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Abstract

We introduce SpotCheck, a framework for gen-
erating synthetic datasets to use for evaluating
methods for discovering blindspots (i.e., systemic
errors) in image classifiers. We use SpotCheck
to run controlled studies of how various factors
influence the performance of blindspot discov-
ery methods. Our experiments reveal several
shortcomings of existing methods, such as rel-
atively poor performance in settings with multi-
ple blindspots and sensitivity to hyperparameters.
Further, we find that a method based on dimen-
sionality reduction, PlaneSpot, is competitive
with existing methods, which has promising im-
plications for the development of interactive tools.

1. Introduction
A growing body of research has found that machine learn-
ing models with high test performance often make systemic
errors (Buolamwini and Gebru, 2018; Chung et al., 2019;
Oakden-Rayner et al., 2020; Ribeiro et al., 2020; Singla
et al., 2021; Ribeiro and Lundberg, 2022), which occur
when the model performs significantly worse on a coherent
(i.e., semantically meaningful) subset of the data. For exam-
ple, past works (Winkler et al., 2019; Mahmood et al., 2021)
have demonstrated that models trained to diagnose skin
cancer from dermoscopic images rely on spurious artifacts
(such as the presence of a surgical skin marker that some
dermatologists use to mark lesions) to make predictions. As
a result, these models have different performance on im-
ages with or without those spurious artifacts. More broadly,
discovering systemic errors is critical in a range of applica-
tions, such as detecting algorithmic bias (Buolamwini and
Gebru, 2018) or sensitivity to distribution shifts (Sagawa
et al., 2020; Singh et al., 2020).
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While there is a rich body of work that studies how to find
systemic errors in settings where there is useful metadata
to define coherent subsets (Buolamwini and Gebru, 2018;
Chung et al., 2019; Cabrera et al., 2019; Singh et al., 2020),
finding systemic errors is much harder in settings with-
out such metadata. For example, we often do not know
a-priori which images may or may not have some artifact
(such as a surgical skin marker). To address this challenge,
several Blindspot Discovery Methods (BDMs)1, such as So-
honi et al. (2020); Singla et al. (2021); d’Eon et al. (2021);
Eyuboglu et al. (2022), have been proposed to discover
blindspots in settings without useful metadata.

While the motivation and technical approaches of these
BDMs are well defined, there is no standardized approach
for evaluating them. Evaluating the hypothesized blindspots
returned by BDMs is fundamentally challenging because it
is unclear how to measure their coherence and because we
do not have the complete set of true blindspots to compare
them against. One approach to address these challenges is
to compare the hypothesized blindspots to a subset of the
true blindspots that have either been artificially induced or
identified by existing work (Sohoni et al., 2020; Eyuboglu
et al., 2022). While this is a promising direction, it makes it
difficult to measure a BDM’s recall or false positive rate or to
identify various factors that influence a BDM’s performance.

To address these challenges, we propose a synthetic
evaluation framework for BDMs called SpotCheck.
SpotCheck builds on ideas from Kim et al. (2022) by
generating synthetic datasets with varying degrees of com-
plexity and then training models on those datasets to have
various types of blindspots. This allows us to measure a
BDM’s recall and false positive rate, since we know the full
set of true blindspots for each model, and to measure how
various factors, such as the number or types of blindspots in
the model, influence a BDM’s performance.

We use SpotCheck to conduct an evaluation of 3 recent
BDMs and compare them to a new baseline method called
PlaneSpot. Our evaluation reveals several insights about
BDM performance: performance degrades quickly as the
number of blindspots in a model increases, performance

1Past works have used other terms such as “discovering fail-
ure modes,” “unknown systemic errors,” or “slices.” We chose
“blindspot” because we believe it is more descriptive and concise.
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label: 0 label: 0 label: 0 label: 1 label: 0 label: 0

blindspot: images with squares and circles

Figure 1: A simple example created with SpotCheck. Dataset Complexity. This dataset is defined by 3 semantic features
that vary across images: the presence of a square, the presence of a circle, and the color of the circle. We do not count the
“color of the square” because it is always blue. Blindspot Specificity. This blindspot is defined by 2 semantic features: the
presence of a square and the presence of a circle. As a result, it contains any image with both a square and a circle, regardless
of the circle’s color. Training Labels. In general, the label for each image indicates if a square is present. However, any
training or validation image belonging to this blindspot is mislabeled.

depends on the type of features that define a blindspot, and
performance is sensitive to the BDM’s hyperparameters.

Interestingly, we observe that PlaneSpot consistently
outperforms existing BDMs. Because PlaneSpot utilizes
a 2D representation, our findings suggest that it could be
useful in an interactive setting. We plan to explore this
direction using real datasets in future work.2

2. Synthetic Evaluation for BDMs
SpotCheck builds on ideas from Kim et al. (2022) to gen-
erate synthetic datasets of varying complexity and to train
models with specific blindspots on those datasets. Below,
we summarize its key steps; see Appendix A for details.

Dataset Definition. Each dataset can be defined using se-
mantic features that describe the possible types of images it
contains. Datasets that have a larger number of features have
a larger variety of images and are therefore more complex.
For example, a simple dataset may only contain images with
squares and blue or orange circles (see Figure 1), while a
more complicated dataset may also contain images with
striped rectangles, small text, or grey backgrounds.

Blindspot Definition. Each blindspot is defined using a
subset of the semantic features that define its associated
dataset (see Figure 1). Similarly to how a dataset with more
features is more complex, a blindspot defined using more
semantic features is more specific.

Training a Model with Specific Blindspots. For each
dataset and blindspot specification, we train a ResNet-18
model (He et al., 2016) to predict whether a square is present.

2All code will be released at https://github.com/user/repo

To induce blindspots, we generate data where the label for
each image in the training and validation sets is correct if
and only if it does not belong to any of the blindspots (see
Figure 1). The test set images are always correctly labeled.

Generating Diverse Experimental Configurations. Since
our goal is to study how various factors influence BDM
performance, we generate a diverse set of experimental
configurations, (i.e.,dataset, blindspots, and model triplets).
To do this, we randomize the features that define a dataset
(both the number of them and what they are) as well as the
blindspots (the number of them, the number of features that
define them and what those features are).

3. Evaluation Metrics
Each BDM returns an ordered list of hypothesized
blindspots, Ψ̂ : [Ψ̂k]

K
k=1, sorted by decreasing importance.

Further, because we are using SpotCheck, we have the
complete set of the model’s true blindspots, Ψ : {Ψm}Mm=1.
Our goal is to measure how well the hypothesized Ψ̂ cap-
ture the true Ψ, where each Ψ̂k and Ψm are sets of images.
We start by measuring how well a BDM finds each indi-
vidual true blindspot (Blindspot Recall) and build on that
to measure how well a BDM finds the complete set of true
blindspots (Discovery Rate and False Discovery Rate).

Blindspot Precision. We start by checking if Ψ̂k is a subset
of Ψm. If it is, we know that the model underperforms on
Ψ̂k and that Ψ̂k is coherent. We measure this using the
precision of Ψ̂k with respect to Ψm:

BP(Ψ̂k,Ψm) =
|Ψ̂k ∩Ψm|

|Ψ̂k|
(1)
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We say that Ψ̂k belongs to Ψm if, for some threshold λp:

BP(Ψ̂k,Ψm) > λp (2)

However, Ψ̂k can belong to Ψm without capturing the same
information as Ψm. For example, Ψ̂k could be “squares and
blue circles” while Ψm could be “squares and blue or orange
circles”. Because this excessive specificity could result in
the user arriving at insufficiently general conclusions, we
need to incorporate some notion of recall into the evaluation.

Blindspot Recall. One approach to measure recall is to
calculate the proportion of Ψm that Ψ̂k covers individually:

BRnaive(Ψ̂k,Ψm) =
|Ψ̂k ∩Ψm|

|Ψm|
(3)

We relax this definition by allowing Ψm to be covered by
the union of multiple of the Ψ̂k that belong to it:

BR(Ψ̂,Ψm) =

∣∣∣∣∣
( ⋃

Ψ̂k:BP(Ψ̂k,Ψm)>λp

Ψ̂k

)
∩Ψm

∣∣∣∣∣
|Ψm|

(4)

We say that Ψ̂ covers Ψm if, for some threshold λr:

BR(Ψ̂,Ψm) > λr (5)

We do this because “squares and blue circles” and “squares
and orange circles” belong to and jointly cover “squares and
blue or orange circles.” So, if a BDM returns both, a user
could combine them to arrive at the correct conclusion.

Discovery Rate (DR). We define the discovery rate of Ψ̂
and Ψ as the fraction of the Ψm that are covered by Ψ̂:

DR(Ψ̂,Ψ) =
1

M

∑
m

1(BR(Ψ̂,Ψm) > λr) (6)

False Discovery Rate (FDR). When the DR is non-zero,
we define false discovery rate of Ψ̂ and Ψ as the fraction of
the Ψ̂k that do not belong to any of the Ψ:3

FDR(Ψ̂,Ψ) =
1

K

∑
k

1(max
m

BP (Ψ̂k,Ψm) ≤ λp) (7)

Note that, without the complete set of true blindspots (as in
SpotCheck) it is impossible to calculate FDR.

3While calculating DR, we may only need the top-u items of
Ψ̂. As a result, we only calculate the FDR over those top-u items.
This prevents the FDR from being overly pessimistic when we
intentionally pick K too large in our experiments. However, when
the DR is zero, it is not clear what value of u to use, so we exclude
the FDR from our analysis.

Method DR FDR

Barlow 0.43 (0.04) 0.03 (0.01)
Spotlight 0.79 (0.03) 0.09 (0.01)
Domino 0.64 (0.04) 0.07 (0.01)
PlaneSpot 0.85 (0.03) 0.03 (0.01)

Table 1: Average BDM DR and FDR along with their stan-
dard errors across 100 experimental configurations.

4. PlaneSpot
PlaneSpot starts from the representation defined by the
model’s penultimate layer and uses scvis (Ding et al., 2018)
to learn a 2D embedding of that representation. This 2D
embedding is then normalized, so each dimension has range
[0, 1], and a 3rd dimension, w ∗ ModelConfidence(x, y), is
appended. This 3D input is passed to a Gaussian Mixture
Model clustering algorithm where the number of clusters
is chosen using the Bayesian Information Criterion. The
clusters are then sorted by the product of their error rate and
the number of errors in them. w is a hyperparameter that
controls the relative importance of the 2D embedding of an
image and the model’s confidence for that image.

5. Experiments
We use SpotCheck to generate 100 experimental configu-
rations whose datasets have 6-8 semantic features and whose
models have 1-3 blindspots with 5-7 features. We evaluate
the following BDMs: Spotlight (d’Eon et al., 2021), Barlow
(Singla et al., 2021), and Domino (Eyuboglu et al., 2022).
For each BDM, we use a held-out set of 20 configurations
to select hyperparameters. We use λp = λr = 0.8.

Overall Results. Table 1 shows the DR and FDR results
averaged across all 100 experimental configurations. We
observe that, in comparison to other methods, PlaneSpot
has the highest DR, on average finding 85% of the true
blindspots per experimental configuration. PlaneSpot
and Barlow have a lower FDR than Spotlight and Domino.

Identifying factors that influence BDM performance. We
study two types of factors: holistic factors, which measure
properties of the dataset (e.g., how complex is it?) or of
the model (e.g., how many blindspots does it have?), and
specific factors, which measure properties of a blindspot
(e.g., is it defined with this feature?). For holistic factors, we
average DR and FDR across the experimental configurations.
For specific factors, we find the “fraction of true blindspots
covered” averaged across each individual blindspot from
the experimental configurations (see Equation 5).

The number of blindspots matters. In Figure 2, we plot
the average DR for experimental configurations with 1, 2,
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Figure 2: Average BDM DR (and 95% confidence intervals
indicated by the shaded regions) for experimental configura-
tions that have 1, 2, and 3 true blindspots.

Figure 3: Average BDM FDR for experimental configura-
tions that have 1, 2, and 3 true blindspots.

and 3 true blindspots. Average DR decreases for all methods
as the number of blindspots increases. Figure 3, shows that
FDR increases as this happens as well. The conclusion that
methods perform worse in settings with multiple blindspots
is particularly significant because past evaluations have pri-
marily focused on settings with one blindspot.

The specificity of blindspots matters. In Figure 4, we
plot the fraction of true blindspots covered for blindspots
defined using 5, 6, and 7 features. With the exception of
Spotlight, all of these methods are less capable of finding
more specific/less frequently occurring blindspots.

The features that define a blindspot matter. In Figure 5,
we plot the fraction of true blindspots covered for blindspots
that are or are not defined using the “relative position” fea-
ture; this feature is an indicator for whether the square is
above the image’s horizontal center line. With the excep-
tion of PlaneSpot, all methods are less likely to find
blindspots defined using this feature. This shows that the
types of features used to define a blindspot (e.g., the pres-
ence of spurious objects, color or texture information, back-
ground information) can influence BDM performance.

There should be more discussion on hyperparameter
tuning. In Figure 6, we observe that two hyperparameter
settings that perform nearly identically on average exhibit
significantly different performance at identifying blindspots

Figure 4: The fraction of true blindspots covered, averaged
over the individual blindspots from the experimental config-
urations, for blindspots defined using 5, 6, and 7 features.

Figure 5: The fraction of true blindspots covered that are or
are not defined with the “relative position” feature.

Figure 6: Despite the fact that these hyperparameter choices
perform similarly on average, they behave differently based
on the number of features used to define the blindspot.

defined using differing numbers of features. This suggests
that there may not be a single best hyperparameter choice
to discover all of the blindspots in a single model, which
could contain multiple blindspots of different specificity or
frequency. In conjunction with the general sensitivity that
these methods have to their hyperparameters, this suggests
that there should be more discussion on hyperparameter
tuning (especially since this is much easier in our controlled
setting than in real applications).

6. Related Work
Finding Blindspots. Numerous methods have been pro-
posed to help users discover blindspots across a wide set
of applications. We focus on methods that make the least
restrictive assumptions and work for image classification
models. Specifically, we evaluate the methods from Singla
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Method Image Representation Dimensionality Reduction Hypothesis Class
Multiaccuracy (Kim et al., 2019) VAE embedding Linear model
GEORGE (Sohoni et al., 2020) Model embedding UMAP (d = 0, 1, 2) Gaussian kernels
Spotlight (d’Eon et al., 2021) Model embedding Gaussian kernels
Barlow (Singla et al., 2021) Adversarially-Robust Model embedding Decision Tree
Domino (Eyuboglu et al., 2022) CLIP embedding PCA (d = 128) Gaussian Kernels
PlaneSpot Model embedding scvis (d = 2) Gaussian Kernels

Table 2: A high level overview the major design choices made by different BDMs.

et al. (2021); d’Eon et al. (2021); Eyuboglu et al. (2022)
because they do not assume any of the following:

• Access to metadata (Kim et al., 2018; Buolamwini and
Gebru, 2018; Chung et al., 2019; Singh et al., 2020; Plumb
et al., 2021).

• Access to tools that manipulate data (Shetty et al., 2019;
Singla et al., 2020; Xiao et al., 2021; Leclerc et al., 2021;
Bharadhwaj et al., 2021)

• Any specific model structure (Alvarez-Melis and Jaakkola,
2018; Koh et al., 2020).

• Any specific model training process (Higgins et al., 2017;
Tsipras et al., 2019; Wong et al., 2021)

• A human in the loop, either through an interactive inter-
face (Cabrera et al., 2019; Balayn et al., 2022; Ribeiro and
Lundberg, 2022) or inspecting explanations (Yeh et al.,
2020; Adebayo et al., 2021).

Table 2 summarizes the design choices of these methods:

• They use a model to extract a representation of an image.
Typically, this is the same model whose blindspots we are
trying to discover, but it can be a different model.

• They apply some form of dimensionality reduction to that
image representation.

• They learn a model from a specified hypothesis class to
predict if an image belongs to a blindspot from the image’s
(potentially reduced) representation. Note that this leaves
out important details on how that model is learned.

We note that PlaneSpot’s main change is learning a 2D
representation using scvis (Ding et al., 2018). Beyond this,
it uses the most common choices for the ‘Image Represen-
tation’ and ‘Hypothesis class’ while also using standard
techniques for learning a model from that hypothesis class.

Quantitative Evaluations of BDMs. One evaluation ap-
proach focuses on measuring properties of the hypothesized
blindspots, such as their error rate or size (Singla et al.,
2021; d’Eon et al., 2021). However, while these proper-
ties are important, they do not capture whether or not the
hypothesized blindspots are coherent.

Another approach is to compare the hypothesized blindspots
to a subset of the true blindspots that have been artifi-
cially induced or identified in prior work (Sohoni et al.,
2020; Eyuboglu et al., 2022). This approach is similar to

SpotCheck, with a few key differences:

• Past work uses unrealistic definitions of what it means
to discover a true blindspot that either only considers
precision (Eyuboglu et al., 2022) or considers both preci-
sion and recall but uses thresholds for precision that are
too lenient (Sohoni et al., 2020). Further, neither allow
hypothesized blindspots to be combined.

• Without access to the complete set of true blindspots, they
cannot measure method DR or FDR.

• They do not isolate factors that influence a BDM’s perfor-
mance (e.g., number of blindspots, the specificity of those
blindspots, or the features that define the blindspots).

7. Conclusion
We propose SpotCheck, a synthetic evaluation framework
for BDMs, and ran controlled studies of how various fac-
tors influence BDM performance. This evaluation yields
fundamental insights about when and why different BDMs
are less effective and is an important step towards formal-
izing a more rigorous and complete set of desiderata for
BDMs. However, it remains a question for follow-up work
to see if our observed trends generalize to settings with real
images; in general, we believe that poor performance on
synthetic data implies poor performance on real data, but
not necessarily the other way around.

Our experimental results have many interesting implications
for future work. First, it is important to evaluate BDMs in
settings with models that have multiple blindspots, as this
setting is more realistic and challenging. Second, finding a
way to tune BDM hyperparameters in realistic settings is an
open challenge with significant practical importance.

Finally, we are intrigued by the result that PlaneSpot,
which learns a GMM on a 2D embedding, performs compet-
itively with prior methods, which use significantly higher-
dimensional embeddings. In future work, we hope to evalu-
ate PlaneSpot on real image data and to explore methods
to visualize its 2D embedding as the basis for an interactive
blindspot discovery tool.
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A. Generating Experimental Configurations, Extended
In this section we detail how we use SpotCheck to generate random experimental configurations.

• In Section A.1, we define the different types of semantic features that can appear in each image.
• In Section A.2, we define a synthetic image dataset, how we generate random datasets, and how we sample images from a

dataset.
• In Section A.3, we define a blindspot for a synthetic image dataset, how we generate a random blindspot, and how we

generate an unambiguous set of blindspots.
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A.1. Semantic Features

Table 3 defines all of the semantic features that SpotCheck uses to generate synthetic images. We call these semantic
features Attributes and group them into Layers based on what part of an image they describe. Each Attribute has two possible
Values: a Default and Alternative Value. Each synthetic image has an associated list of (Layer, Attribute, Value) triplets that
describes the image. Figure 7 shows this triplet list for two synthetic images.

We sometimes refer to the Square/Rectangle/Circle/Text Layers as Object Layers because they all describe a specific object
that can be present in an image. The location of each object within an image is chosen randomly, subject to the constraint
that each object doesn’t overlap with any other object.

Table 3: The Layers and Attributes that define the synthetic images.

Layer Attribute Default Value Alternative Value

Background Color White Grey
Texture Solid Salt and Pepper Noise

Square/Rectangle/Circle/Text Presence False True
Size Normal Small
Color Blue Orange
Texture Solid Vertical Stripes

Square (continued) Number 1 2
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A.2. Defining a Dataset using these Semantic Features

At a high level, SpotCheck defines a Dataset by deciding whether or not each Attribute of each Layer is Rollable (i.e., the
Attribute can take either its Default or Alternative Value, uniformly at random) or not Rollable (i.e., the Attribute only takes
its Default Value). We measure a Dataset’s complexity using the number of Rollable Attributes it has. Figure 7 describes the
Rollable and Not Rollable Attributes for an example Dataset.

Generating a Random Dataset. We start by picking which Layers will be part of the Dataset:

• Images need a background, so all Datasets have the Background Layer.
• The task is to predict whether there is a square in the image, so all Datasets have the Square Layer.
• We add 1-3 (chosen uniformly at random) of the other Object Layers (chosen uniformly at random without replacement

from the set {Rectangle, Circle, Text}) to the Dataset.

Once the Layers are chosen, we make 6-8 (chosen uniformly at random) of the Attributes Rollable:

• Each Object Layer has its Presence Attribute made Rollable.
• Then, the remaining Rollable Attributes are chosen by iteratively:

– Selecting a Layer uniformly at random from those that have at least one Not Rollable Attribute.
– Selecting an Attribute from that Layer uniformly at random from those that are Not Rollable.

Sampling an Image from a Dataset. Once a Dataset’s Rollable Attributes have been defined, generating a random image is
straightforward:

• For each Attribute from each Layer in the Dataset, we pick a random Value if the Attribute is Rollable. Attributes that are
Not Rollable will take their Default Value.
– If the Layer is an Object Layer:

* If the Presence Attribute is True, the location of the object is chosen randomly (subject to the non-overlapping
constraint).

* If the Presence Attribute is False, the object will not be rendered (regardless of the Values chosen for the other
Attributes of this Layer).

• We then use the resulting (Layer, Attribute, Value) triplet list and the list of object locations to render a 224x224 RGB
image.

• Finally, we calculate any MetaAttributes (explained next) and append these (Layer, MetaAttribute, Value) triplets to the
image’s definition list.

Calculating MetaAttributes. While each Attribute corresponds to a semantic feature, there are a potentially infinite number
of MetaAttributes that one could calculate as semantically meaningful functions of an image. We list the MetaAttributes that
we calculate in our experiments in Table 4. Because this space is infinitely large and grows with the number of Attributes,
we exclude MetaAttributes from our measure of Dataset complexity.
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Dataset Definition:
Rollable Attributes

Background: {Color: False, 
Texture: True}

Square: {Presence: True,
Size: False,
Color: True,
Texture: True,
Number: False}

Text: {Presence: True,
  Size: False,

      Color: True,
      Texture: False}

Example Image #1 (Background, Texture, Solid),

(Square, Presence, True),
(Square, Color, Blue),
(Square, Texture, Vertical 
Stripes),

(Text, Presence, True),
(Text, Color, Orange}

Example Image #2 (Background, Texture, Salt & 
Pepper),

(Square, Presence, False),
(Square, Color, Blue),
(Square, Texture, Solid),

(Text, Presence, True),
(Text, Color, Blue)

Figure 7: Top Row. The definition of an example Dataset generated by SpotCheck. Notice that this Dataset has 3 Layers
and 6 Rollable Attributes. Middle/Bottom Row. Two example images generated from this Dataset along with their (Layer,
Attribute, Value) triplet lists. Notice that Not Rollable Attributes in this Dataset take on their Default Values in these images
and are not in the images’ triplet lists.

Table 4: The MetaAttributes that we calculate for each synthetic image.

Layer MetaAttribute Value Meaning

Background Relative Position 1 Square is above the horizontal centerline of the image
0 Square is bellow the horizontal centerline of the image
-1 No Square



Evaluating Blindspot Discovery Methods

A.3. Defining the Blindspots for a Dataset

SpotCheck defines a Blindspot using a list of (Layer, (Meta)Attribute, Value) triplets. We measure a Blindspot’s specificity
using the length of its definition list. An image belongs to a blindspot if and only if the Blindspot’s definition list is a subset
of the image’s definition list. Figure 8 shows two example Blindspots.

Generating a Random Blindspot. SpotCheck generates a random Blindspot consisting of 5-7 (chosen uniformly at
random) (Layer, (Meta)Attribute, Value) triplets for a Dataset by iteratively:

• Selecting a Layer (uniformly at random from those that have at least one Rollable Attribute4 that is not already in this
Blindspot)

• Selecting a Rollable Attribute from that Layer:
– Object Layers: If the Layer’s Presence Attribute is not in this Blindspot, select its Presence Attribute. Otherwise, select

an Attribute uniformly at random from those that are not already in this Blindspot and set the Layer’s Presence Attribute
Value to True for this Blindspot.

– Background Layers: Select an Attribute uniformly at random from those that are not already in this Blindspot.
• Selecting a Value for that Attribute (uniformly at random)

Notice that, if an Object Layer is selected more than once, then we ensure that the Object’s Presence Attribute has a Value
of True in the Blindspot definition. We enforce this Feasibility Constraint to ensure that every triplet in the Blindspot’s
definition list correctly describes the images belonging to the Blindspot (e.g., [(Circle, Presence, False), (Circle, Color,
Blue)] is infeasible because an image with a blue circle must have a circle in it).

Generating an Unambiguous Set of Blindspots. For each Dataset, we generate 1-3 (chosen uniformly at random)
Blindspots using the process described above. However, when generating multiple blindspots, they can be ambiguous which
causes problems when using them to evaluate BDMs.

Definition. A set of Blindspots, S1, is ambiguous if there exists a different set of Blindspots, S2, such that both:

1. The union of images belonging to S1 is equivalent to the union of images belonging to S2. As a result, S1 and S2 would
both correctly describe the model’s blindspots.

2. An evaluation that uses Discovery Rate (Equation 6) would penalize a BDM if it returns S2 instead of S1. More precisely,
DR(S2, S1) < 1 for λp = λr = 1.

Example. Suppose that we have a very simple Dataset with two Rollable Attributes, X and Y which are uniformly
distributed and independent, and consider two different sets of Blindspots for this Dataset:

• S1 = {B1, B2} where B1 = [(X = 1)] and B2 = [(X = 0), (Y = 1)]
• S2 = {B′

1, B
′

2} where B
′

1 = [(X = 1), (Y = 0)] and B
′

2 = [(Y = 1)]

Then, S1 is ambiguous because:

• S1 and S2 induce the same behavior in the model: they both mislabel an image if X = 1 ∨ Y = 1.
• A BDM would be penalized for returning S2:

BP(B
′

1, B1) = 1.0 ∧ BP(B
′

1, B2) = 0 ∧ BP(B
′

2, B1) = BP(B
′

2, B2) = 0.5 =⇒

BR(S2, B1) = 0.5 ∧ BR(S2, B2) = 0 =⇒

DR(S2, S1) = 0

In fact, for this example, there are only two sets of two unambiguous Blindspots, ({[(X = 0), (Y = 0)], [(X = 1), (Y =
1)]} and {[(X = 0), (Y = 1)], [(X = 1), (Y = 0)]}), and there exists no unambiguous set of three Blindspots.

Preventing Ambiguity. In general, ambiguity occurs whenever the union of two blindspots forms a contiguous region in
the discrete space defined by the Rollable Attributes. Consequently, we prevent ambiguity by ensuring that any pair of
blindspots has at least two of the same Rollable Attributes with different Values in their definition lists. We call this the
Ambiguity Constraint.

Implications of the Ambiguity and Feasibility Constraints. In our experiments, our goal is to generate experimental

4All MetaAttributes are considered to be “Rollable” when generating a random Blindspot.
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configurations with a diverse set of Datasets and associated Blindspots. However, the Ambiguity Constraint (AC) and
Feasibility Constraint (FC) limit the number of valid Blindspots for any specific Dataset.

To see this, notice that the AC places more constraints on each successive Blindspot added to an experimental configuration.
This has two implications. First, that generating an experimental configuration with more Blindspots requires a Dataset
with more Rollable Attributes (more complexity) and Blindspots with more triplets (more specificity). Further, because we
cannot set the Attribute Values of a Blindspot’s triplets independently of each other [FC], we need more complexity and
specificty than a simple analysis based only on the AC suggests. Second, that each successive Blindspot is more closely
related to the previous ones which means that larger sets of Blindspots are “less diverse” or “less random” in some sense.

With these trade-offs in mind, we generated experimental configurations with:

• Background, Square, and 1-3 other Object Layers
• A total of 6-8 Rollable Attributes
• 1-3 Blindspots
• 5-7 triplets per Blindspot

because an experimental configuration with any combination of these values is able to satisfy the AC and the FC while still
having a diverse set of Blindspots.

(Background, Texture, Salt & Pepper),

(Square, Presence, True),
(Square, Color, Orange),
(Square, Texture, Striped),

(Text, Presence, True),
(Text, Color, Orange)

Blindspot #1 Blindspot #2

“images with salt & pepper backgrounds, 
blue striped squares,
and orange text” 

Example Images

(Background, Texture, Salt & Pepper),

(Square, Presence, True),
(Square, Color, Orange),
(Square, Texture, Striped),

(Text, Presence, True)

“images with salt & pepper backgrounds, 
blue striped squares,
and text” 

Figure 8: Two example Blindspots, Blindspot #1 (Left) and Blindspot # 2 (Right) for the example Dataset from Figure 7.
Each Blindspot is defined by a list of (Layer, (Meta)Attribute, Value) triplets as shown above. We also display example
images belonging to each Blindspot: all of the images inside of the blue border belong to Blindspot #1, while only the subset
of images inside of the orange border belong to Blindspot #2. In this example, Blindspot #2 is more specific (defined using
6 semantic features) than Blindspot #1 (defined using 5 semantic features).


