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Abstract

Clinical notes are assigned ICD codes — sets
of codes for diagnoses and procedures. In re-
cent years, predictive machine learning mod-
els have been built for automatic ICD coding.
However, there is a lack of widely accepted
benchmarks for automated ICD coding models
based on large-scale public EHR data. This
paper proposes a public benchmark suite for
ICD-10 coding using a large EHR dataset de-
rived from MIMIC-IV, the most recent public
EHR dataset. We standardize data preprocess-
ing and establish a comprehensive ICD coding
benchmark dataset. Some state-of-the-art mod-
els for ICD prediction are thoroughly investi-
gated, and we provide benchmark results as
useful references for future studies. Our open-
source code offers easy access to data process-
ing steps, benchmark creation, and experiment
replication for those with MIMIC-IV access,
providing insights, guidance, and protocols to
efficiently develop ICD coding models.

1 Introduction

Medical records and clinical documentation serve
as essential sources of information on patient care,
disease progression, and healthcare operations. Fol-
lowing a patient’s visit, medical coders analyze
these records and identify diagnoses and proce-
dures according to the International Classification
of Diseases (ICD) system (WHO, 1948). These
codes are used in predictive modeling for patient
care and health status, as well as for insurance
claims, billing processes, and other hospital func-
tions (Tsui et al., 2002).

Despite healthcare advancements, manual ICD
coding remains problematic. This task, involving
the interpretation of detailed medical records and
the selection of appropriate codes from an extensive
list (18,000 in ICD-9 and 155,000 in ICD-10), is
daunting. Coders scrutinize medical notes to iden-
tify phrases aligning with code descriptions, such

ICD-10 codes
A084: Viral intestinal infection, unspecified

E860: Dehydration

E039: Hypothyroidism, unspecified

F329: Major depressive disorder, single episode,
unspecified

fter the patient came to the floor she had no further
episodes of vomiting or diarrhea she slept well overnight and
by next morning she felt well was able eat both breakfast
and lunch without issue her vs remained stable and she was
discharged in good condition we attributed this to a viral
gastreoenteritis that led to inability to take hydrocortisone
and we discussed follow up with her
to discuss what she might do in another

situation given this is the second time this has happened
within the year medications on admission the preadmission
medication list is accurate and complete bupropion mg po
daily

levothyroxine sodium mcg po daily discharge
medications please higher dose
tid for three days and then go back to your home dose
bupropion mg po daily
levothyroxine sodium mcg po daily ...

Figure 1: An example of an EHR note with ICD-10 codes
(top) matched with its related discharge note text (bottom)
from the MIMIC-IV dataset. For clarity, each code and its
related mentions or evidence within the note text are color-
coded.

as associating "viral gastroenteritis" with the code
A00.84 for "viral intestinal infection". This tedious
process risks coding errors, potentially causing fi-
nancial loss or resource misallocation in patient
care. Hence, automated ICD coding is gaining
attention from both industry and academia.

While a variety of machine learning approaches
have been proposed for ICD prediction (see a sur-
vey in Section 3), a significant limitation is their
singular reliance on the MIMIC-III dataset (Alistair
et al., 2016) and models specifically designed for it.
The dearth of publicly accessible medical records
explains this constraint. The medical notes in
MIMIC-III only cover approximately 9,000 codes,
about half of the full list of available ICD-9 codes.



Hence, there is a need for more ICD coding bench-
mark datasets, which will improve reproducibility,
model comparisons, and inclusion of automated
ICD coding in future studies.

MIMIC-III (Medical Information Mart for In-
tensive Care-III) is a collection of raw Electronic
Health Records (EHR). Although the extensive
adoption of EHR has resulted in the accumulation
of vast amounts of data that can be used to develop
predictive models to improve ICD coding, some
data preprocessing must be carefully conducted
for obtaining a benchmark set. For MIMIC-III,
several benchmarks have been established for ICD-
9 coding in full-code and high-frequent code set-
tings (Mullenbach et al., 2018; Shi et al., 2017).
These benchmarks have standardized the conver-
sion of raw medical notes into data suitable for
building predictive models. They offer clinicians
and researchers easy access to high-quality data,
accelerating research and validation efforts. Non-
proprietary databases and open-source pipelines en-
able the reproduction and enhancement of clinical
studies in previously unattainable ways. However,
since ICD-9 was published in 1977, it includes
outdated and obsolete terms. In contrast, ICD-10,
launched in 1992, was designed to allow code ex-
pansion, allowing healthcare providers to employ
codes more precisely tailored to patient diagnoses.
Currently, the limited available benchmarks mainly
focus on the coding settings of ICD-9, with no
widely recognized benchmarks for ICD-10. A pub-
lic ICD-10 benchmark would reduce entry barriers
for new researchers and facilitate model develop-
ment and comparison.

In this paper, we propose a public benchmark
suite for ICD-10 coding using a large data set
derived from MIMIC-IV (Johnson et al., 2023),
the most recent public EHR data set containing a
decade of critical care database. We standardize the
pre-processing for generating multi-label instances,
each of which contains a discharge summary and a
set of ICD codes. In addition to ICD-10 coding, we
use MIMIC-1V data to create a new ICD-9 bench-
mark with more data points and a greater number
of ICD codes than MIMIC-III. We implement and
compare several popular methods for the ICD cod-
ing prediction tasks. In particular, we carefully
study the best practice in applying some state-of-
the-art models for ICD prediction.

Our open source code ! allows users to follow
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MIMIC Full I IV-ICD9 IV-ICD10
# of documents 52,726 209,359 122,317
Avg words per doc. 1,462 1,460 1,662
Avg ICD codes per doc. 13.9 13.4 16.1
Unique ICD codes 8,921 11,331 26,096

Table 1: Statistics of multi-label instances of MIMIC-III
(ICD-9 only) and MIMIC-1V (both ICD-9 and ICD-10).

our data processing steps, generate benchmarks,
and reproduce our experiments. This study equips
future researchers with information, recommenda-
tions, and protocols for processing raw data and
developing ICD coding models efficiently.

The paper is structured as follows: Section 2
introduces our pipeline for processing the raw
MIMIC-1V data and provides relevant statistics.
In Section 3, we present the baseline models used
and showcases the benchmark results. Addition-
ally, this section includes experiments on hyper-
parameter search, target-metric selection, and abla-
tion studies. Section 4 highlights important related
works. Finally, Section 5 concludes the paper.

2 ICD Code Benchmark

2.1 Data Processing

Unlike MIMIC-III, which exclusively contains
ICD-9 codes, MIMIC-IV encompasses both ICD-9
and ICD-10 codes. The dataset includes 209,359
hospital admissions with ICD-9 codes and 122,317
hospital admissions with ICD-10 codes, compared
to MIMIC-III’s 52,726 documents. Additionally,
there are seven admissions with both ICD code
versions. In terms of labels, MIMIC-IV has
11,311 and 26,096 codes for ICD-9 and ICD-10
versions, respectively, while MIMIC-III has only
8,921 codes. Table 1 displays the basic statistics
of the dataset, juxtaposing them with MIMIC-III's
statistics. Overall, MIMIC-IV features more docu-
ments and labels for both ICD-9 and ICD-10 code
versions, although the number of words and labels
per data instance is roughly equivalent. Evaluating
existing methods from MIMIC-III in the MIMIC-
IV context is advantageous for determining their
performance in larger and more complex multilabel
classification scenarios.

We standardize the terminology as follows: pa-
tients are identified by their subject_id, and each
patient may have multiple hospital admissions, de-
noted by hadm_id. Both subject_id and hadm_id
can be traced back to the MIMIC-IV database to
follow a patient throughout their hospitalization.


https://anonymized

discharge
Full
Dataset
()
< charttime subject_id | 145,855
storetime subject_id | hadm_id | 331,669
hadm_id [cp.g 209,359
procedures_icd ) I ICD-10 122,317
text 331,669

Filter only ICD-9/ICD 10

charttime Split train/valid/test

icd_version

g diagnoses_icd hadm_id hadm_id
train | 188,533 train | 110,442
valid | 7,110 valid | 4,017
charttime test | 13,709 test |7,851
icd_version

ICD-9 ICD-10
Dataset Dataset

Figure 2: The workflow of data processing from raw data

The data processing workflow, illustrated in Fig-
ure 2, creates a data set consisting of discharge
notes and ICD codes. Therefore, each multi-label
instance corresponds to a discharge note and its
respective ICD codes.

The construction is achieved by linking the ’dis-
charge’ table from the 'note’ module to the ’pro-
cedures_icd’ and ’diagnoses_icd’ tables?, if avail-
able, in the hosp’ module, using subject_id and
hadm_id as primary keys. Each discharge note
corresponds to one pair of hospital admission id
(hadm_id) and patient id (subject_id). By us-
ing the hadm_id and subject_id identifiers, the
discharge note can be linked to its corresponding
ICD code labels. After filtering out discharge notes
which do not link to any ’procedures_icd’ or ’di-
agnoses_icd’ tables, the final dataset comprises
331,669 hospital admissions for 145,855 patients.

After obtaining all multi-label instances, it is
necessary to divide the data set into the train, vali-
dation, and test sets. We follow the splitting proce-
dures employed by Mullenbach et al. (2018). First,
the master dataset is split to ensure no overlap of pa-
tient data (as identified by its unique subject_id)
across the training, validation, and testing sets. Sec-
ond, the dataset is partitioned based on patient per-
centage: 90%, 3.33%, and 6.67% for training, de-
velopment, and testing, respectively. Statistics of
the resulting sets are given in Table 2. Because we

2ICD codes are divided into two systems: diagnosis codes
and procedure codes. The diagnosis system covers diagnos-
tic coding, while the procedure system consists of inpatient
hospital procedure coding.

are not allowed to directly release these sets, we
disclose our split by sharing the hadm_id for each
partition to enable reproduction.

2.2 1ICD Code Processing

In the previous section, we delved into full-label
settings. Here, we generate datasets comprising
only the top 50 most frequent labels, mirroring
previous work with MIMIC-III. Specifically, we ac-
quire the 50 most common codes from all instances,
then refine the training, validation, and test sets to
include instances with at least one of these codes.
Table 2 presents the statistics of the resultant sets.

In addition to the top 50 datasets, we also pre-
pare codes for studies utilizing code ontology (Vu
et al., 2020) or descriptions for ICD code predic-
tion (Yuan et al., 2022). Code IDs and descriptions
were obtained from the latest ICD Code release
by the Centers for Medicare and Medicaid Ser-
vices®*. The parental codes for the ICD-9 diag-
nosis codes were represented using the first four
characters for codes starting with "E’, and the first
three for the others. For example, diagnosis code
E801.3 (Railway accident involving collision with
other object and injuring pedal cyclist) belongs to
the E801 category (Railway accident involving col-
lision with other object), and diagnosis code 339.2
(Post-traumatic headache) has its parent code 339
(Other headache syndromes). For ICD-9 procedure
codes, we use the first two characters as the par-
ent codes, e.g., procedure code 08.01 (Incision of
lid margin) belongs to category 08 (Operations on
eyelids). For ICD-10, we use the first three charac-
ters as parent codes for both types of ICD codes;
for instance, code Z00.01 (Encounter for general
adult medical examination with abnormal findings)
has its parent code as Z00 (Encounter for general
examination without complaint, suspected, or re-
ported diagnosis). Statistics of the resulting code
hierarchy can be found in Table 2.

2.3 Corpus

Tables 1 and 2 show that the new ICD-9 and ICD-
10 datasets contain more than thrice and twice the
number of examples compared to MIMIC-III, re-
spectively. The number of ICD codes observed in
the dataset also increases. This is especially true
for the transition to ICD-10, which features a richer
and more specific hierarchy of diagnoses and pro-
cedures and thus more billable codes to select from.

32023-icd-10
“latest-icd-9
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Train Dev Test Train Dev Test
MIMIC-II Full MIMIC-III 50

# Doc. 47,723 1,631 3,372 8,066 1,573 1,729
Avg. # of words per Doc. 1,434 1,724 1,731 1,478 1,739 1,731
Avg. # of parent codes per Doc. 13.7 15.4 159 5.3 5.6 5.7
Total # of unique parent codes 1,149 741 850 39 39 39
Avg. # of child codes per Doc. 15.7 18.0 17.4 5.7 5.9 6.0
Total # of unique child codes 8,692 3,012 4,085 50 50 50

MIMIC-IV-ICD9-Full MIMIC-IV-ICD9-50
# Doc. 188,533 7,110 13,709 170,664 6,406 12,405
Avg. # of words per Doc. 1,459 1,472 1,460 1,499 1,516 1,501
Avg. # of parent codes per Doc. 12.1 12.2 12.0 4.6 4.7 4.7
Total # of unique parent codes 1,230 954 1,041 37 37 37
Avg. # of child codes per Doc. 13.4 13.5 13.3 4.7 4.8 4.8
Total # of unique child codes 11,145 5,115 6,264 50 50 50

MIMIC-IV-ICD10-Full MIMIC-IV-ICD10-50

# Doc. 110,442 4,017 7,851 104,077 3,805 7,368
Total # of words per Doc. 1,662 1,671 1,642 1,687 1,695 1,669
Avg. # parent codes per Doc. 14.8 14.9 14.5 53 5.2 5.1
Total # of unique parent codes 2,220 1,449 1,627 38 38 38
Avg. # child codes per Doc. 16.1 16.2 15.8 54 54 53
Total # unique child codes 25,230 6,738 9,159 50 50 50

Table 2: Statistics of MIMIC-IIT and MIMIC-IV datasets under ICD-9 and ICD-10 settings.

Similar to MIMIC-III, these codes follow a natural
long-tail distribution, where few codes appear often
and the overwhelming majority is rare. Specifically,
50% of the ICD-10 codes appear in at most three
discharge summaries (as compared to 12% for ICD-
9). Furthermore, 2.0% ICD-9 and 6.3% ICD-10
codes appear only in the respective full test sets,
which requires zero-shot learning approaches to
correctly predict these.

Given the domain, the vocabulary of the dis-
charge summaries is expectedly similar to MIMIC-
111, with 42% and 40% of tokens® in MIMIC-IV-
ICD9 and MIMIC-IV-ICD10 appearing in the vo-
cabulary of MIMIC-III, respectively. Vocabulary
differs less for frequent terms, with the overlap for
the top 100 terms being 72% for ICD-9 and 64%
for ICD-10 in MIMIC-IIL.

3 Empirical Study
3.1 Baseline Methods

In this section, we present the best existing models
for ICD prediction, which are utilized for compari-
son in our study.

3.1.1 Models without External
Data/Knowledge

The following models were trained without incor-
porating any form of external data or knowledge.

Safter white-space tokenization, lower-casing stop-word
and digit-only token removal

CAML The Convolutional Attention network for
MultiLabel classification (CAML) was introduced
by Mullenbach et al. (2018). It comprises a single-
layer Convolutional Neural Network (CNN) and
an attention layer that generates label-dependent
representations for each ICD code.

LAAT The Label Attention Model proposed by
Vu et al. (2020) consists of a single bidirectional
Long Short-Term Memory (LSTM) network that
produces latent representations for clinical notes.
The label attention layer applies a structured self-
attention mechanism to generate label-specific doc-
ument representations.

JointLAAT The Hierarchical Joint Learning
model of LAAT predicts the first level of ICD codes
(parent labels) and uses them as additional input for
the final label attention prediction. This approach
helps address imbalanced and long-tail labels, train-
ing the model by minimizing the joint losses of
both parent and child labels.

3.1.2 Models with External Data/Knowledge

The following models incorporate some form of
external data or knowledge.

MSMN The Multiple Synonyms Matching Net-
work (Yuan et al., 2022) leverages synonyms for
improved code representation learning through a
multi-head-synonym attention and pooling mech-
anism. The ICD Code synonyms required for the



MIMIC-IV-ICD9-Full

MIMIC-IV-ICD9-50

Fl1 Precision F1 Precision

Model

Macro Micro P@8 Macro Micro P@5
Models without External Data/Knowledge
CAML (Mullenbach et al., 2018) 11.41  57.70 65.41 68.37 72.24 60.22
LAAT (Vu et al., 2020) 13.12  60.31 67.47 69.99 74.46 62.01
Joint LAAT (Vu et al., 2020) 14.17 60.37 67.46 69.93 7433 61.95
Models with External Data/Knowledge
MSMN (Yuan et al., 2022) 13.94 61.15 68.89 71.85 75.78 62.60
PLM-ICD (Huang et al., 2022) 1440 62.45 70.34 7135 75.46 62.44

Table 3: Results of ICD-9 code prediction models on the MIMIC-IV-ICD9-Full and MIMIC-IV-ICD9-50 test sets.

MIMIC-IV-ICD10-Full

MIMIC-IV-ICD10-50

F1 Precision F1 Precision

Model

Macro Micro P@S8 Macro Micro P@5
Models without External Data/Knowledge
CAML (Mullenbach et al., 2018) 4.61 5332 65.44 65.13  69.80 62.08
LAAT (Vu et al., 2020) 4.47 5540 66.97 68.15 72.56 64.39
Joint LAAT (Vu et al., 2020) 5.71 55.89 66.89 68.41 72.85 64.49
Models with External Data/Knowledge
MSMN (Yuan et al., 2022) 542 5591 67.66 70.31  74.15 65.16
PLM-ICD (Huang et al., 2022) 490 56.95 69.47 69.01 73.27 64.57

Table 4: Results of ICD-10 code prediction models on MIMIC-IV-ICD10-Full and MIMIC-IV-ICD10-50 test sets.

MSMN model (Yuan et al., 2022) are obtained from
UMLS (Bodenreider, 2004).

PLM-ICD ICD Coding with Pretrained Lan-
guage Models as proposed by Huang et al. (2022)
is a framework that employs pretrained language
models to encode documents and uses the label at-
tention layer from Vu et al. (2020) to enhance ICD
coding prediction.

3.2 Implementation and Evaluation

Details of data preprocessing steps and machines
used for experiments are provided in the Appendix.

For evaluation metrics, we follow Mullenbach
et al. (2018) to employ Macro- and Micro-F1, as
well as Precision@k. Our results are based on mul-
tiple runs. We average the results from 5 runs.®
Micro scores average the performance across all
label-instance pairs, providing an aggregate mea-
sure of performance across all labels. On the other
hand, macro-F1 calculates an unweighted average
of F1 scores for each label, treating all labels as
equally important. This is useful for datasets with
imbalanced label distribution, which ensures that

®We do not consider AUC because the values are often too
high to distinguish model performance.

the performance on rare labels is not overshadowed
by the performance on more frequent labels.

For Precision@k, we follow Mullenbach et al.
(2018) to choose k = 8 for full settings and k = 5
for top-50 settings, which is based on the average
number of labels per instance. Since MIMIC-1V
and MIMIC-III have a similar number of labels
per instance, we retain the same values of k. The
stopping criterion is Precision@k on the validation
set for CAML, MSMN, and PLM-ICD, and Micro-
F1 for LAAT (based on original implementations).

3.3 Benchmark Results

We execute the baseline models using the origi-
nal implementations with the hyper-parameters re-
ported in their respective papers. The results are
shown in Tables 3 and 4. Among the models with-
out external data or knowledge, LAAT and Joint
LAAT are superior to CAML in both the full and
top-50 sets.

Among the models that utilize external data or
knowledge, PLM-ICD achieves better performance
in the full set, while MSMN shows better perfor-
mance in the top-50 set. Also, except for Macro-F1,
models that incorporate external knowledge tend
to outperform those that do not.



MIMIC-IV-ICD9-Full MIMIC-IV-ICD9-50

MIMIC-IV-ICD10-Full MIMIC-IV-ICD10-50

Model F1 Precision F1 Precision F1 Precision F1 Precision
Macro Micro P@8 Macro Micro P@5 Macro Micro P@8 Macro Micro P@5
CAML 12.19 58.67 67.37 69.08 73.82 61.48 5.17  54.60 67.46 66.64  71.57 63.32
LAAT 1432 61.11 68.48 70.22  74.80 62.29 483 56.75 68.00 67.96 72.51 64.22
Table 5: Results of CAML and LAAT after parameter search on the MIMIC-IV test sets.
MIMIC-IV-ICD9-Full MIMIC-IV-ICD9-50 MIMIC-IV-ICD10-Full MIMIC-IV-ICD10-50
Validataion F1 Precision F1 Precision F1 Precision F1 Precision
metric Macro Micro P@8 Macro Micro P@5 Macro Micro P@8 Macro Micro P@5
P@3 12.19 58.67 67.37 69.08 73.82 61.48 5.17  54.60 67.46 66.64 71.57 63.32
Micro-F1 13.08 58.95 67.03 68.95 73.78 61.39 5.05 5451 67.43 66.81 71.63 63.40
Macro-F1 14.62 55.40 62.08 69.38  74.00 61.49 6.74 5250 62.82 66.72 71.63 63.29

Table 6: Results of CAML using different validation metrics for parameter search on the MIMIC-1V test sets.

The superiority of LAAT over CAML on
MIMIC-III was shown by Vu et al. (2020). Our
results for MIMIC-IV support a similar pattern.
However, in Section 3.4, we will demonstrate that
the performance gap between the models becomes
smaller once they are tuned.

3.4 Tuned Model Configurations

In Section 3.3, we directly run each baseline model.
However, it is essential to conduct proper tuning for
any machine learning method to assess the model’s
true capabilities. To establish a benchmark with re-
liable results for future development, we perform a
comprehensive hyper-parameter search for CAML
and LAAT. After identifying the configurations that
yield the best validation results, we report the corre-
sponding test performance. Note that the validation
result of each hyper-parameter configuration is by
predicting the development set shown in Table 2.

The results are presented in Table 5. Com-
pared with Tables 3 and 4, where we apply the
same hyper-parameters used in MIMIC-III, the
performance consistently improves after a hyper-
parameter search. For CAML, the improvement is
significant, bringing it much closer in performance
to LAAT. For LAAT, the improvement on the full
set is larger than the top-50 set. In more difficult
scenarios, like the full set with numerous labels,
hyper-parameter search becomes crucial for better
performance. In summary, we show the importance
of hyper-parameter search in utilizing a model ef-
fectively, and our results can serve as a reference
for future development.

In Section 3.2, we note that different validation
metrics are used in the original implementation
of baseline models. Ideally, the validation metric
should correspond with the target metric (i.e., test

metric in our case) for future prediction. For better
understanding, we report CAML’s test performance
under various validation metrics in Table 6.

In general, the metric used in the validation pro-
cess results in corresponding high test performance
in the same metric, simply because the validation
metric is optimized in the process. However, in
some situations optimizing a metric such as Macro-
F1 can result in a significant loss in other metrics.
These experiments show that it is essential to de-
cide the target measure according to the practical
need. Also, when comparing different models, the
same validation metric should be used.

3.5 Ablation study about code frequency

To assess the effectiveness of our baseline mod-
els, we perform an ablation study on both the
MIMIC-IV-ICD9-Full and MIMIC-1V-ICD10-Full
datasets, comparing the two best-performing mod-
els in our benchmark (MSMN and PLM-ICD).
We examine the performance of these models
on labels grouped by their frequency of appear-
ance. To gain deeper insights into the models’
predictions, we categorize medical codes into five
groups based on their frequencies in MIMIC-IV-
Full-ICD-9 and MIMIC-IV-Full-ICD-10 datasets:
1-10,11 - 50,51 — 100,101 — 500, > 500. The

Frequency range  #ICD-9 codes  # ICD-10 codes

1-10 5,262 18,483
11-50 2,706 4,471
51-100 911 1,179
101-500 1,492 1,337
>500 853 626

Table 7: Label frequency distribution of MIMIC-IV-
ICDY-Full and MIMIC-IV-ICD10-Full.
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Figure 3: Comparison of Micro-F1 scores between
PLM-ICD and MSMN on labels with different MIMIC-
IV-ICDO-Full test set frequencies.
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Figure 4: Comparison of Macro-F1 scores between
PLM-ICD and MSMN on labels with different MIMIC-
IV-ICDO-Full test set frequencies.

statistics of all groups in both datasets are presented
in Table 7.

MIMIC-IV-ICD-9 We compare the Micro-F1
and Macro-F1 scores across different groups. In
general, PLM-ICD outperforms MSMN in most
groups. For Micro-F1 shown in Figure 3, the differ-
ences are particularly noticeable in the frequent
groups: 1% in the > 500 group versus 3% in
the 101 — 500, 51 — 100, and 11 — 50 groups,
while PLM-ICD performs worse than MSMN in
the 1 — 10 group, which contains the majority of
codes. For Macro-F1 shown in Figure 4, the differ-
ences are similar in the frequent groups: 1% in the
> 500 group, 4% in the 101 — 500 group, 5% in
the 51 — 100 group, and 2% in the 11 — 50 group,
while PLM-ICD still performs slightly worse than
MSMN in the 1 — 10 group. Overall, PLM-ICD
learns better than MSMN in the ICD-9 setting.

MIMIC-IV-ICD-10 We compare the Micro- and
Macro-F1 scores across different groups in Fig-
ures 5 and 6. In general, PLM-ICD outperforms
MSMN in most groups. The differences in Micro-
F1 are particularly noticeable in the more frequent
groups (2% in > 500 and 101 — 500 groups ver-
sus), while PLM-ICD performs worse than MSMN
in the 1 — 10, 11 — 50, and > 500 groups, which
contains the majority of codes. We observe the
similar pattern in Macro-F1: the differences are
1%) in groups > 500, 101 — 500, while PLM-ICD
performs worse than MSMN in the 51 — 100 and
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Figure 5: Comparison of Micro-F1 scores between
PLM-ICD and MSMN on labels with different MIMIC-
IV-ICD-10-Full test set frequencies.
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Figure 6: Comparison of Macro-F1 scores between
PLM-ICD and MSMN on labels with different MIMIC-
IV-ICD-10-Full test set frequencies.

11 — 50 group but slightly better in the 1 — 10
group which contains the majority of codes. One
possible explanation for this is that both models
can learn from a few examples in very rare codes;
however, with the assistance of multiple synonyms,
MSMN can better match the semantic meaning of
the codes to the medical notes compared to PLM-
ICD, which does not consider code descriptions
and relies solely on code embeddings. In the more
frequent groups, PLM-ICD outperforms MSMN
due to its superior encoder from large pretrained
models. This suggests a potential future direction
to improve both code representation and medical
note representation using large language models.

4 Related Work

Before deep learning, automated ICD coding meth-
ods relied on rule-based or decision tree-based ap-
proaches (Farkas and Szarvas, 2008; Scheurwegs
et al., 2017). The focus has since changed to neural
networks, which can be classified into two main cat-
egories. The first involves encoding medical docu-
ments using pre-trained language models (Li and
Yu, 2020; Liu et al., 2021), adapting pre-trained
language models for the clinical domain (Lewis
et al., 2020), or improving language models with
medical knowledge, such as disease taxonomies,
synonyms and abbreviations (Yang et al., 2022;
Yuan et al., 2022). The second category aims to im-
prove pre-trained language model representations
by capturing the relevance between the document



and label metadata, including descriptions (Mullen-
bach et al., 2018; Vu et al., 2020), co-occurrences
(Cao et al., 2020), hierarchies (Falis et al., 2019;
Vu et al., 2020), or thesaurus knowledge such as
synonyms (Yuan et al., 2022).

Many medical coding datasets exist in various
languages and for various medical stages, but
few of them are publicly available due to pri-
vacy concerns. The most popular datasets are the
MIMIC databases. MIMIC-III was one of the first
large, freely-available databases consisting of de-
identified health-related data for patients admitted
to critical care units at the Beth Israel Deaconess
Medical Center from 2001 to 2012. The database
includes information like demographics, vital sign
measurements, laboratory results, procedures, med-
ications, caregiver notes, imaging reports, and mor-
tality (both in and out of the hospital). MIMIC-III
supports a wide range of analytic studies, including
epidemiology, clinical decision-rule improvement,
and electronic tool development. Mullenbach et al.
(2018) and Shi et al. (2017) are the first two studies
to publish a data pipeline for processing discharge
summaries and matching them with ICD-9 codes,
forming the MIMIC-III-full and MIMIC-III-top-
50 sets, which became the popular benchmark for
MIMIC-III ICD coding.

MIMIC-1V is the latest database containing real
hospital stays for patients admitted to a tertiary
academic medical center in Boston, MA, USA. It
contains comprehensive information about each
patient during their hospital stay, such as labo-
ratory measurements, medications administered,
and documented vital signs. The database aims to
support a wide variety of research in healthcare.
MIMIC-IV builds upon the success of MIMIC-III
and incorporates numerous improvements. Several
benchmarks and pipelines have been developed
for MIMIC-IV to utilize its extensive dataset for
various medical tasks: for example, Gupta et al.
(2022) propose a data processing pipeline for ex-
tracting, cleaning, and preprocessing MIMIC-1V
data for time-series tasks such as mortality predic-
tion and readmission admission, while Xie et al.
(2022) propose a benchmark for emergency depart-
ment (ED) triage, critical outcome prediction, and
reattendance prediction at ED triage. However,
there is no benchmark for ICD coding for MIMIC-
IV. Our work aims to provide a standard processing
pipeline for this task, allowing researchers to pro-
cess data, reproduce results, and conduct further
research on top of it.

5 Conclusions and Recommendations

The field of machine learning is witnessing a surge
in research focused on building clinical predictive
models that effectively capture the complexities in
EHR data and aid in predicting future outcomes.
MIMIC datasets encourage research in this domain
by providing a unique and extensive EHR dataset
for researchers to explore. In this study, we es-
tablish a standardized benchmark for ICD coding
on MIMIC-1V, covering both ICD-9 and ICD-10
codes. This process involves converting raw data
into a task-specific format and applying popular
deep learning baseline methods to the new datasets.
Additionally, we demonstrate that code frequency
not only emphasizes the model’s enhanced predic-
tive power for common codes but also suggests
ways to improve performance for rarer ones. For
example, MSMN performs better than PLM-ICD
in predicting less common codes. Consequently,
our benchmark dataset provides a more holistic
and pragmatic approach to the ever-evolving labels
in real-world applications. The long-tail distribu-
tion of ICD code predictions continues to challenge
NLP, as traditional constraints might not fully ad-
dress the breadth of real-world situations. Follow-
ing the example set by Mullenbach et al. (2018),
we make our data processing code open-source, en-
abling researchers to reproduce and enhance the
results.

In the future, we plan to expand our benchmark
by adding more baselines, potentially incorporat-
ing relevant features such as drug codes and patient
vitals. Since ICD codes play a crucial role in en-
hancing patient care, facilitating research, and en-
suring accurate communication among healthcare
providers, our goal is to extend the use of clinical
notes for joint prediction of ICD codes and read-
mission, triage, and mortality prediction tasks. By
openly sharing our data processing code with the
community, we hope to inspire others to join us in
improving medical code prediction.



Limitations

Medical coding is crucial for the healthcare indus-
try. With sufficient data for training and evaluation,
automated medical coding can improve both ac-
curacy and efficiency, aiding professional coders
in reviewing patient medical records more effec-
tively, reducing administrative costs, and ultimately
improving care.

However, our study, driven by this objective,
faces certain limitations that we address in the fol-
lowing. Like other data-driven studies, our result
is constrained by our reliance on the settings of
the MIMIC datasets. This dataset, characterized
by its lack of diversity, includes only monolingual
English discharge notes collected from emergency
or intensive care units serving US patients. Con-
sequently, it is challenging to assert with certainty
that the effectiveness of state-of-the-art methods in
this dataset would translate seamlessly into differ-
ent clinical datasets, such as those encompassing
other types of medical notes, languages, regions,
or departments.
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6 Appendix

Training Details For clinical note preprocessing,
we employed the standard regular expression tok-
enizer from the Natural Language Toolkit (NLTK)
to tokenize the text into a list of word characters,
convert the text to lowercase, and truncate it to
the maximum length for each model. For training,
we primarily adjusted the batch size to accommo-
date our GPUs, as MIMIC-IV datasets are larger
and contain more labels than MIMIC-III. CAML,
LAAT, and JointLAAT were trained using a single
16GB Tesla P100 GPU. Meanwhile MSMN, unlike
for MIMIC-III, required more than 32 GB of mem-
ory and was thus trained on an 0GB A100 GPU.
PLM-ICD was optimized using two 16 GB V100
GPUs.

Parameter Algorithm and Search Space For
the search algorithm, we employ grid search, se-
lecting the parameter space by examining the most
crucial hyper-parameters based on MIMIC-III-full.

The parameter tuning space of CAML is as fol-
lows:

Learning Rate 0.0001, 0.00001

Filter Size 8, 10, 12
Number of Filters 350, 550
Dropout 0.2,0.6

For LAAT, the search space is as follows:

Learning Rate 0.001, 0.0003
Encoder Dropout 0, 0.2, 0.4
RNN Dimension 512, 768, 1024
dg 256, 384, 512
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