who lost his friends in a war. he is alone he lost his friends in a

war

Table 14: Example of prompts for each label, Contradiction, Entailment and Neutral provided to a few-shot priming
model (GPT-Neo) for Transformation. Contradiction and Entailment uses the same set of prompts. We show the
model 20 prompts in all experiments.
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6.13 Regex templates927

R1 a/an, a type of, a way of say-
ing, the same as, a rephrasing of,
a/another form of, synonymous
with

R2 is, are
R3 synonyms
R4 then, so, must be, has to be, have

to be

P1 A is R1 B
P2 A implies B
P3 A and B are R3
P4 A and B R2 the same thing
P5 if A then B
P6 A R4 B
P7 A R2 B

Table 15: Regex for extracting logical variables “A” and
“B” from Entailment (E).

R1 cant, cannot, can’t, can not
R2 at the same time,simultaneously, at once
R3 is, are
R4 not the same as, not, the opposite of,

different than
R5 he, she, they
R6 a, an

P1 A R3 not R6 B
P2 R1 be A and B R2
P3 A R1 be B
P4 A R3 R4 B
P5 R3 either A or B
P6 A R3 not B
P7 A R3 different than B
P8 R1 be A if R3 B
P9 R1 be A if R5 is B
P13 R1 A if B
P10 A and B R3 different
P11 A would not be able to B
P12 A R1 be B

Table 16: Regex for extracting logical variables “A” and
“B” from Contradiction (C).

R1 is, are
R2 not all, not every
R3 mean, necessarily mean, make, necessar-

ily make, imply, indicate
R4 does not, doesnt, doesn’t
R5 did not, didn’t, didnt

P1 R2 A R1 B
P2 there is more A than B
P3 there is more A than B
P4 just because A R4 R3 B
P5 A R1 not necessarily B
P6 A R4 have to be B
P7 A R4 necessarily B
P8 A R4 R3 B
P9 can A without B
P10 could be A not just B
P12 we R5 know A to B
P11 we R5 know if A or B
P12 we can’t tell if A is B
P13 if A then B
P14 this R4 imply A or B
P15 A and B R1 two different
P16 A and B R1 different
P17 not everyone A will B
P18 A may not be B
P19 it cannot be assumed that A is B
P20 some A or B
P21 A might not be B
P22 there is not evidence A or B
P23 R4 have to be A to B
P24 no way to know A or B

Table 17: Regex for extracting logical variables “A” and
“B” from Neutral (N).
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