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ABSTRACT

We explore denoising diffusion probabilistic models, a class of generative models
which have recently been shown to produce excellent samples in the image and
audio domains. While these models produce excellent samples, it has yet to be
shown that they can achieve competitive log-likelihoods. We show that, with sev-
eral small modifications, diffusion models can achieve competitive log-likelihoods
in the image domain while maintaining high sample quality. Additionally, our
models allow for sampling with an order of magnitude fewer diffusion steps with
only a modest difference in sample quality. Finally, we explore how sample qual-
ity and log-likelihood scale with the number of diffusion steps and the amount of
model capacity. We conclude that denoising diffusion probabilistic models are a
promising class of generative models with excellent scaling properties and sample
quality.

1 INTRODUCTION

Sohl-Dickstein et al. (2015) introduced diffusion probabilistic models ("diffusion models" for
brevity), a class of generative models which match a data distribution by learning to reverse a grad-
ual, multi-step noising process. More recently, Ho et al. (2020) showed an equivalence between
these models and score based generative models (Song & Ermon, 2019; 2020), which learn a gradi-
ent of the log-density of the data distribution using denoising score matching (Hyvärinen, 2005). It
has recently been shown that this class of models can produce high-quality images (Ho et al., 2020;
Song & Ermon, 2020; Jolicoeur-Martineau et al., 2020) and audio (Chen et al., 2020b; Kong et al.,
2020), but it has yet to be shown that diffusion models can achieve competitive log-likelihoods.
Furthermore, while Ho et al. (2020) showed extremely good results on the CIFAR-10 (Krizhevsky,
2009) and LSUN (Yu et al., 2015) datasets, it is unclear how well diffusion models scale to datasets
with higher diversity such as ImageNet. Finally, while Chen et al. (2020b) found that diffusion mod-
els can efficiently generate audio using a small number of sampling steps, it has yet to be shown that
the same is true for images.

In this paper, we show that diffusion models can achieve competitive log-likelihoods while main-
taining good sample quality, even on high-diversity datasets like ImageNet. Additionally, we show
that our improved models can produce competitive samples an order of magnitude faster than those
from Ho et al. (2020). We achieve these results by combining a simple reparameterization of the
reverse process variance, a hybrid learning objective that combines the variational lower-bound with
the simplified objective from Ho et al. (2020), and a novel noise schedule which allows the model
to better leverage the entire diffusion process.

We find surprisingly that, with our hybrid objective, our models obtain better log-likelihoods than
those obtained by optimizing the log-likelihood directly, and discover that the latter objective has
much more gradient noise during training. We show that a simple importance sampling technique
reduces this noise and allows us to achieve better log-likelihoods than with the hybrid objective.
Using our trained models, we study how sample quality and log-likelihood change as we adjust the
number of diffusion steps used at sampling time. We demonstrate that our improved models allow
us to use an order of magnitude fewer steps at test time with only a modest change in sample quality
and log-likelihood, thus speeding up sampling for use in practical applications.

Finally, we evaluate the performance of these models as we increase model size, and observe trends
that suggest predictable improvements in performance as we increase training compute.
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2 DENOISING DIFFUSION PROBABILISTIC MODELS

We briefly review the formulation of diffusion models from Ho et al. (2020). This formulation makes
various simplifying assumptions, such as a fixed noising process q which adds diagonal Gaussian
noise at each timestep. For a more general derivation, see Sohl-Dickstein et al. (2015).

2.1 DEFINITIONS

Given a data distribution x0 ∼ q(x0), we define a forward noising process q which produces latents
x1 through xT by adding Gaussian noise at time t with variance βt ∈ (0, 1) as follows:

q(x1, ..., xT |x0) :=

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

Given sufficiently large T and a well behaved schedule of βt, the latent xT is nearly an isotropic
Gaussian distribution. Thus, if we know the exact reverse distribution q(xt−1|xt), we can sample
xT ∼ N (0, I) and run the process in reverse to get a sample from q(x0). However, since q(xt−1|xt)
depends on the entire data distribution, we approximate it using a neural network:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

The combination of q and p is a variational auto-encoder (Kingma & Welling, 2013), and we can
write the variational lower bound (VLB) as follows:

Lvlb := L0 + L1 + ...+ LT−1 + LT (4)
L0 := − log pθ(x0|x1) (5)

Lt−1 := DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)) (6)
LT := DKL(q(xT |x0) || p(xT )) (7)

Aside from L0, each term of Equation 4 is a KL divergence between two Gaussian distributions,
and can thus be evaluated in closed form. To evaluate L0 for images, we assume that each color
component is divided into 256 bins, and we compute the probability of pθ(x0|x1) landing in the
correct bin (which is tractable using the CDF of the Gaussian distribution). Also note that while LT
does not depend on θ, it will be close to zero if the forward noising process adequately destroys the
data distribution so that q(xT |x0) ≈ N (0, I).

It is useful to define and derive several other quantities which are relevant to the forward noising
process, so we repeat them here from Ho et al. (2020):

αt := 1− βt (8)

ᾱt :=

t∏
s=0

αs (9)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (10)

µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (11)

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (12)

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI) (13)

2.2 TRAINING IN PRACTICE

Equation 12 provides an efficient way to jump directly to an arbitrary step of the forward noising
process. This makes it possible to randomly sample t during training. Ho et al. (2020) uniformly
sample t for each image in each mini-batch.
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There are many different ways to parameterize µθ(xt, t). The most obvious option is to predict
µθ(xt, t) directly with a neural network; alternatively, the network could predict x0, and this output
could then be fed through µ̃(xt, x0); finally, the network could predict the noise ε added to x0, and
this noise could be used to predict x0 via

x0 =
1
√
αt

(
xt −

βt√
1− ᾱt

ε

)
(14)

Ho et al. (2020) found that predicting ε worked best, especially when combined with a reweighted
loss function:

Lsimple = Et,x0,ε

[
||ε− εθ(xt, t)||2

]
(15)

This objective can be seen as a reweighted form of Lvlb (without the terms affecting Σθ). The
authors found that optimizing this reweighted objective resulted in much better sample quality than
optimizing Lvlb directly, and explain this by drawing a connection to generative score matching
(Song & Ermon, 2019; 2020).

One subtlety is that Lsimple provides no learning signal for Σθ(xt, t). This is irrelevant, however,
since Ho et al. (2020) achieved their best results by fixing the variance to σ2

t I rather than learning
it. They found that they achieve similar sample quality using either σ2

t = βt or σ2
t = β̃t, which are

two extremes given by q(x0) being either isotropic Gaussian noise or a delta function, respectively.

3 IMPROVING THE LOG-LIKELIHOOD

While Ho et al. (2020) found that diffusion models can generate high-fidelity samples according to
FID (Heusel et al., 2017) and Inception Score (Salimans et al., 2016), they were unable to achieve
competitive log-likelihoods with these models. Log-likelihood is a widely used metric in gener-
ative modeling, and it is generally believed that optimizing log-likelihood forces generative mod-
els to capture all of the modes of the data distribution (Razavi et al., 2019). Additionally, recent
work (Henighan et al., 2020) has shown that small improvements in log-likelihood can have a dra-
matic impact on sample quality and learnt feature representations. Thus, it is important to explore
why diffusion models seem to perform poorly on this metric, since this may suggest a fundamental
shortcoming such as bad mode coverage. This section explores several modifications to the algo-
rithm described in Section 2 that, when combined, allow diffusion models to achieve much better
log-likelihoods on image datasets, suggesting that these models enjoy the same benefits as other
likelihood-based generative models.

To study the effects of different modifications, we train fixed model architectures with fixed hyper-
parameters (Appendix A) on the ImageNet 64 × 64 (van den Oord et al., 2016a) and CIFAR-10
(Krizhevsky, 2009) datasets. While CIFAR-10 has seen more usage for this class of models, we
chose to study ImageNet 64× 64 as well because it provides a good trade-off between diversity and
resolution, allowing us to train models quickly without worrying about overfitting. Additionally,
ImageNet 64×64 has been studied extensively in the context of generative modeling (van den Oord
et al., 2016b; Menick & Kalchbrenner, 2018; Child et al., 2019; Roy et al., 2020), allowing us to
compare diffusion models directly to many other generative models.

The setup from Ho et al. (2020) (optimizing Lsimple while setting σ2
t = βt and T = 1000) achieves

a log-likelihood of 3.99 bits/dim on ImageNet 64 × 64 after 200K training iterations. We found in
early experiments that we could get a boost in log-likelihood by increasing T from 1000 to 4000;
with this change, the log-likelihood improves to 3.77 bits/dim. For the remainder of this section,
we use T = 4000, but we explore this choice in Section 4.

3.1 LEARNING Σθ(xt, t)

In Ho et al. (2020), the authors set Σθ(xt, t) = σ2
t I, where σt is not learned. Oddly, they found that

fixing σ2
t to βt yielded roughly the same sample quality as fixing it to β̃t. Considering that βt and

β̃t represent two opposite extremes, it is reasonable to ask why this choice doesn’t affect samples.
One clue is given by Figure 1a, which shows that βt and β̃t are almost equal except near t = 0,
i.e. where the model is dealing with imperceptible details. Furthermore, as we increase the number
of diffusion steps, βt and β̃t seem to remain close to one another for more of the diffusion process.
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Figure 1a: The ratio β̃t/βt for every diffusion
step for diffusion processes of different lengths.
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Figure 1b: Terms of the VLB vs diffusion step.
The first few terms contribute most to NLL.

Figure 2: Latent samples from linear (top) and cosine (bottom) schedules respectively at linearly
spaced values of t from 0 to T . The latents in the last quarter of the linear schedule are almost purely
noise, whereas the cosine schedule adds noise more slowly

This suggests that, in the limit of infinite diffusion steps, the choice of σt might not matter at all for
sample quality. In other words, as we add more diffusion steps, the model mean µθ(xt, t) determines
the distribution much more than Σθ(xt, t).

While the above argument suggests that fixing σt is a reasonable choice for the sake of sample
quality, it says nothing about log-likelihood. In fact, Figure 1b shows that the first few steps of the
diffusion process contribute the most to the variational lower bound. Thus, it seems likely that we
could improve log-likelihood by using a better choice of Σθ(xt, t). To achieve this, we must learn
Σθ(xt, t) without the instabilities encountered by Ho et al. (2020).

Since Figure 1a shows that the reasonable range for Σθ(xt, t) is very small, it would be hard for a
neural network to predict Σθ(xt, t) directly, even in the log domain, as observed by Ho et al. (2020).
Instead, we found it better to parameterize the variance as an interpolation between βt and β̃t in the
log domain. In particular, our model outputs a vector v containing one component per dimension,
and we turn this output into variances as follows:

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t) (16)

We did not apply any constraints on v, theoretically allowing the model to predict variances outside
of the interpolated range. However, we did not observe the network doing this in practice, suggesting
that the bounds for Σθ(xt, t) are indeed expressive enough.

Since Lsimple doesn’t depend on Σθ(xt, t), we define a new hybrid objective:

Lhybrid = Lsimple + λLvlb (17)

For our experiments, we set λ = 0.001 to prevent Lvlb from overwhelming Lsimple. Along this same
line of reasoning, we also apply a stop-gradient to the µθ(xt, t) output for the Lvlb term. This way,
Lvlb can guide Σθ(xt, t) while Lsimple is still the main source of influence over µθ(xt, t).

3.2 IMPROVING THE NOISE SCHEDULE

We found that the noise schedule used in Ho et al. (2020) was sub-optimal for ImageNet 64 × 64.
In particular, the end of the forward noising process is too noisy, and so doesn’t contribute very
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Figure 3a: FID when skipping a prefix of the
reverse diffusion process on ImageNet 64 × 64.
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Figure 3b: ᾱt throughout diffusion in the linear
schedule and our proposed cosine schedule.
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Figure 4a: Learning curves comparing the log-
likelihoods achieved by different objectives on
ImageNet 64 × 64.
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Figure 4b: Gradient noise scales for the Lvlb and
Lhybrid objectives on ImageNet 64 × 64.

much to sample quality. This can be seen visually in Figure 2. The result of this effect is studied in
Figure 3a, where we see that a model trained with the linear schedule does not get much worse (as
measured by FID) when we skip up to 20% of the reverse diffusion process.

To address this problem, we construct a different noise schedule in terms of ᾱt:

ᾱt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π

2

)2

, s = 0.008 (18)

To go from this definition to variances βt, we note that βt = 1− ᾱt

ᾱt−1
. In practice, we clip βt to be

no larger than 0.999 to prevent singularities at the end of the diffusion process near t = T .

Our cosine schedule is designed to have a linear drop-off of ᾱt in the middle of the process, while
changing very little near the extremes of t = 0 and t = T to prevent abrupt changes in noise level.
Figure 3b shows how ᾱt progresses for both schedules. We can see that the linear schedule from Ho
et al. (2020) falls towards zero much faster, destroying information more quickly than necessary.

The small offset s in our schedule prevents βt from being too small near t = 0, since we found
that having tiny amounts of noise at the beginning of the process made it hard for the network to
predict ε accurately enough. In particular, we selected s such that

√
β0 was slightly smaller than the

pixel bin size, 1/127.5. We chose to use cos2 in particular because it is a common mathematical
function with the shape we were looking for. This choice was arbitrary, and we expect that many
other functions with similar shapes would work as well.

3.3 REDUCING GRADIENT NOISE

We expected to achieve the best log-likelihoods by optimizing Lvlb directly, rather than by optimiz-
ing Lhybrid. However, we were surprised to find that Lvlb was actually quite difficult to optimize
in practice, at least on the diverse ImageNet 64 × 64 dataset. Figure 4a shows the learning curves
for both Lvlb and Lhybrid. Both curves are noisy, but the hybrid objective clearly achieves better
log-likelihoods on the training set given the same amount of training time.
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MODEL TRAIN ITERS. T SCHEDULE OBJECTIVE NLL (bits/dim) FID

Baseline 200K 1K linear Lsimple 3.99 31.0
200K 4K linear Lsimple 3.77 29.7

Improved
200K 4K linear Lhybrid 3.66 30.4
200K 4K cosine Lsimple 3.68 25.6
200K 4K cosine Lhybrid 3.62 26.6
200K 4K cosine Lvlb 3.57 54.7

Improved 1.5M 4K cosine Lhybrid 3.57 18.3
1.5M 4K cosine Lvlb 3.53 38.3

Table 1: Comparison of NLL and FID for different diffusion models on ImageNet 64×64. Lvlb and
Lhybrid were trained with learned sigmas using the parameterization from Section 3.1. For Lvlb, we
used the resampling scheme from Section 3.3. Using our cosine schedule and Lhybrid improves both
log-likelihood and FID over the baseline from Ho et al. (2020). Optimizing Lvlb further improves
log-likelihood at the cost of a higher FID.

MODEL TRAIN ITERS. T SCHEDULE OBJECTIVE NLL (bits/dim) FID

Baseline 500K 1K linear Lsimple 3.73 3.29
500K 4K linear Lsimple 3.37 2.90

Improved
500K 4K linear Lhybrid 3.26 3.07
500K 4K cosine Lsimple 3.26 3.05
500K 4K cosine Lhybrid 3.17 3.19
500K 4K cosine Lvlb 2.94 11.47

Table 2: Comparison of NLL and FID for different diffusion models on CIFAR-10. Using our
cosine schedule and Lhybrid improves log-likelihood with a marginal impact on FID. Optimizing
Lvlb further improves log-likelihood at the cost of a significantly higher FID.

We hypothesized that the gradient of Lvlb was much noisier than that of Lhybrid. We confirmed
this by evaluating the gradient noise scales (McCandlish et al., 2018) for models trained with both
objectives, as shown in Figure 4b. Thus, we sought out a way to reduce the variance of Lvlb in order
to optimize directly for log-likelihood.

Noting that different terms of Lvlb have greatly different magnitudes (Figure 1b), we hypothesized
that sampling t uniformly causes unnecessary noise in the Lvlb objective. To address this, we employ
importance sampling:

Lvlb = Et∼pt

[
Lt
pt

]
, where pt ∝

√
E[L2

t ] and
∑

pt = 1 (19)

Since E[L2
t ] is unknown beforehand and may change throughout training, we maintain a history

of the previous 10 values for each loss term, and update this dynamically during training. At the
beginning of training, we sample t uniformly until we draw 10 samples for every t ∈ [0, T − 1].

With this importance sampled objective, we are able to achieve our best log-likelihoods by optimiz-
ing Lvlb.1 This can be seen in Figure 4a as the "Lvlb (resampled)" curve. The figure also shows that
the importance sampled objective is considerably less noisy than the original, uniformly sampled
objective.

3.4 RESULTS AND ABLATIONS

In this section, we ablate the changes we have made to achieve better log-likelihoods. Table 1
summarizes the results of our ablations on ImageNet 64× 64, and Table 2 shows them for CIFAR-
10. We also trained our best ImageNet 64×64 models for 1.5M iterations, and report these results as
well. Based on the results, we recommend always using the cosine schedule, and theLhybrid objective
in most cases. If one is only optimizing for likelihood and not sample quality, the importance
sampled Lvlb is the best objective to use.

1We found that the importance sampling technique was not helpful when optimizing Lhybrid directly.
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MODEL ImageNet 64× 64 CIFAR-10
NLL (bits/dim) NLL (bits/dim)

Glow (Kingma & Dhariwal, 2018) 3.81 3.35
Flow++ (Ho et al., 2019) 3.69 3.08
PixelCNN (van den Oord et al., 2016b) 3.57 3.14
PixelSNAIL (Chen et al., 2018) 3.52 2.85
SPN (Menick & Kalchbrenner, 2018) 3.52 -
Image Transformer (Parmar et al., 2018) 3.48 2.90
Sparse Transformer (Child et al., 2019) 3.44 2.80
Routing Transformer (Roy et al., 2020) 3.43 -
Diffusion (Ho et al., 2020) 3.77 3.70
Improved Diffusion (ours) 3.53 2.94

Table 3: Comparison of diffusion models to other likelihood-based models on CIFAR-10 and Un-
conditional ImageNet 64 × 64. On ImageNet 64 × 64, our model is competitive with the best
conventional models, but is worse than fully transformer-based architectures.

4 IMPROVING SAMPLING SPEED

All of our models were trained with 4000 diffusion steps, and thus producing a single sample takes
several minutes on a modern GPU. In this section, we explore how performance scales if we reduce
the steps used during sampling, and find that our pre-trained models can produce high-quality sam-
ples with many fewer diffusion steps than they were trained with without any fine-tuning. Reducing
the steps in this way makes it possible to sample from our models in a number of seconds rather
than minutes, and greatly improves the practical applicability of image diffusion models.

For a model trained with T diffusion steps, we would typically sample using the same set of t values
(1, 2, ..., T ) as used during training. However, it is also possible to sample using an arbitrary set of
t values. We define a sequence S of t values to use for sampling, such as a strided schedule like
S = (1, 3, 5, ..., T − 1). Given the training noise schedule ᾱt, we can obtain the sampling noise
schedule ᾱSt

, which can be used to obtain corresponding sampling variances

βSt
= 1− ᾱSt

ᾱSt−1

, β̃St
=

1− ᾱSt−1

1− ᾱSt

βSt
(20)

We can compute p(xSt−1
|xSt

) as N (µθ(xSt
, St),Σθ(xSt

, St)). Note that Σθ(xSt
, St) is parame-

terized as a range between βSt and β̃St
so it will automatically be rescaled for the shorter diffusion

process.

To evaluate sample quality for reduced numbers of sampling steps, we use a stride K over timesteps
to reduce the total number of sampling steps from T to T/K. In Figures 5a and 5c, we evaluate
FIDs for an Lhybrid model and an Lsimple model that were trained with 4000 diffusion steps, using 30,
50, 100, 150, 200, 400, and 4000 sampling steps. We do this for multiple checkpoints throughout
training. We find that the Lsimple model suffers much more in sample quality when using a reduced
number of sampling steps, whereas our Lhybrid model maintains sample quality. Furthermore, we
find that using more sampling steps becomes increasingly beneficial throughout training. However,
100 sampling steps is still sufficient to achieve near-optimal FIDs for our fully trained models.

In initial experiments, we found that although constant striding did not significantly affect FID, it
drastically reduced log-likelihood. To address this, we use a strided subset of timesteps as for FID
(with stride K), but we also include every t from 1 to T/K. This requires T/K extra evaluation
steps, but greatly improves log-likelihood compared to the uniformly strided schedule. In Figures
5b and 5d we present log-likelihoods with this modified strided schedule.

5 SCALING MODEL SIZE

In the previous sections, we showed algorithmic changes that improved log-likelihood and FID
without changing the amount of training compute. However, a trend in modern machine learning is
that larger models and more training time tend to improve model performance (Kaplan et al., 2020;
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Figure 5b: NLL versus evaluation steps on Ima-
geNet 64 × 64.
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CIFAR-10.

Figure 5: NLL and FID versus number of evaluation/sampling steps, for models trained on ImageNet
64×64 and CIFAR-10. All models were trained with 4000 diffusion steps. Models that learn sigmas
using our reparametrization and Lhybrid objective (Section 3.1) increase marginally in NLL and FID
as we reduce evaluation/sampling steps, while using fixed sigmas as in Ho et al. (2020) results in a
larger increase.

Chen et al., 2020a; Brown et al., 2020). Given this observation, we investigate how FID and NLL
scale as a function of model size. Our results suggest that diffusion models can achieve better and
better performance as training compute increases.

To measure how performance scales with compute, we train four different models on ImageNet
64 × 64 with the Lhybrid objective described in Section 3.1. To change model capacity, we apply a
depth multiplier across all layers, such that the first layer has either 64, 96, 128, or 192 channels.
Note that our previous experiments used 128 channels in the first layer. Since the depth of each
layer affects the scale of the initial weights, we scale the Adam learning rate for each model by
1/
√

channel multiplier, such that the 128 channel model has a learning rate of 0.0001 (as in our
other experiments).

Figure 6a and 6b show how FID and NLL improve relative to compute. These plots reveal that, to
achieve optimal performance for a given amount of compute, it often makes sense to train a larger
model for fewer iterations, rather than training a smaller model to convergence. We note that these
models do not achieve optimal log-likelihoods because they were trained with our Lhybrid objective
and not directly with Lvlb to keep both good log-likelihoods and sample quality. The x-axis in both
figures is the theoretical amount of training compute, assuming full hardware utilization.
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Figure 6a: FID throughout training on ImageNet
64 × 64 for different model sizes.
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Figure 6b: NLL throughout training on ImageNet
64 × 64 for different model sizes.

6 RELATED WORK

Chen et al. (2020b) and Kong et al. (2020) are two recent works that use diffusion models to produce
high fidelity audio conditioned on mel-spectrograms. Concurrent to our work, Chen et al. (2020b)
use a combination of improved schedule and L1 loss to allow sampling with fewer steps with very
little reduction in sample quality. However, compared to our unconditional image generation task,
their generative task has a strong input conditioning signal provided by the mel-spectrograms, and
we hypothesize that this makes it easier to sample with fewer diffusion steps.

Jolicoeur-Martineau et al. (2020) explored score matching in the image domain, and constructed an
adversarial training objective to produce better x0 predictions. However, they found that choosing
a better network architecture removed the need for this adversarial objective, suggesting that the
adversarial objective is not necessary for powerful generative modeling.

7 CONCLUSION

We have shown that, with a few modifications, diffusion models can sample much faster and achieve
better log-likelihoods with little impact on sample quality. Here we summarize our main findings:

• Our cosine noise schedule improves NLL (and sometimes FID) compared to the linear
schedule from Ho et al. (2020).
• Learning Σθ using our parameterization and Lhybrid objective provides a good trade-off be-

tween NLL and FID. More importantly, it allows sampling with many fewer steps without
decreased sample quality.
• One can optimize Lvlb directly using our importance sampling technique to achieve the best

possible NLL at the expense of sample quality.

The combination of these results makes diffusion models an attractive choice for generative model-
ing, since they combine good log-likelihoods, high-quality samples, and fast sampling with a well-
grounded, stationary training objective. Furthermore, we have investigated how diffusion models
scale with the amount of available training compute, and found that more training compute trivially
leads to better sample quality and log-likelihood. These results indicate that diffusion models are
a promising direction for future research, especially as the affordability of compute increases over
time.
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A HYPERPARAMETERS

For all of our experiments, we use a UNet model architecture2 similar to that used by Ho et al.
(2020). We changed the attention layers to use multi-head attention (Vaswani et al., 2017), and
opted to use four attention heads rather than one (while keeping the same total number of channels).
We employed attention not only at the 16x16 resolution, but also at the 8x8 resolution. Additionally,
we changed the way the model conditions on t. In particular, instead of computing conditioning
vector v and injecting it into hidden state h as GroupNorm(h+v), we compute conditioning vectors
w and b and inject them into the hidden state as GroupNorm(h)(w+1)+b. We found in preliminary
experiments on ImageNet 64× 64 that these modifications slightly improved FID.

We used a 120M parameter model for all ImageNet 64× 64 experiments except in Section 5, where
we scaled the number of channels in all layers. In this architecture, the downsampling stack performs
four steps of downsampling, each with three residual blocks (He et al., 2015). The upsampling stack
is setup as a mirror image of the downsampling stack. From highest to lowest resolution, the UNet
stages use [C, 2C, 3C, 4C] channels, respectively. In all experiments except those in Section 5, we
set C = 128. We estimate that, with C = 128, our model requires roughly 39 billion FLOPs in the
forward pass.

For our CIFAR-10 experiments, we used a smaller model with three resblocks per downsampling
stage and layer widths [C, 2C, 2C, 2C] with C = 128. We swept over dropout values {0.1, 0.2, 0.3}
and found that 0.1 worked best for the linear schedule while 0.3 worked best for our cosine schedule
(Section 3.2). We expand upon this in Appendix E.

For all of our experiments, we used Adam (Kingma & Ba, 2014) with a batch size of 128 and an
exponential moving average (EMA) over model parameters with a rate of 0.9999. Except in Section
5, we fixed the learning rate to 0.0001. For quick comparisons in Section 3, we trained models
for 200K iterations. This is not enough to reach convergence, but we believe it is enough to fairly
compare different modifications. We then trained the best models for 1.5M iterations to achieve
better performance.

When using the linear noise schedule from Ho et al. (2020), we linearly interpolated from β1 =
0.0001/4 to β4000 = 0.02/4 in order to preserve the shape of ᾱt for the T = 4000 schedule.

When computing FID for CIFAR-10, we produce 50K samples and compare them against the train-
ing set for consistency with other work. When computing FID for ImageNet 64 × 64, we produce
10K samples and compute FID against 50K validation images unless otherwise stated. Using only
10K samples biases the FID to be worse-than-necessary, but requires much less compute for sam-
pling. Since we mainly use FID for relative comparisons, this bias is acceptable.

2In initial experiments, we found that a ResNet-style architecture with no downsampling achieved better
log-likelihoods but worse FIDs than the UNet architecture.
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B SAMPLES

Figure 7a: 50 sampling steps Figure 7b: 100 sampling steps

Figure 7c: 200 sampling steps Figure 7d: 400 sampling steps

Figure 7e: 1000 sampling steps Figure 7f: 4000 sampling steps

Figure 7: Unconditional ImageNet 64 × 64 samples as we reduce number of sampling steps for a
Lhybrid model with 4K diffusion steps trained for 1.5M training iterations.

13



Under review as a conference paper at ICLR 2021

Figure 8a: 50 sampling steps Figure 8b: 100 sampling steps

Figure 8c: 200 sampling steps Figure 8d: 400 sampling steps

Figure 8e: 1000 sampling steps Figure 8f: 4000 sampling steps

Figure 8: Unconditional CIFAR-10 samples as we reduce number of sampling steps for a Lhybrid
model with 4K diffusion steps trained for 500K training iterations.
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Figure 9a: Samples from Lhybrid model Figure 9b: Samples from Lvlb model

Figure 9: Unconditional ImageNet 64×64 samples generated from an Lhybrid and Lvlb model respec-
tively using the exact same random noise. Both models were trained for 1.5M training iterations.

Figure 10a: Samples from Lhybrid model Figure 10b: Samples from Lvlb model

Figure 10: Unconditional CIFAR-10 samples generated from an Lhybrid and Lvlb model respectively
using the exact same random noise. Both models were trained for 500K training iterations.
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Figure 11a: The ratio between VLB terms for
each diffusion step of θhybrid and θvlb. Values less
than 1.0 indicate that θhybrid is "better" than θvlb for
that timestep of the diffusion process.

Figure 11b: Samples from θvlb and θhybrid, as well
as an ensemble produced by using θvlb for the first
and last 100 diffusion steps. For these samples,
the seed was fixed, allowing a direct comparison
between models.

Figure 12a: Samples with random noise. Figure 12b: Samples with same noise in a column

Figure 12: Conditional ImageNet 64 × 64 samples generated from an Lhybrid model trained for
1.7M training steps. The classes are 9: ostrich, 11: goldfinch, 130: flamingo, 141: redshank, 154:
pekinese, 157: papillon, 97: drake and 28: spotted salamander. On right we fix the random noise
seed in each column to see how the class label affects the sampling process.

C COMBINING LHYBRID AND LVLB MODELS

To understand the trade-off between Lhybrid and Lvlb, we show in Figure 11a that the model resulting
from Lvlb (referred to as θvlb) is better at the start and end of the diffusion process, while the model
resulting from Lhybrid (referred to as θhybrid) is better throughout the middle of the diffusion process.
This suggests that θvlb is focusing more on imperceptible details, hence the lower sample quality.

Given the above observation, we performed an experiment on ImageNet 64 × 64 to combine the
two models by constructing an ensemble that uses θhybrid for t ∈ [100, T − 100) and θvlb elsewhere.
We found that this model achieved an FID of 18.9 and an NLL of 3.52 bits/dim. As we see from
Table 1, this is only slightly worse than θhybrid in terms of FID, while being better than both models
in terms of NLL.

D COMPARING SAMPLE QUALITY TO OTHER GENERATIVE MODELS

While this paper does not focus on comparing sample quality to other types of generative models,
we were curious how diffusion models compared to modern generative models on ImageNet 64 ×
64. Unfortunately, we did not find any literature which computed FID for unconditional ImageNet
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MODEL FID
FQ-GAN (Zhao et al., 2020) 9.67
Instance Selection GAN (DeVries et al., 2020) 9.07
Improved Diffusion (ours) 8.43

Table 4: Sample quality comparison on class conditional ImageNet 64× 64.
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Figure 13a: FID over the course of training.
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Figure 13b: Negative log-likelihood over the
course of training.

Figure 13: Evaluation metrics over the course of training for two CIFAR-10 models, both with
dropout 0.1. The model trained with the linear schedule learns more slowly, but does not overfit as
quickly. When too much overfitting occurs, we observed overfitting artifacts similar to those from
Salimans et al. (2017), which is reflected by increasing FID.

64 × 64. We ran an additional experiment where we trained a class-conditional diffusion model
for 1.7M iterations using the Lhybrid objective. To make the model class-conditional, we inject class
information through the same pathway as the timestep t. In particular, we add a class embedding
vi to the timestep embedding et, and pass this embedding to residual blocks throughout the model.
When computing FID for this task, we generated 50K samples (rather than 10K) to be directly
comparable to other works. We found that using more samples led to a decrease in estimated FID of
roughly 2 points. This is the only FID we report that was computed using 50K samples. Figure 12
shows our samples, and Table 4 summarizes our results.

E OVERFITTIG ON CIFAR-10

On CIFAR-10, we noticed that all models overfit, but tended to reach similar optimal FID at some
point during training. Holding dropout constant, we found that models trained with our cosine
schedule tended to reach optimal performance (and then overfit) more quickly than those trained
with the linear schedule (Figure 13). In our experiments, we corrected for this difference by using
more dropout for our cosine models than the linear models. We suspect that the overfitting from the
cosine schedule is either due to 1) less noise in the cosine schedule providing less regularization, or
2) the cosine schedule making optimization, and thus overfitting, easier.
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