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ABSTRACT

Parameter sharing approaches for deep multi-task learning share a common in-
tuition: for a single network to perform multiple prediction tasks, the network
needs to support multiple specialized execution paths. However, previous param-
eter sharing approaches have relied on a static network structure for each task.
In this paper, we propose to increase the capacity for a single network to support
multiple tasks by radically increasing the space of possible specialized execution
paths. DynaShare is a new approach to deep multi-task learning that learns from
the training data a hierarchical gating policy consisting of a task-specific policy for
coarse layer selection and gating units for individual input instances, which work
together to determine the execution path at inference time. Experimental results
on standard multi-task learning benchmark datasets demonstrate the potential of
the proposed approach.

1 INTRODUCTION

Multi-task learning (MTL) focuses on adapting knowledge across multiple related tasks and opti-
mizes a single model to predict all the tasks simultaneously. In contrast to single-task learning, it
can improve generalization and parameter efficiency, while reducing the training and inference time
by sharing parameters across related tasks. Traditional deep multi-task learning approaches use
hard or soft parameter sharing to train a single network that can perform multiple predictive tasks.
Architectures that use hard parameter sharing are composed of a shared backbone of initial layers,
followed by a separate branch for each task. The shared backbone learns generic representations,
and the dedicated branches learn task-specific representations. However, hard parameter sharing
imposes a restrictive tree structure on the architecture, and is also susceptible to negative transfer, in
which some tasks are optimized at the expense of others. Architectures that use soft parameter shar-
ing are composed of multiple task-specific backbones, and parameters are linked across backbones
by regularization or fusion techniques. However, scalability is a challenge as the network grows
proportionally with the number of tasks.

In either case of parameter sharing, the path through the network at inference time is the same for
all tasks and inputs. The recently introduced AdaShare method (Sun et al., 2020) revisited tradi-
tional parameter sharing patterns by enabling each task to learn its own path through the network:
a layer can be executed exclusively by one task, shared by multiple tasks, or skipped entirely. This
is achieved by learning a task-specific gating policy over the network layers. In AdaShare, the
execution path is task-adaptive.

Parameter sharing approaches share a common intuition: for a single network to perform multiple
prediction tasks, the network needs to support multiple specialized execution paths (paths through
the network at inference time). However, in all previous parameter sharing approaches, the execution
paths are fixed after training. At inference time, the path through the network is the same for any
input instance. In this paper, we propose to increase the capacity for a single network to support
multiple tasks by radically increasing the space of possible specialized execution paths. DynaShare
is a new approach to deep multi-task learning that learns from the training data a hierarchical gating
policy consisting of a task-specific policy for coarse layer selection and gating units for individual
input instances, which work together to determine the execution path at inference time. In other
words, the multi-task network is trained end-to-end to support a larger space of dynamic execution
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Figure 1: An overview of the proposed framework. DynaShare for multi-task learning enables
dynamic selection of layers based on both the specific task and the individual input instance. At
inference time, the selected layers for tasks is fixed but the network operates dynamically based on
the input instance: the forward path is modified based on the computation needed for that particular
instance. The gating unit for instance decision making consists of two parts: a) estimating relevance
of an input to the layer b) making decision for executing the layer based on the relevance metric.

paths that are a function of both the task and the instance. The overall workflow of DynaShare is
illustrated in Figure 1.

The contributions of this paper are:

• We propose a novel and fully differentiable dynamic method for multi-task learning where
the network structure can be adapted based on both tasks and individual instances.

• We extensively verify the effectiveness of our method. Experimental results on two MTL
benchmark datasets, UCI-Census-income (Census) and Medical Information Mart for In-
tensive Care (MIMIC-III), demonstrate the potential of DynaShare. For fair comparisons,
a unified codebase will also be publicly available.

2 RELATED WORK

Multi-Task Learning and Parameter Sharing: Learning multiple tasks with a single model is
a challenge that is frequently encountered in natural language processing (Sanh et al., 2019; Liu
et al., 2019c; Aksoy et al., 2020), computer vision (Sun et al., 2020; Liu et al., 2019b; Vandenhende
et al., 2020), reinforcement learning (Pinto & Gupta, 2016; Hessel et al., 2019), and multi-modal
learning (Pramanik et al., 2019; Lu et al., 2020), among other areas. Parameter or weight sharing is a
well studied mechanism for facilitating shared knowledge transfer in neural networks. For example,
in neural architecture search, parameter sharing enables a large number of candidate architectures
to be simultaneously trained within a single supernet (Liu et al., 2019a; Guo et al., 2020; Wang
et al., 2021). Each candidate architecture corresponds to a single execution path in the supernet. In
multi-task learning, parameter sharing enables paths for multiple tasks to be simultaneously trained.
Traditionally, this has been achieved via so-called hard or soft parameter sharing. Hard parameter
sharing (Caruana, 1993; Kokkinos, 2017) involves training a shared backbone of layers followed by
task-specific branches. Soft parameter sharing (Misra et al., 2016; Ma et al., 2018; Liu et al., 2019b)
involves training multiple task-specific backbones and linking parameters across backbones using
regularization or fusion techniques.

In contrast to hard or soft parameter sharing, AdaShare (Sun et al., 2020) learns which layers in
a shared backbone network should be enabled for each task: a layer can be executed exclusively
by one task, shared by multiple tasks, or skipped entirely. Each task learns a binary gating vector
indicating which layers to execute. While AdaShare enables a network to support multiple execution
paths, the gating decisions are static at inference time: for a given task, the same layers are always
executed, independent of the input. In contrast, DynaShare adaptively activates an execution path
based on both the task and input.
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Dynamic Neural Networks: Dynamic neural networks have recently attracted attention from many
research communities; a recent survey in the area is presented in (Han et al., 2021). Dynamic
neural networks adapt the computation graph of the network depending on the input (instance).
Among other applications such as inference acceleration, this adaptivity unlocks the potential of
networks that can be trained once and deployed in diverse environments or under different operating
conditions. For example, slimmable networks (Yu et al., 2019; Yu & Huang, 2019; Li et al., 2021)
can be arbitrarily sliced channel-wise at deployment time according to the user’s computational
resource constraints.

Common strategies for adapting the computation graph in dynamic networks include modifying the
input resolution (Wang et al., 2020a), selecting a subset of spatial locations (Verelst & Tuytelaars,
2020), selecting a subset of channels (Kim et al., 2018; Yu et al., 2019; Yu & Huang, 2019; Li et al.,
2021), or selecting a subset of layers or blocks (Veit & Belongie, 2018; Wang et al., 2018; Wu et al.,
2018). DynaShare follows this last strategy and selects a subset of blocks to build a computation
graph that depends on both the input and the task.

Methods for dynamically selecting a subset of layers typically rely on policy networks (Wu et al.,
2018; Chen et al., 2019) or gating functions (Wang et al., 2018; Veit & Belongie, 2018; Wang et al.,
2020b). Policy learning approaches like BlockDrop (Wu et al., 2018) and GaterNet (Chen et al.,
2019) use a policy network that, given an input, produces skipping decisions for all the layers in the
backbone network. The main challenges of such methodologies are related to the handcrafted design
and computational cost of the additional policy network. Gating approaches such as (Wang et al.,
2018; Veit & Belongie, 2018; Wang et al., 2020b) introduce functions responsible for controlling
the local inference graph of a layer or block. The main advantage of such techniques is related to the
easy integration, in a plug-in fashion, of these gates to existing methodologies. Nevertheless, they
often require costly training techniques to address the non-differentiability of the gates. DynaShare
employs a fully differentiable, hierarchical design consisting of a task-specific policy for coarse
layer selection that is further refined by instance-specific gating.

3 PROPOSED METHOD

DynaShare is an approach for training dynamic multi-task networks that adapt the execution path
based on both the task and the individual instance. DynaShare learns from the training data a hier-
archical gating policy consisting of a task-specific policy for coarse layer selection and gating units
for individual input instances, which work together to determine the execution path at inference
time. The policies and gates are learned jointly in a fully differentiable way. In this section, we first
explain DynaShare’s task-specific policy, which is inspired by AdaShare (Sun et al., 2020) and es-
tablishes a static layer execution policy for each task. We then build on the task-specific policy with
instance-specific gating units, which learn a dynamic gating that further modifies the task-specific
policy based on the instance.

3.1 LEARNING A TASK-SPECIFIC POLICY

The task-specific policy is a discrete vector that determines which layers to execute or skip for each
task (Figure 1, top left). We follow the same designed loss functions as proposed in AdaShare
(Sun et al. (2020)) for learning this policy. Learning a discrete policy in an standard end-to-end
differentiable backpropagation fashion is challenging. Direct optimization of the task-specific pol-
icy is possible through the use of Gumbel-Softmax sampling (Jang et al. (2016)). We will revisit
Gumbel-Softmax sampling in Section 3.3.

Without adding a significant number of parameters, we train the network weights and the feature
sharing policy jointly. To designate a sharing pattern, we sample a task-specific policy from the
learned distribution to specify which blocks are selected in different tasks. Once the task-specific
policy is defined, the dynamic instance gating will refine the structure based on individual inputs.

3.2 LEARNING INSTANCE-SPECIFIC GATING

DynaShare’s instance-specific gating units learn to further adjust the selection decisions of the task-
specific policy based on the characteristics of the input (instance). Selecting a subset of layers or
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blocks based on the input has been demonstrated previously (Veit & Belongie, 2018; Wang et al.,
2018; Wu et al., 2018). DynaShare is the first approach to learn a hierarchical task and instance
adaptive layer gating mechanism and to illustrate its potential in dynamic multi-task learning.

Inspired by Veit & Belongie (2018), we construct an instance gating method with two parts: a)
estimating relevance of each layer to the input of the same layer, b) making decision to keep or skip
the layer based on the estimated relevance metric. Other approaches, such as policy optimization
using reinforcement learning (Wang et al., 2018; Wu et al., 2018) are also possible. The relevance
estimator is a lightweight design consisting of two convolution layers followed by an activation
function. We use the computed output score of the relevance estimator to further make a decision on
executing the layer for each individual input. Similar to task-specific policy learning, such a discrete
controller is possible with the use of Gumbel-Softmax Sampling.

3.3 GUMBEL-SOFTMAX SAMPLING

Given a set of tasks T = {T1, T2, ..., TK} over a dataset, we use Gumbel-Softmax sampling (Jang
et al. (2016)) to learn both task-specific and instance-specific discrete value policies. With this
method, instead of sampling from the distribution of a binary random variable to find the optimized
policy for each block l and specific task Tk, we can generate the decision from:

ul,k = arg max
j∈{0,1}

( log πl,k(j) +Gl,k(j)), (1)

where πl,k = [1 − αl,k, αl,k] is its distribution vector with αl,k representing the probability the lth
layer is executed for task Tk. Gl,k = − log(− log Ul,k) are Gumbel random variables with Ul,k

sampled from a uniform distribution. With the reparameterization trick (Jang et al. (2016)), we can
relax the non-differentiable argmax operator in Eq. 1:

ul,k(j) =
exp (( log πl,k(j) +Gl,k(j))/τ)∑

j∈{0,1}
exp (( log πl,k(j) +Gl,k(j))/τ)

, (2)

where τ is the softmax temperature. When τ → 0, the softmax function gets closer to the argmax
function and we would have a discrete sampler, and when τ →∞ it becomes a uniform distribution.
Following Sun et al. (2020), for task-specific policy during training we use the relaxed version given
by Eq. 2. We set τ = 5 as initial value and gradually decrease it to 0. After training, we sample from
the learned distribution to obtain a discrete task-specific policy. For learning the instance-specific
policy, we get a discrete sample from Eq. 1 during the forward pass and we compute the gradient of
relaxed version given by Eq. 2 in the backward pass.

3.4 LOSS FUNCTIONS

The goal of DynaShare is to achieve the best performance across all the tasks with the most efficient
parameter sharing strategy. Therefore, while training the model we have to consider optimizing not
only the accuracy but also minimising the number of parameters without performance degradation.
We also need to encourage sharing the blocks among different tasks and prevent the case of splitting
parameters with no knowledge sharing. To address these issues we used sparsity regularization and a
sharing loss (Lsparsity and Lsharing, respectively) to minimize the log-likelihood of the probability
of a block being executed and maximise the knowledge sharing simultaneously:

Lsparsity =
∑

l≤L,k≤K

logαl,k, (3)

Lsharing =
∑

k1,k2≤K

∑
l≤L

L− l
L
|αl,k1

− αl,k2
|, (4)
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where L is the total number of layers. For learning the instance gating, we add a loss term that
encourages each layer to be executed at a certain target rate t. We estimate the execution rates over
each mini-batch and penalize deviation from given target rate. We calculate the instance loss as

Linstance =
∑
l≤L

(βl − t)2, (5)

where βl is the fraction of instances within a mini-batch for which the lth layer is executed. Including
the task-specific losses, the final training loss of DynaShare is:

Ltotal =
∑
k

λkLk + λsparsityLsparsity + λsharingLsharing + λinstanceLinstance, (6)

where Lk is the task-specific loss, weights λk are used for task balancing, and λsparsity, λsharing,
λinstance are the balance parameters for sparsity, sharing and instance losses, respectively.

4 EXPERIMENTS

In this section, we present experimental results and ablation studies to validate the proposed ap-
proach. We compare DynaShare to single-task learning, as well as to multi-task learning base-
lines including conventional hard parameter sharing and two multi-gate mixture-of-experts models:
MMoE (Ma et al., 2018) and a recent extension with expert diversity, MMoEEx (Aoki et al., 2021).
We then explore the effectiveness of both the task-specific policy and instance-adaptive gating by
conducting ablation studies on each component.

4.1 DATASETS AND EVALUATION METRICS

We evaluate the performance of our proposed method on two multi-task learning datasets: Census
(Ma et al., 2018) and MIMIC-III (Johnson et al., 2016; Harutyunyan et al., 2019).

UCI-Census-income dataset is extracted from US 1994 census database. It has 299,285 data points
with 40 features. The features are extracted from the respondent’s socioeconomic form. The three
binary classification tasks associated with this dataset include respondent income exceeds $50K
(Income), respondent’s marital status is “ever married” (Marital Stat), and respondent’s education is
at least college (Education).

MIMIC-III consists of patients information from over 40,000 intensive care units (ICU) stays.
The four tasks of this dataset are Phenotype prediction (Pheno), In-hospital mortality prediction
(IHM), Length-of-stay (LOS), and Decompensation prediction (Decomp). MIMIC-III is the main
benchmark for heterogenous multi-task learning with time series. It is considered heterogenous due
to the different task characteristics. The dataset includes two binary tasks, one temporal multi-label
task, and one temporal classification task, respectively.

For a fair comparison we adopted the same split between train, validation, and test set as used by
all the previous baselines. For both the Census and MIMIC-III datasets, the ratios are 70%, 15%,
and 15%. The metric for comparing the results is AUC (Area Under The Curve) ROC for the binary
tasks and Kappa Score for the multiclass tasks. We report the multi-task learning performance of
each method with ∆ as defined in Maninis et al. (2019), which compares results with their equivalent
single task values:

∆Tk =
1

|M |

|M |∑
j=0

(−1)lj (MTk,j −MST,j)/MST,j ∗ 100%, (7)

where lj = 1 if a lower value shows better performance for the metric Mj and 0 otherwise. MST,j

is the single task value of j metric. We calculate the overall performance by averaging ∆Tk over all
tasks:
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∆ =
1

K

∑
k≤K

∆Tk , (8)

4.2 EXPERIMENTAL SETTING

Following AdaShare’s task-specific policy training strategy (Sun et al., 2020), for the first few epochs
we consider hard parameter sharing by sharing all blocks across tasks. This sets the network at a
good starting point for policy learning. We use curriculum learning (Bengio et al., 2009) to en-
courage a better convergence. We then optimize the network and task-specific policy distribution
parameters alternatively (Algorithm 1). After learning the task-specific policy distribution, we sam-
ple the distribution and fix the network structure based on task policy. Then, we re-train the network
to learn the instance gating using the full training set (Algorithm 2).

Algorithm 1 DynaShare training algorithm
1: t← 1 . target rate equal to 1 means all the layers are executed for all the instances (Eq. 5)
2: for warm-up epochs do . Warm-up stage: hard parameter sharing
3: LTotal =

∑
k λkLk

4: optimise network weights
5: end for
6: while maximum epochs not reached do . Optimise network and task policy distribution alternatively
7: for e1 epochs do
8: LTotal =

∑
k λkLk

9: optimise network weights
10: end for
11: for e2 epochs do
12: LTotal =

∑
k λkLk + λsparsityLsparsity + λsharingLsharing

13: optimise task policy distribution
14: end for
15: end while
16: return task policy distribution and network weights

Algorithm 2 DynaShare re-training algorithm
1: t← desired target rate . (Eq. 5)
2: task network structure← sample of task policy
3: while maximum epochs not reached do
4: LTotal =

∑
k λkLk + λinstanceLinstance

5: optimise task network structure with target rate
6: end while
7: return network weights

We used PyTorch for implementation of our technique, ResNet-18 (9 blocks) as backbone, Adam
as optimizer for policy distribution parameters and SGD to update network weights. We set the
learning rate to 0.001 that is halved every 250 epochs, binary cross-entropy loss for binary tasks and
cross-entropy loss for multi-label tasks. We used the task’s AUC sum in the validation set to define
the best model, where the largest sum indicates the best epoch, and consequently, the best model.
For MIMIC-III, we trained the models using the training set with batch size of 256 for 1000 epochs.
For Census, batch size and number of epoch are 450, and 500, respectively.

4.3 COMPARISON WITH EXISTING BASELINES

Census dataset is a homogeneous dataset where we aim to focus on benchmarking the flexibility
of DynaShare to learn multiple tasks with similar optimization goals. The Census income, marital
status and education dataset experiments are presented in Table 1. The best results are highlighted
in bold, and the second-best results are underlined. DynaShare outperforms all the baselines for
the education task, which can be considered the hardest due to its lower values. Our approach
also performs similarly to the MMoEEx approach on the Marital Status task. The delta difference

6



Under review as a conference paper at ICLR 2022

Table 1: AUC results on all three tasks of the Census dataset. DynaShare outperforms the current
approaches for the education task and obtains competitive performance overall.

Method Income Marital Stat Education ∆

Single Task 88.95 97.48 87.23 -
AdaShare 89.44 96.79 84.56 -1.07 %
MMoE 90.86 96.70 86.33 -0.28%
Shared Bottom 91.09 97.98 86.99 +0.85%
MMoEEx 92.51 98.47 87.19 +1.65%
DynaShare (Ours) 91.01 98.32 87.31 +1.09%

Table 2: AUC results for the MIMIC-III dataset. DynaShare outperforms all other baselines in two
out of four individual tasks, and achieves an overall lift in relative performance when considering
the full set of tasks.

Method Pheno LOS Decomp IHM ∆

Single Task 77.00 45.00 91.00 86.00 -
Shared Bottom 73.36 30.60 94.12 82.71 -9.28%
MCW-LSTM 77.40 45.00 90.50 87.00 +0.28%
MMoE 75.09 54.48 96.20 90.44 +7.36%
MMoEEx - GRU 74.57 60.63 97.03 91.03 +11.00%
MMoEEx - RNN 72.44 63.45 96.82 90.73 +11.74%
DynaShare (Ours) 76.50 71.86 84.98 94.25 +15.50%

between DynaShare and the current state of the art of 0.56% is mainly due to the performance on the
Income task. Overall, DynaShare shows competitive performance with respect to the state-of-the-art
on this set of tasks, which have relatively low variability. The advantage offered by DynaShare’s
larger space of possible specialized execution paths is more clearly demonstrated when the tasks
have higher variability, which we discuss next.

MIMIC-III dataset constitutes a well established benchmark for heterogeneous multi-task learning.
In contrast to the Census dataset, the tasks have high variability: two binary tasks, one temporal
multi-label task, and one temporal classification task. This diversity in task characteristics makes
MIMIC-III a more challenging benchmark. For this dataset we compared our method with single-
task training (separate networks trained for each task), hard-parameter sharing, channel wise LSTM
(MCW-LSTM) (Johnson et al. (2016)), MMoE (Ma et al. (2018)), and two variants of MMoEEx
with RNN and GRU (Aoki et al. (2021)). The full set of results on MIMIC-III dataset is presented
in Table 2. DynaShare outperforms all approaches in two out of the four tasks. It is noticeable that
for the LOS task, which can be considered the hardest, DynaShare outperforms all previous results
by a large margin, with an improvement of 8%, including MMoEEx (Aoki et al., 2021) which
was the previous state-of-the-art. In-Hospital Mortality is another task DynaShare outperforms the
previous reported methods by a substantial margin, in this case 3%. Overall, DynaShare obtains
the highest average delta improvement relative to the single-task model of 15.50%, which is a 3.7%
improvement over the previous top performing approach.

These results suggest that DynaShare is particularly effective at learning multiple tasks with high
variability, when compared to shared bottom approaches and mixture of experts baselines. When
tasks have high variability, DynaShare’s hierarchical task instance approach, which expands the
space of possible execution paths, provides more flexibility to support diverse multi-task learning.
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Table 3: Ablation studies to evaluate the impact of the task-specific policy and instance-specific
gating on overall multi-task learning performance on the MIMIC-III dataset.

Method Pheno LOS Decomp IHM ∆

Single Task 77.00 45.00 91.00 86.00 -
Task-specific policy only (AdaShare) 76.39 71.68 82.08 94.15 +14.54%
Instance-specific gating only 73.06 68.78 82.24 92.10 +11.30%
Task-specific policy with instance-specific 76.50 71.86 84.98 94.25 +15.50%
gating (DynaShare)

4.4 ABLATION STUDIES

To evaluate the impact of both the task-specific policy and instance-specific gating components,
we conducted ablation experiments on the MIMIC-III dataset. First, we trained the network with
a task-specific policy only, which is equivalent to reducing the method to AdaShare (Sun et al.
(2020)). With a task-specific policy only, we achieve a +2.8% lift in performance compared to the
best previous baseline (MMoEEx-RNN). Next, we trained the network with instance-specific gating
only. This achieves similar performance with state of the art technique. The full results of these
ablation studies are reported in Table 3. In summary, both the task-specific policy and instance-
specific gating improve the performance of DynaShare. For ResNet-18 the instance gating function
only adds 0.4% to the task-specific network parameters at training, while it improves the average
relative performance of all tasks by 0.96%.

5 CONCLUSION

In this paper, we presented a new method for deep multi-task learning, inspired by an interpretation
of previous parameter sharing strategies as different ways for a single network to support multiple
specialized execution paths. We increased the space of possible execution paths that the network can
access by parameterizing the execution path according to both the task and the input instance. This
is achieved by learning a hierarchical gating policy, consisting of a task-specific policy and instance-
specific gating. We validated DynaShare on two publicly available multi-task learning benchmarks,
showing promising performance with respect to state-of-the-art methods.

REPRODUCIBILITY STATEMENT

The paper uses data obtained from Medical Information Mart for Intensive Care (MIMIC-III)
and UCI-Census-income (Census) (Johnson et al., 2016; Harutyunyan et al., 2019; Ma et al.,
2018). To access MIMIC-III a request must be submitted to https://mimic.mit.edu/
iii/gettingstarted/. The pre-processing steps of this dataset are available at https:
//github.com/YerevaNN/mimic3-benchmarks. Census dataset is publicly available and
the full dataset and documentation can be downloaded from http://archive.ics.uci.
edu/ml. Our code will be made publicly available on Github on paper acceptance.
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