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Abstract

Clinical notes are assigned ICD codes – sets001
of codes for diagnoses and procedures. In re-002
cent years, predictive machine learning mod-003
els have been built for automatic ICD coding.004
However, there is a lack of widely accepted005
benchmarks for automated ICD coding models006
based on large-scale public EHR data. This007
paper proposes a public benchmark suite for008
ICD-10 coding using a large EHR dataset de-009
rived from MIMIC-IV, the most recent public010
EHR dataset. We standardize data preprocess-011
ing and establish a comprehensive ICD coding012
benchmark dataset. Some state-of-the-art mod-013
els for ICD prediction are thoroughly investi-014
gated, and we provide benchmark results as015
useful references for future studies. Our open-016
source code offers easy access to data process-017
ing steps, benchmark creation, and experiment018
replication for those with MIMIC-IV access,019
providing insights, guidance, and protocols to020
efficiently develop ICD coding models.021

1 Introduction022

Medical records and clinical documentation serve023

as essential sources of information on patient care,024

disease progression, and healthcare operations. Fol-025

lowing a patient’s visit, medical coders analyze026

these records and identify diagnoses and proce-027

dures according to the International Classification028

of Diseases (ICD) system (WHO, 1948). These029

codes are used in predictive modeling for patient030

care and health status, as well as for insurance031

claims, billing processes, and other hospital func-032

tions (Tsui et al., 2002).033

Despite healthcare advancements, manual ICD034

coding remains problematic. This task, involving035

the interpretation of detailed medical records and036

the selection of appropriate codes from an extensive037

list (18,000 in ICD-9 and 155,000 in ICD-10), is038

daunting. Coders scrutinize medical notes to iden-039

tify phrases aligning with code descriptions, such040

ICD-10 codes
A084: Viral intestinal infection, unspecified
E271: Primary adrenocortical insufficiency
E860: Dehydration
E039: Hypothyroidism, unspecified
F329: Major depressive disorder, single episode, 
unspecified

fter the patient came to the floor she had no further 
episodes of vomiting or diarrhea she slept well overnight and 
by next morning she felt well was able eat both breakfast 
and lunch without issue her vs remained stable and she was 
discharged in good condition we attributed this to a viral 
gastreoenteritis that led to inability to take hydrocortisone 
and adrenal crisis we discussed follow up with her 
endocrinologist to discuss what she might do in another 
situation given this is the second time this has happened 
within the year medications on admission the preadmission 
medication list is accurate and complete bupropion mg po 
daily fludrocortisone acetate mg po daily hydrocortisone mg 
po daily levothyroxine sodium mcg po daily discharge 
medications hydrocortisone mg po q8h please higher dose 
tid for three days and then go back to your home dose 
bupropion mg po daily fludrocortisone acetate mg po daily 
levothyroxine sodium mcg po daily …

Figure 1: An example of an EHR note with ICD-10 codes
(top) matched with its related discharge note text (bottom)
from the MIMIC-IV dataset. For clarity, each code and its
related mentions or evidence within the note text are color-
coded.

as associating "viral gastroenteritis" with the code 041

A00.84 for "viral intestinal infection". This tedious 042

process risks coding errors, potentially causing fi- 043

nancial loss or resource misallocation in patient 044

care. Hence, automated ICD coding is gaining 045

attention from both industry and academia. 046

While a variety of machine learning approaches 047

have been proposed for ICD prediction (see a sur- 048

vey in Section 3), a significant limitation is their 049

singular reliance on the MIMIC-III dataset (Alistair 050

et al., 2016) and models specifically designed for it. 051

The dearth of publicly accessible medical records 052

explains this constraint. The medical notes in 053

MIMIC-III only cover approximately 9,000 codes, 054

about half of the full list of available ICD-9 codes. 055
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Hence, there is a need for more ICD coding bench-056

mark datasets, which will improve reproducibility,057

model comparisons, and inclusion of automated058

ICD coding in future studies.059

MIMIC-III (Medical Information Mart for In-060

tensive Care-III) is a collection of raw Electronic061

Health Records (EHR). Although the extensive062

adoption of EHR has resulted in the accumulation063

of vast amounts of data that can be used to develop064

predictive models to improve ICD coding, some065

data preprocessing must be carefully conducted066

for obtaining a benchmark set. For MIMIC-III,067

several benchmarks have been established for ICD-068

9 coding in full-code and high-frequent code set-069

tings (Mullenbach et al., 2018; Shi et al., 2017).070

These benchmarks have standardized the conver-071

sion of raw medical notes into data suitable for072

building predictive models. They offer clinicians073

and researchers easy access to high-quality data,074

accelerating research and validation efforts. Non-075

proprietary databases and open-source pipelines en-076

able the reproduction and enhancement of clinical077

studies in previously unattainable ways. However,078

since ICD-9 was published in 1977, it includes079

outdated and obsolete terms. In contrast, ICD-10,080

launched in 1992, was designed to allow code ex-081

pansion, allowing healthcare providers to employ082

codes more precisely tailored to patient diagnoses.083

Currently, the limited available benchmarks mainly084

focus on the coding settings of ICD-9, with no085

widely recognized benchmarks for ICD-10. A pub-086

lic ICD-10 benchmark would reduce entry barriers087

for new researchers and facilitate model develop-088

ment and comparison.089

In this paper, we propose a public benchmark090

suite for ICD-10 coding using a large data set091

derived from MIMIC-IV (Johnson et al., 2023),092

the most recent public EHR data set containing a093

decade of critical care database. We standardize the094

pre-processing for generating multi-label instances,095

each of which contains a discharge summary and a096

set of ICD codes. In addition to ICD-10 coding, we097

use MIMIC-IV data to create a new ICD-9 bench-098

mark with more data points and a greater number099

of ICD codes than MIMIC-III. We implement and100

compare several popular methods for the ICD cod-101

ing prediction tasks. In particular, we carefully102

study the best practice in applying some state-of-103

the-art models for ICD prediction.104

Our open source code 1 allows users to follow105

1https://anonymized

MIMIC Full III IV-ICD9 IV-ICD10

# of documents 52,726 209,359 122,317
Avg words per doc. 1,462 1,460 1,662
Avg ICD codes per doc. 13.9 13.4 16.1
Unique ICD codes 8,921 11,331 26,096

Table 1: Statistics of multi-label instances of MIMIC-III
(ICD-9 only) and MIMIC-IV (both ICD-9 and ICD-10).

our data processing steps, generate benchmarks, 106

and reproduce our experiments. This study equips 107

future researchers with information, recommenda- 108

tions, and protocols for processing raw data and 109

developing ICD coding models efficiently. 110

The paper is structured as follows: Section 2 111

introduces our pipeline for processing the raw 112

MIMIC-IV data and provides relevant statistics. 113

In Section 3, we present the baseline models used 114

and showcases the benchmark results. Addition- 115

ally, this section includes experiments on hyper- 116

parameter search, target-metric selection, and abla- 117

tion studies. Section 4 highlights important related 118

works. Finally, Section 5 concludes the paper. 119

2 ICD Code Benchmark 120

2.1 Data Processing 121

Unlike MIMIC-III, which exclusively contains 122

ICD-9 codes, MIMIC-IV encompasses both ICD-9 123

and ICD-10 codes. The dataset includes 209,359 124

hospital admissions with ICD-9 codes and 122,317 125

hospital admissions with ICD-10 codes, compared 126

to MIMIC-III’s 52,726 documents. Additionally, 127

there are seven admissions with both ICD code 128

versions. In terms of labels, MIMIC-IV has 129

11,311 and 26,096 codes for ICD-9 and ICD-10 130

versions, respectively, while MIMIC-III has only 131

8,921 codes. Table 1 displays the basic statistics 132

of the dataset, juxtaposing them with MIMIC-III’s 133

statistics. Overall, MIMIC-IV features more docu- 134

ments and labels for both ICD-9 and ICD-10 code 135

versions, although the number of words and labels 136

per data instance is roughly equivalent. Evaluating 137

existing methods from MIMIC-III in the MIMIC- 138

IV context is advantageous for determining their 139

performance in larger and more complex multilabel 140

classification scenarios. 141

We standardize the terminology as follows: pa- 142

tients are identified by their subject_id, and each 143

patient may have multiple hospital admissions, de- 144

noted by hadm_id. Both subject_id and hadm_id 145

can be traced back to the MIMIC-IV database to 146

follow a patient throughout their hospitalization. 147
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Figure 2: The workflow of data processing from raw data

The data processing workflow, illustrated in Fig-148

ure 2, creates a data set consisting of discharge149

notes and ICD codes. Therefore, each multi-label150

instance corresponds to a discharge note and its151

respective ICD codes.152

The construction is achieved by linking the ’dis-153

charge’ table from the ’note’ module to the ’pro-154

cedures_icd’ and ’diagnoses_icd’ tables2, if avail-155

able, in the ’hosp’ module, using subject_id and156

hadm_id as primary keys. Each discharge note157

corresponds to one pair of hospital admission id158

(hadm_id) and patient id (subject_id). By us-159

ing the hadm_id and subject_id identifiers, the160

discharge note can be linked to its corresponding161

ICD code labels. After filtering out discharge notes162

which do not link to any ’procedures_icd’ or ’di-163

agnoses_icd’ tables, the final dataset comprises164

331,669 hospital admissions for 145,855 patients.165

After obtaining all multi-label instances, it is166

necessary to divide the data set into the train, vali-167

dation, and test sets. We follow the splitting proce-168

dures employed by Mullenbach et al. (2018). First,169

the master dataset is split to ensure no overlap of pa-170

tient data (as identified by its unique subject_id)171

across the training, validation, and testing sets. Sec-172

ond, the dataset is partitioned based on patient per-173

centage: 90%, 3.33%, and 6.67% for training, de-174

velopment, and testing, respectively. Statistics of175

the resulting sets are given in Table 2. Because we176

2ICD codes are divided into two systems: diagnosis codes
and procedure codes. The diagnosis system covers diagnos-
tic coding, while the procedure system consists of inpatient
hospital procedure coding.

are not allowed to directly release these sets, we 177

disclose our split by sharing the hadm_id for each 178

partition to enable reproduction. 179

2.2 ICD Code Processing 180

In the previous section, we delved into full-label 181

settings. Here, we generate datasets comprising 182

only the top 50 most frequent labels, mirroring 183

previous work with MIMIC-III. Specifically, we ac- 184

quire the 50 most common codes from all instances, 185

then refine the training, validation, and test sets to 186

include instances with at least one of these codes. 187

Table 2 presents the statistics of the resultant sets. 188

In addition to the top 50 datasets, we also pre- 189

pare codes for studies utilizing code ontology (Vu 190

et al., 2020) or descriptions for ICD code predic- 191

tion (Yuan et al., 2022). Code IDs and descriptions 192

were obtained from the latest ICD Code release 193

by the Centers for Medicare and Medicaid Ser- 194

vices34. The parental codes for the ICD-9 diag- 195

nosis codes were represented using the first four 196

characters for codes starting with ’E’, and the first 197

three for the others. For example, diagnosis code 198

E801.3 (Railway accident involving collision with 199

other object and injuring pedal cyclist) belongs to 200

the E801 category (Railway accident involving col- 201

lision with other object), and diagnosis code 339.2 202

(Post-traumatic headache) has its parent code 339 203

(Other headache syndromes). For ICD-9 procedure 204

codes, we use the first two characters as the par- 205

ent codes, e.g., procedure code 08.01 (Incision of 206

lid margin) belongs to category 08 (Operations on 207

eyelids). For ICD-10, we use the first three charac- 208

ters as parent codes for both types of ICD codes; 209

for instance, code Z00.01 (Encounter for general 210

adult medical examination with abnormal findings) 211

has its parent code as Z00 (Encounter for general 212

examination without complaint, suspected, or re- 213

ported diagnosis). Statistics of the resulting code 214

hierarchy can be found in Table 2. 215

2.3 Corpus 216

Tables 1 and 2 show that the new ICD-9 and ICD- 217

10 datasets contain more than thrice and twice the 218

number of examples compared to MIMIC-III, re- 219

spectively. The number of ICD codes observed in 220

the dataset also increases. This is especially true 221

for the transition to ICD-10, which features a richer 222

and more specific hierarchy of diagnoses and pro- 223

cedures and thus more billable codes to select from. 224

32023-icd-10
4latest-icd-9
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Train Dev Test Train Dev Test

MIMIC-III Full MIMIC-III 50

# Doc. 47,723 1,631 3,372 8,066 1,573 1,729
Avg. # of words per Doc. 1,434 1,724 1,731 1,478 1,739 1,731
Avg. # of parent codes per Doc. 13.7 15.4 15.9 5.3 5.6 5.7
Total # of unique parent codes 1,149 741 850 39 39 39
Avg. # of child codes per Doc. 15.7 18.0 17.4 5.7 5.9 6.0
Total # of unique child codes 8,692 3,012 4,085 50 50 50

MIMIC-IV-ICD9-Full MIMIC-IV-ICD9-50

# Doc. 188,533 7,110 13,709 170,664 6,406 12,405
Avg. # of words per Doc. 1,459 1,472 1,460 1,499 1,516 1,501
Avg. # of parent codes per Doc. 12.1 12.2 12.0 4.6 4.7 4.7
Total # of unique parent codes 1,230 954 1,041 37 37 37
Avg. # of child codes per Doc. 13.4 13.5 13.3 4.7 4.8 4.8
Total # of unique child codes 11,145 5,115 6,264 50 50 50

MIMIC-IV-ICD10-Full MIMIC-IV-ICD10-50

# Doc. 110,442 4,017 7,851 104,077 3,805 7,368
Total # of words per Doc. 1,662 1,671 1,642 1,687 1,695 1,669
Avg. # parent codes per Doc. 14.8 14.9 14.5 5.3 5.2 5.1
Total # of unique parent codes 2,220 1,449 1,627 38 38 38
Avg. # child codes per Doc. 16.1 16.2 15.8 5.4 5.4 5.3
Total # unique child codes 25,230 6,738 9,159 50 50 50

Table 2: Statistics of MIMIC-III and MIMIC-IV datasets under ICD-9 and ICD-10 settings.

Similar to MIMIC-III, these codes follow a natural225

long-tail distribution, where few codes appear often226

and the overwhelming majority is rare. Specifically,227

50% of the ICD-10 codes appear in at most three228

discharge summaries (as compared to 12% for ICD-229

9). Furthermore, 2.0% ICD-9 and 6.3% ICD-10230

codes appear only in the respective full test sets,231

which requires zero-shot learning approaches to232

correctly predict these.233

Given the domain, the vocabulary of the dis-234

charge summaries is expectedly similar to MIMIC-235

III, with 42% and 40% of tokens5 in MIMIC-IV-236

ICD9 and MIMIC-IV-ICD10 appearing in the vo-237

cabulary of MIMIC-III, respectively. Vocabulary238

differs less for frequent terms, with the overlap for239

the top 100 terms being 72% for ICD-9 and 64%240

for ICD-10 in MIMIC-III.241

3 Empirical Study242

3.1 Baseline Methods243

In this section, we present the best existing models244

for ICD prediction, which are utilized for compari-245

son in our study.246

3.1.1 Models without External247

Data/Knowledge248

The following models were trained without incor-249

porating any form of external data or knowledge.250

5after white-space tokenization, lower-casing stop-word
and digit-only token removal

CAML The Convolutional Attention network for 251

MultiLabel classification (CAML) was introduced 252

by Mullenbach et al. (2018). It comprises a single- 253

layer Convolutional Neural Network (CNN) and 254

an attention layer that generates label-dependent 255

representations for each ICD code. 256

LAAT The Label Attention Model proposed by 257

Vu et al. (2020) consists of a single bidirectional 258

Long Short-Term Memory (LSTM) network that 259

produces latent representations for clinical notes. 260

The label attention layer applies a structured self- 261

attention mechanism to generate label-specific doc- 262

ument representations. 263

JointLAAT The Hierarchical Joint Learning 264

model of LAAT predicts the first level of ICD codes 265

(parent labels) and uses them as additional input for 266

the final label attention prediction. This approach 267

helps address imbalanced and long-tail labels, train- 268

ing the model by minimizing the joint losses of 269

both parent and child labels. 270

3.1.2 Models with External Data/Knowledge 271

The following models incorporate some form of 272

external data or knowledge. 273

MSMN The Multiple Synonyms Matching Net- 274

work (Yuan et al., 2022) leverages synonyms for 275

improved code representation learning through a 276

multi-head-synonym attention and pooling mech- 277

anism. The ICD Code synonyms required for the 278
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MIMIC-IV-ICD9-Full MIMIC-IV-ICD9-50

Model
F1 Precision F1 Precision

Macro Micro P@8 Macro Micro P@5

Models without External Data/Knowledge
CAML (Mullenbach et al., 2018) 11.41 57.70 65.41 68.37 72.24 60.22
LAAT (Vu et al., 2020) 13.12 60.31 67.47 69.99 74.46 62.01
Joint LAAT (Vu et al., 2020) 14.17 60.37 67.46 69.93 74.33 61.95

Models with External Data/Knowledge
MSMN (Yuan et al., 2022) 13.94 61.15 68.89 71.85 75.78 62.60
PLM-ICD (Huang et al., 2022) 14.40 62.45 70.34 71.35 75.46 62.44

Table 3: Results of ICD-9 code prediction models on the MIMIC-IV-ICD9-Full and MIMIC-IV-ICD9-50 test sets.

MIMIC-IV-ICD10-Full MIMIC-IV-ICD10-50

Model
F1 Precision F1 Precision

Macro Micro P@8 Macro Micro P@5

Models without External Data/Knowledge
CAML (Mullenbach et al., 2018) 4.61 53.32 65.44 65.13 69.80 62.08
LAAT (Vu et al., 2020) 4.47 55.40 66.97 68.15 72.56 64.39
Joint LAAT (Vu et al., 2020) 5.71 55.89 66.89 68.41 72.85 64.49

Models with External Data/Knowledge
MSMN (Yuan et al., 2022) 5.42 55.91 67.66 70.31 74.15 65.16
PLM-ICD (Huang et al., 2022) 4.90 56.95 69.47 69.01 73.27 64.57

Table 4: Results of ICD-10 code prediction models on MIMIC-IV-ICD10-Full and MIMIC-IV-ICD10-50 test sets.

MSMN model (Yuan et al., 2022) are obtained from279

UMLS (Bodenreider, 2004).280

PLM-ICD ICD Coding with Pretrained Lan-281

guage Models as proposed by Huang et al. (2022)282

is a framework that employs pretrained language283

models to encode documents and uses the label at-284

tention layer from Vu et al. (2020) to enhance ICD285

coding prediction.286

3.2 Implementation and Evaluation287

Details of data preprocessing steps and machines288

used for experiments are provided in the Appendix.289

For evaluation metrics, we follow Mullenbach290

et al. (2018) to employ Macro- and Micro-F1, as291

well as Precision@k. Our results are based on mul-292

tiple runs. We average the results from 5 runs.6293

Micro scores average the performance across all294

label-instance pairs, providing an aggregate mea-295

sure of performance across all labels. On the other296

hand, macro-F1 calculates an unweighted average297

of F1 scores for each label, treating all labels as298

equally important. This is useful for datasets with299

imbalanced label distribution, which ensures that300

6We do not consider AUC because the values are often too
high to distinguish model performance.

the performance on rare labels is not overshadowed 301

by the performance on more frequent labels. 302

For Precision@k, we follow Mullenbach et al. 303

(2018) to choose k = 8 for full settings and k = 5 304

for top-50 settings, which is based on the average 305

number of labels per instance. Since MIMIC-IV 306

and MIMIC-III have a similar number of labels 307

per instance, we retain the same values of k. The 308

stopping criterion is Precision@k on the validation 309

set for CAML, MSMN, and PLM-ICD, and Micro- 310

F1 for LAAT (based on original implementations). 311

3.3 Benchmark Results 312

We execute the baseline models using the origi- 313

nal implementations with the hyper-parameters re- 314

ported in their respective papers. The results are 315

shown in Tables 3 and 4. Among the models with- 316

out external data or knowledge, LAAT and Joint 317

LAAT are superior to CAML in both the full and 318

top-50 sets. 319

Among the models that utilize external data or 320

knowledge, PLM-ICD achieves better performance 321

in the full set, while MSMN shows better perfor- 322

mance in the top-50 set. Also, except for Macro-F1, 323

models that incorporate external knowledge tend 324

to outperform those that do not. 325
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MIMIC-IV-ICD9-Full MIMIC-IV-ICD9-50 MIMIC-IV-ICD10-Full MIMIC-IV-ICD10-50

Model
F1 Precision F1 Precision F1 Precision F1 Precision

Macro Micro P@8 Macro Micro P@5 Macro Micro P@8 Macro Micro P@5

CAML 12.19 58.67 67.37 69.08 73.82 61.48 5.17 54.60 67.46 66.64 71.57 63.32
LAAT 14.32 61.11 68.48 70.22 74.80 62.29 4.83 56.75 68.00 67.96 72.51 64.22

Table 5: Results of CAML and LAAT after parameter search on the MIMIC-IV test sets.

MIMIC-IV-ICD9-Full MIMIC-IV-ICD9-50 MIMIC-IV-ICD10-Full MIMIC-IV-ICD10-50
Validataion
metric

F1 Precision F1 Precision F1 Precision F1 Precision

Macro Micro P@8 Macro Micro P@5 Macro Micro P@8 Macro Micro P@5

P@8 12.19 58.67 67.37 69.08 73.82 61.48 5.17 54.60 67.46 66.64 71.57 63.32
Micro-F1 13.08 58.95 67.03 68.95 73.78 61.39 5.05 54.51 67.43 66.81 71.63 63.40
Macro-F1 14.62 55.40 62.08 69.38 74.00 61.49 6.74 52.50 62.82 66.72 71.63 63.29

Table 6: Results of CAML using different validation metrics for parameter search on the MIMIC-IV test sets.

The superiority of LAAT over CAML on326

MIMIC-III was shown by Vu et al. (2020). Our327

results for MIMIC-IV support a similar pattern.328

However, in Section 3.4, we will demonstrate that329

the performance gap between the models becomes330

smaller once they are tuned.331

3.4 Tuned Model Configurations332

In Section 3.3, we directly run each baseline model.333

However, it is essential to conduct proper tuning for334

any machine learning method to assess the model’s335

true capabilities. To establish a benchmark with re-336

liable results for future development, we perform a337

comprehensive hyper-parameter search for CAML338

and LAAT. After identifying the configurations that339

yield the best validation results, we report the corre-340

sponding test performance. Note that the validation341

result of each hyper-parameter configuration is by342

predicting the development set shown in Table 2.343

The results are presented in Table 5. Com-344

pared with Tables 3 and 4, where we apply the345

same hyper-parameters used in MIMIC-III, the346

performance consistently improves after a hyper-347

parameter search. For CAML, the improvement is348

significant, bringing it much closer in performance349

to LAAT. For LAAT, the improvement on the full350

set is larger than the top-50 set. In more difficult351

scenarios, like the full set with numerous labels,352

hyper-parameter search becomes crucial for better353

performance. In summary, we show the importance354

of hyper-parameter search in utilizing a model ef-355

fectively, and our results can serve as a reference356

for future development.357

In Section 3.2, we note that different validation358

metrics are used in the original implementation359

of baseline models. Ideally, the validation metric360

should correspond with the target metric (i.e., test361

metric in our case) for future prediction. For better 362

understanding, we report CAML’s test performance 363

under various validation metrics in Table 6. 364

In general, the metric used in the validation pro- 365

cess results in corresponding high test performance 366

in the same metric, simply because the validation 367

metric is optimized in the process. However, in 368

some situations optimizing a metric such as Macro- 369

F1 can result in a significant loss in other metrics. 370

These experiments show that it is essential to de- 371

cide the target measure according to the practical 372

need. Also, when comparing different models, the 373

same validation metric should be used. 374

3.5 Ablation study about code frequency 375

To assess the effectiveness of our baseline mod- 376

els, we perform an ablation study on both the 377

MIMIC-IV-ICD9-Full and MIMIC-IV-ICD10-Full 378

datasets, comparing the two best-performing mod- 379

els in our benchmark (MSMN and PLM-ICD). 380

We examine the performance of these models 381

on labels grouped by their frequency of appear- 382

ance. To gain deeper insights into the models’ 383

predictions, we categorize medical codes into five 384

groups based on their frequencies in MIMIC-IV- 385

Full-ICD-9 and MIMIC-IV-Full-ICD-10 datasets: 386

1− 10, 11− 50, 51− 100, 101− 500, > 500. The 387

Frequency range # ICD-9 codes # ICD-10 codes

1-10 5,262 18,483
11-50 2,706 4,471

51-100 911 1,179
101-500 1,492 1,337

>500 853 626

Table 7: Label frequency distribution of MIMIC-IV-
ICD9-Full and MIMIC-IV-ICD10-Full.
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Figure 3: Comparison of Micro-F1 scores between
PLM-ICD and MSMN on labels with different MIMIC-
IV-ICD9-Full test set frequencies.
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Figure 4: Comparison of Macro-F1 scores between
PLM-ICD and MSMN on labels with different MIMIC-
IV-ICD9-Full test set frequencies.

statistics of all groups in both datasets are presented388

in Table 7.389

MIMIC-IV-ICD-9 We compare the Micro-F1390

and Macro-F1 scores across different groups. In391

general, PLM-ICD outperforms MSMN in most392

groups. For Micro-F1 shown in Figure 3, the differ-393

ences are particularly noticeable in the frequent394

groups: 1% in the > 500 group versus 3% in395

the 101 − 500, 51 − 100, and 11 − 50 groups,396

while PLM-ICD performs worse than MSMN in397

the 1 − 10 group, which contains the majority of398

codes. For Macro-F1 shown in Figure 4, the differ-399

ences are similar in the frequent groups: 1% in the400

> 500 group, 4% in the 101 − 500 group, 5% in401

the 51− 100 group, and 2% in the 11− 50 group,402

while PLM-ICD still performs slightly worse than403

MSMN in the 1 − 10 group. Overall, PLM-ICD404

learns better than MSMN in the ICD-9 setting.405

MIMIC-IV-ICD-10 We compare the Micro- and406

Macro-F1 scores across different groups in Fig-407

ures 5 and 6. In general, PLM-ICD outperforms408

MSMN in most groups. The differences in Micro-409

F1 are particularly noticeable in the more frequent410

groups (2% in > 500 and 101 − 500 groups ver-411

sus), while PLM-ICD performs worse than MSMN412

in the 1 − 10, 11 − 50, and > 500 groups, which413

contains the majority of codes. We observe the414

similar pattern in Macro-F1: the differences are415

1%) in groups > 500, 101− 500, while PLM-ICD416

performs worse than MSMN in the 51− 100 and417
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Figure 5: Comparison of Micro-F1 scores between
PLM-ICD and MSMN on labels with different MIMIC-
IV-ICD-10-Full test set frequencies.

0 20 40 60

1-10

11-50

51-100

101-500

>500

3 · 10−2

4.82

20.83

36.22

52.41

0.26

7.26
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Figure 6: Comparison of Macro-F1 scores between
PLM-ICD and MSMN on labels with different MIMIC-
IV-ICD-10-Full test set frequencies.

11 − 50 group but slightly better in the 1 − 10 418

group which contains the majority of codes. One 419

possible explanation for this is that both models 420

can learn from a few examples in very rare codes; 421

however, with the assistance of multiple synonyms, 422

MSMN can better match the semantic meaning of 423

the codes to the medical notes compared to PLM- 424

ICD, which does not consider code descriptions 425

and relies solely on code embeddings. In the more 426

frequent groups, PLM-ICD outperforms MSMN 427

due to its superior encoder from large pretrained 428

models. This suggests a potential future direction 429

to improve both code representation and medical 430

note representation using large language models. 431

4 Related Work 432

Before deep learning, automated ICD coding meth- 433

ods relied on rule-based or decision tree-based ap- 434

proaches (Farkas and Szarvas, 2008; Scheurwegs 435

et al., 2017). The focus has since changed to neural 436

networks, which can be classified into two main cat- 437

egories. The first involves encoding medical docu- 438

ments using pre-trained language models (Li and 439

Yu, 2020; Liu et al., 2021), adapting pre-trained 440

language models for the clinical domain (Lewis 441

et al., 2020), or improving language models with 442

medical knowledge, such as disease taxonomies, 443

synonyms and abbreviations (Yang et al., 2022; 444

Yuan et al., 2022). The second category aims to im- 445

prove pre-trained language model representations 446

by capturing the relevance between the document 447

7



and label metadata, including descriptions (Mullen-448

bach et al., 2018; Vu et al., 2020), co-occurrences449

(Cao et al., 2020), hierarchies (Falis et al., 2019;450

Vu et al., 2020), or thesaurus knowledge such as451

synonyms (Yuan et al., 2022).452

Many medical coding datasets exist in various453

languages and for various medical stages, but454

few of them are publicly available due to pri-455

vacy concerns. The most popular datasets are the456

MIMIC databases. MIMIC-III was one of the first457

large, freely-available databases consisting of de-458

identified health-related data for patients admitted459

to critical care units at the Beth Israel Deaconess460

Medical Center from 2001 to 2012. The database461

includes information like demographics, vital sign462

measurements, laboratory results, procedures, med-463

ications, caregiver notes, imaging reports, and mor-464

tality (both in and out of the hospital). MIMIC-III465

supports a wide range of analytic studies, including466

epidemiology, clinical decision-rule improvement,467

and electronic tool development. Mullenbach et al.468

(2018) and Shi et al. (2017) are the first two studies469

to publish a data pipeline for processing discharge470

summaries and matching them with ICD-9 codes,471

forming the MIMIC-III-full and MIMIC-III-top-472

50 sets, which became the popular benchmark for473

MIMIC-III ICD coding.474

MIMIC-IV is the latest database containing real475

hospital stays for patients admitted to a tertiary476

academic medical center in Boston, MA, USA. It477

contains comprehensive information about each478

patient during their hospital stay, such as labo-479

ratory measurements, medications administered,480

and documented vital signs. The database aims to481

support a wide variety of research in healthcare.482

MIMIC-IV builds upon the success of MIMIC-III483

and incorporates numerous improvements. Several484

benchmarks and pipelines have been developed485

for MIMIC-IV to utilize its extensive dataset for486

various medical tasks: for example, Gupta et al.487

(2022) propose a data processing pipeline for ex-488

tracting, cleaning, and preprocessing MIMIC-IV489

data for time-series tasks such as mortality predic-490

tion and readmission admission, while Xie et al.491

(2022) propose a benchmark for emergency depart-492

ment (ED) triage, critical outcome prediction, and493

reattendance prediction at ED triage. However,494

there is no benchmark for ICD coding for MIMIC-495

IV. Our work aims to provide a standard processing496

pipeline for this task, allowing researchers to pro-497

cess data, reproduce results, and conduct further498

research on top of it.499

5 Conclusions and Recommendations 500

The field of machine learning is witnessing a surge 501

in research focused on building clinical predictive 502

models that effectively capture the complexities in 503

EHR data and aid in predicting future outcomes. 504

MIMIC datasets encourage research in this domain 505

by providing a unique and extensive EHR dataset 506

for researchers to explore. In this study, we es- 507

tablish a standardized benchmark for ICD coding 508

on MIMIC-IV, covering both ICD-9 and ICD-10 509

codes. This process involves converting raw data 510

into a task-specific format and applying popular 511

deep learning baseline methods to the new datasets. 512

Additionally, we demonstrate that code frequency 513

not only emphasizes the model’s enhanced predic- 514

tive power for common codes but also suggests 515

ways to improve performance for rarer ones. For 516

example, MSMN performs better than PLM-ICD 517

in predicting less common codes. Consequently, 518

our benchmark dataset provides a more holistic 519

and pragmatic approach to the ever-evolving labels 520

in real-world applications. The long-tail distribu- 521

tion of ICD code predictions continues to challenge 522

NLP, as traditional constraints might not fully ad- 523

dress the breadth of real-world situations. Follow- 524

ing the example set by Mullenbach et al. (2018), 525

we make our data processing code open-source, en- 526

abling researchers to reproduce and enhance the 527

results. 528

In the future, we plan to expand our benchmark 529

by adding more baselines, potentially incorporat- 530

ing relevant features such as drug codes and patient 531

vitals. Since ICD codes play a crucial role in en- 532

hancing patient care, facilitating research, and en- 533

suring accurate communication among healthcare 534

providers, our goal is to extend the use of clinical 535

notes for joint prediction of ICD codes and read- 536

mission, triage, and mortality prediction tasks. By 537

openly sharing our data processing code with the 538

community, we hope to inspire others to join us in 539

improving medical code prediction. 540
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Limitations541

Medical coding is crucial for the healthcare indus-542

try. With sufficient data for training and evaluation,543

automated medical coding can improve both ac-544

curacy and efficiency, aiding professional coders545

in reviewing patient medical records more effec-546

tively, reducing administrative costs, and ultimately547

improving care.548

However, our study, driven by this objective,549

faces certain limitations that we address in the fol-550

lowing. Like other data-driven studies, our result551

is constrained by our reliance on the settings of552

the MIMIC datasets. This dataset, characterized553

by its lack of diversity, includes only monolingual554

English discharge notes collected from emergency555

or intensive care units serving US patients. Con-556

sequently, it is challenging to assert with certainty557

that the effectiveness of state-of-the-art methods in558

this dataset would translate seamlessly into differ-559

ent clinical datasets, such as those encompassing560

other types of medical notes, languages, regions,561

or departments.562
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6 Appendix 675

Training Details For clinical note preprocessing, 676

we employed the standard regular expression tok- 677

enizer from the Natural Language Toolkit (NLTK) 678

to tokenize the text into a list of word characters, 679

convert the text to lowercase, and truncate it to 680

the maximum length for each model. For training, 681

we primarily adjusted the batch size to accommo- 682

date our GPUs, as MIMIC-IV datasets are larger 683

and contain more labels than MIMIC-III. CAML, 684

LAAT, and JointLAAT were trained using a single 685

16GB Tesla P100 GPU. Meanwhile MSMN, unlike 686

for MIMIC-III, required more than 32 GB of mem- 687

ory and was thus trained on an 80GB A100 GPU. 688

PLM-ICD was optimized using two 16 GB V100 689

GPUs. 690

Parameter Algorithm and Search Space For 691

the search algorithm, we employ grid search, se- 692

lecting the parameter space by examining the most 693

crucial hyper-parameters based on MIMIC-III-full. 694

The parameter tuning space of CAML is as fol- 695

lows:

Learning Rate 0.0001, 0.00001
Filter Size 8, 10, 12
Number of Filters 350, 550
Dropout 0.2, 0.6

696

For LAAT, the search space is as follows:

Learning Rate 0.001, 0.0003
Encoder Dropout 0, 0.2, 0.4
RNN Dimension 512, 768, 1024
da 256, 384, 512

697
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