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ABSTRACT

The recent framework of performative prediction (Perdomo et al., 2020) is aimed
at capturing settings where predictions influence the target/outcome they want to
predict. In this paper, we introduce a natural multi-agent version of this frame-
work, where multiple decision makers try to predict the same outcome. We show-
case that such competition can result in interesting phenomena by proving the
possibility of phase transitions from stability to instability and eventually chaos.
Specifically, we present settings of multi-agent performative prediction where un-
der sufficient conditions their dynamics lead to global stability and optimality. In
the opposite direction, when the agents are not sufficiently cautious in their learn-
ing/updates rates, we show that instability and in fact formal chaos is possible. We
complement our theoretical predictions with simulations showcasing the predic-
tive power of our results.

1 INTRODUCTION

Performative prediction (Perdomo et al., 2020) is a recently introduced framework that focuses on a
natural but largely unexplored element of supervised learning. In many practical cases the predictive
model can affect the very outcome that it is trying to predict. For example, predictions about which
part of a road network will have high congestion trigger responses from the drivers which affect the
resulting traffic realization leading to a shift of the target distribution. In such settings, (Perdomo
et al., 2020) explored conditions for the existence and approximate optimality of stable equilibria of
such processes.

One possible way to interpret the performative prediction setting is a single agent “game”, where the
predictive agent is playing a game against himself. An agent chooses the parameters of his model
as his actions but the predictive accuracy/cost of the model depends on his own past actions. Fixed
points of this process do not allow for profitable deviations. Once cast in this light, it becomes
self-evident that the restriction to a single predictive agent/model is arguably only the first step in
capturing more general phenomena where there is a closed loop between predictive models and their
environment. This motivates our central question: What is the interplay between stability, optimality
in cases where multiple predictive models operate in parallel to each other? Can the competition be-
tween multiple models lead to novel phenomena such as phase transitions from stability to instability
and chaos?

A natural setting to consider for example is market competition, where multiple hedge funds are
trying to simultaneously predict future prices, volatility of financial instruments. Of course as they
act upon their predictions they also move the prices of these commodities in a highly correlated
way. As more agents enter the market and the competition becomes increasingly fierce, is it possible
that at some point the market flips from quickly discovering accurate stable predictions reflecting
the underlying market fundamentals to self-induced unpredictability and chaos? When it comes to
performative prediction can too many cooks spoil the soup?

Our model Standard supervised learning consists of three components: a set of predictive mod-
els, a loss function, and a data distribution. The learner (agent) observes samples of the distribution,
and then decides a predictive model. When predictions are performative, the agent’s decision of a
predictive model influences the data distribution. Thus, instead of a fixed data distribution, a pre-
dictive prediction also has a distribution map: a mapping from the agent’s predictive models to
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data distributions. We further propose multi-agent performative prediction which model the influ-
ence of multiple agents’ decisions on the data distribution, and ask whether these influence leads to
convergent or chaotic systems.

To understand the framework of multi-agent performative prediction, we study a natural regression
problem with multi-agent location-scale distribution maps (definition 2.2) where the agents’ influ-
ence is linear in the agents’ models. Specifically, the data consist of features and outcomes. For
each agent i ∈ [n], his influence on the distribution of outcome is his model weighted by a scalar
λi > 0. When n = 1, our multi-agent location-scale distribution map is a special case of location-
scale family in Miller et al. (2021). In the market example, each hedge fund company tries to predict
the price (outcome) based on macroeconomic data or other information (features). These influence
parameters λ1, . . . , λn can be seen as each hedge fund’s capital that can influence the distribution of
the future price.

Finally, we consider the agents do not know the dependency between their model and the data
distribution, and they can only improve their predictive models myopically and iteratively. In this
paper, the agents myopically use a reinforcement learning algorithm, exponentiated gradient for
linear regression (Kivinen & Warmuth, 1997), to improve their predictive models in rounds. We
study the long-term behavior, and ask if the system converge to the performative stable and optimal
point, or behave chaotically.

Our results We first study basic properties of our multi-agent preformative prediction with multi-
agent location-scale distribution map. We show 1) the existence of performative stable point in our
setting (proposition 3.1) and 2) the performative stability and performative optimality are equivalent
(proposition 3.2). This equivalence allows us to focus on the dynamical behavior of the system.

In section 4, we introduce learning dynamics to the multi-agent performative prediction, and study
their long-term behavior. We provide a threshold result which depends on the learning rates of
exponentiated gradient descent and the collective influence. Theorem 4.1 shows the dynamics of
exponential gradient descent converge to the performative stable and optimal point when the learn-
ing rate is small enough. Our convergence result in theorem 4.1 holds when the feature space is
multi-dimensional, and every learning agent can use different learning rates starting at arbitrarily
interior states. Our exact convergence result also works in the single-agent performative predic-
tion setting. Contrarily, previous convergent results in Perdomo et al. (2020); Miller et al. (2021);
Mendler-Dünner et al. (2020) only show that their dynamics converge to a small neighborhood of
the performative stable point.

On the other hand, section 4.2 shows the dynamics can have chaotic behavior if the collective in-
fluence Ln is large enough. Specifically, theorem 4.6 shows that even when the feature space is
in R2 these systems provably exhibit Li-Yorke chaos, when the collective influence

∑
i λi is large

enough. This implies that there exists an uncountable “scrambled” set so that given any two initial
conditions in the set, the liminf of the distance between these two dynamics is zero, but the lim-
sup of their distance is positive. (definition 2.4) The chaotic result in theorem 4.6 also holds for
the original single-agent performative prediction so long as the agent’s influence is large enough,
and, thus, complements previous performative prediction works on convergence behavior, which
primarily consider that the agent’s influence on the data distribution is sufficiently small. Moreover,
no matter how small the agents’ learning rates, theorem 4.6 shows that chaos is inevitable in some
performative predictions settings when the number of agents exceeds a carrying capacity. After that
the system becomes totally unpredictable with small perturbations exploding exponentially fast. 1

Finally, section 5 provides numerical examples of our dynamics and show convergent and chaotic
behavior. Additionally, through simulation, we demonstrate that our convergent and chaotic results
also hold when the agents can only access noisy estimation of the gradient and conduct stochastic
exponentiated gradient descent.

Related work Data distribution shift is not a new topic in ML, but earlier works focused primarily
on exogenous changes to the data generating distribution. Performativity is machine learning was
introduced by Perdomo et al. (2020). The original work and several follow-ups study the discrep-
ancy between performative stability and performative optimality and prove approximated conver-

1We highlight our revision in blue color.
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gence of learning dynamics, e.g., stochastic gradient descent, or iterative empirical risk minimiza-
tion. (Mendler-Dünner et al., 2020; Drusvyatskiy & Xiao, 2020; Izzo et al., 2021) Performativity of
prediction is also related to several applications: strategic classification (Hardt et al., 2016), retrain-
ing Bartlett (1992); Kuh et al. (1990).

Inspired by the instability of training algorithms in ML applications such as Generative Adversarial
Networks (GANs), there has been a lot of recent interest in understanding conditions (particularly
in multi-agent systems) where learning behavior may be non-equilibrating/unstable (Cheung & Tao,
2020; Balduzzi et al., 2020; Flokas et al., 2020; Andrade et al., 2021; Letcher, 2021; Giannou et al.,
2021). The (in)stability and performance of exponentiated gradient descent in particular (also re-
ferred to as Multiplicative Weights Updates) and other closely related dynamics has attracted a lot
of attention (Cohen et al., 2017; Bailey & Piliouras, 2018; Cheung, 2018; Panageas et al., 2019;
Cheung & Piliouras, 2020; Vadori et al., 2021). The technique of Li-Yorke chaos has recently found
applications across several different domains such as routing games, Cournot games and blockchain
protocols (Palaiopanos et al., 2017; Chotibut et al., 2020; Bielawski et al., 2021; Cheung et al., 2021;
Leonardos et al., 2021). To our knowledge, this is the first time where such formal chaotic results
are established in settings related to performative prediction and supervised learning more generally.

Another line of related works is learning in games. Specifically, our dynamics can be seen as special
cases multiplicative weight update (Hedge algorithms) on congestion games. Previous works on
Hedge algorithms only show exact convergence when the learning rate is decreasing Kleinberg et al.
(2009); Cohen et al. (2017), and, to our best knowledge, our results are the first that shows exact
convergence of Hedge algorithms with small constant learning rates. Our results also complement
the exact convergence result of the linear variant of multiplicative weight update by Palaiopanos
et al. (2017).

2 PRELIMINARY

2.1 MULTI-AGENT PERFORMATIVE PREDICTION

A multi-agent performative prediction comprises n agents deploying their predictive models
fθ1 , . . . , fθn with parameters θ1,θ2, . . . ,θn ∈ Θ that collectively influence the future data dis-
tribution. We formalize such dependency via a distribution map D(·) which outputs a distribution
on the data, D(~θ), given a models profile ~θ := (θ1, . . . ,θn) ∈ Θn. A loss function `(z,θ′) mea-
sures the loss of a model fθ′ on a data point z ∈ Z , and the expected loss on a distribution D is
Ez∼D[`(z,θ′)]. For performative prediction, we further define the decoupled performative loss on a
distribution mapping D as

`(~θ,θ′) := Ez∼D(~θ)`(z,θ
′)

where θ′ ∈ Θ denotes a predictive model, while ~θ ∈ Θn denotes a deployed model profile.

Given the set of model Θ, the loss function `, and the distribution mapping D, each agent in a
multi-agent performative prediction (Θ, `,D) pursues minimal loss on the distribution that they
collectively induce. We consider two solution concepts performative optimality and performative
stability which generalizes the original ones in Perdomo et al. (2020).

Definition 2.1. Given (Θ, `,D), a models profile ~θ∗∈ Θn is performatively optimal if the total loss
is minimized,

~θ∗ ∈ arg min
~θ∈Θn

∑
i

`(~θ,θi).

Another desirable property of a model profile is that, given all agents deploy their models, their
models are also simultaneously optimal for distribution that their model induces. Formally, ~θ∗ is
performatively stable if for all i ∈ [n]

(θ∗)i ∈ arg min
θi∈Θ

`(~θ∗,θi).

The performative optimality does not implies the performative stable point. For performative opti-
mal point, the variable for minimization ~θ affects both the first and the second argument, but only
affect the second one for performative stable point. Now we introduce our model in this paper.
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Location-scale distribution map In this paper, we study the family of multi-agent location-scale
map for regression problem where a data point consists of d-dimensional feature and scalar outcome,
z = (x, y). These are natural classes of distribution maps in which performative effects enter
through an additive or multiplicative factor that is linear in ~θ.
Definition 2.2. Given d ∈ N and d ≥ 2, and Θn ⊆ Rd, a distribution map D : Θn → Rd × R
is a multi-agent location-scale distribution map on n parties if there exists a static distribution DX
on Rd+1, θ0 ∈ Rd, and n linear functions Λ1, . . . ,Λn from Rd to Rd so that the distribution of
(x, y) ∼ D(~θ) has the following form: The feature is x ∈ Rd and noise x0 ∈ R is jointly sampled
from DX . Given feature x ∈ Rd and noise x0 ∈ R, and the the outcome is

y =

〈
θ0 −

n∑
i=1

Λi(θ
i),x

〉
+ x0.

In this paper, we consider the scaling maps Λi(θ) = λiθ for all θ ∈ Θ with scalar λi > 0 for
all i ∈ [d]. We call λ := (λ1, . . . , λn) the influence parameters, and Ln :=

∑n
i=1 λi collective

influence. Furthermore, we let A := E
[
xx>

]
∈ Rd×d be the covariance matrix of the feature, and

b := Aθ0 + E[x0x] ∈ Rd. We will specify the multi agent location-scale distribution map with
parameters n, d,λ,A, and b.

When n = 1, our multi-agent location-scale distribution map is a special case of location-scale
family in Miller et al. (2021) where the model θ may both the outcome y as well as the feature x.

Predictive Models and Loss Function We consider linear predictive model with constraint where
fθ′(x) = 〈θ′,x〉, and the collection of parameter is the d-simplex, Θ = {θ :

∑d
k=1 θk = 1, θk ≥

0}. We use mean squared error to measure a predictive model θ′ ∈ Θ on a distribution map with a
deployed model profile ~θ ∈ Θn, `(~θ,θ′) = E(x,y)∼D(~θ)[(y−fθ′(x))2] = E(x,y)∼D(~θ)[(y−θ′ ·x)2].

Given a deployed model profile ~θ and a predictive model θ′, the gradient of the decoupled loss is
g(~θ,θ′) := ∇θ′`(~θ,θ

′), and ifD is a location-scale distribution map, g(~θ,θ′) = E(x,y)∼D(~θ)[2(θ′ ·
x− y)x]. Furthermore, withA and b defined in definition 2.2, the gradient can be written as

g(~θ,θ′) = ∇θ′`(~θ,θ
′) = 2A

(
θ′ +

∑
i

λiθ
i

)
− 2b. (1)

Additionally, given a deployed model profile ~θ and a predictive model profile ~θ′, we define the
gradient of agent i’s decoupled loss as gi(~θ, ~θ′) := g(~θ, (θ′)i), and gi(~θ) := gi(~θ, ~θ) when the
deployed model profile is identical to the predictive model profile. We denote the gradient of agent
i’s average loss as ḡi(~θ) :=

∑
l θ
i
lg
i
l(
~θ) for all ~θ ∈ Θn. Finally, we define ~ξ(~θ) = (ξ1, . . . , ξn)

with ξi ∈ Rd so that for all i ∈ [n] and k ∈ [d] ξik(~θ) := θik(
∑
θilg

i
l − gik). For brevity, we omit ~θ

and define ~g := ~g(~θ) and ~ξ := ~ξ(~θ) when there is no ambiguity.

2.2 LEARNING DYNAMICS

We consider the agents myopically use a reinforcement learning algorithm exponentiated gradient
for linear regression to improve their predictive models in rounds. We first define the original single
agent’s exponentiated gradient for linear regression on a sequence of data points here and will state
our dynamics on multi agent performative prediction in section 4.
Definition 2.3 (Kivinen & Warmuth (1997)). Given a learning rate η > 0, an initial parameter
θ0 ∈ Θ and a sequential of data points (xt, yt)t≥1, the exponentiated gradient descent for linear
regression iteratively updates the model as follows: At round t+ 1, with previous parameter θt ∈ Θ
the exponentiated gradient algorithm updates it to θt+1 so that

θt+1,k =
θt,k exp(−2η(θt · xt − yt)xt,k)∑
l θt,l exp(−2η(θt · xt − yt)xt,l)

for all k ∈ [d].

Note that each exponent 2(θt · xt − yt)xt,k is the k-th coordinate of the gradient of squared error
`((xt, yt),θt) at θt which yields the name of exponentiated gradient descent.
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2.3 DYNAMICAL SYSTEM

Definition 2.4. Let (X , f) be a dynamical system where X is a metric space and f is a mapping on
X . We say (x, x′) ∈ X × X is a Li-Yorke pair if

lim inf
t

dist(f t(x), f t(x′)) = 0 and lim sup
t

dist(f t(x), f t(x′) > 0.

(X , f) is Li-Yorke chaotic if there is an uncountable set S ⊂ X (scrambled set) such that any pair
of points x 6= x′ ∈ S is Li-Yorke pair.

3 MULTI-AGENT PERFORMATIVE LEARNING: STABILITY AND OPTIMALITY

Having introduced multi-agent performative prediction, we show some basic property of our
location-scale distribution map with mean squared error as a warm-up. Using the first order condi-
tion and a potential function argument, we show 1) the existence of performative stable point in our
model (proposition 3.1) and 2) the performative stability and performative optimality are equivalent
(proposition 3.2). The proofs of both propositions are in appendix A.

We first show the existence and uniqueness of performative stable point through a potential function
argument. The first part is due to the first order condition of convex optimization. The second part
also use the first order condition, and ∂

∂θik
Φ(~θ) = λig

i
k(~θ) for all i ∈ [n] and k ∈ [d].

Proposition 3.1 (existence). Given the family of linear predictive models with constrains Θ, mean
squared error ` and multi-agent location-scale distribution map with parameters n, d,λ,A, b in
definition 2.2, ~θ∗ on (Θ, `,D) is performative stable if and only if the gradient (defined in eq. (1))
satisfies gik(~θ∗) ≤ gil(~θ∗) for all i ∈ [n] and k ∈ [d] with θik > 0.

Furthermore, if A is positive definite, there exists a unique performative stable point ~θ∗, and ~θ∗ is
also a global minimizer of the following convex function for all ~θ ∈ Θn

Φ(~θ) := (
∑
i

λiθ
i)>A(

∑
i

λiθ
i) +

∑
i

λi(θ
i)>Aθi − 2b>

∑
i

λiθ
i. (2)

While model profile is performative stable does not necessary mean the loss is minimized, the fol-
lowing proposition shows that optimality and stability are equivalent in our setting.

Proposition 3.2. Given (Θ, `,D) defined in proposition 3.1, ~θ∗ is performative stable if and only if
~θ∗ is performatively optimal defined in definition 2.1.

4 MULTI-AGENT PERFORMATIVE LEARNING: CONVERGENCE AND CHAOS

In section 3, we study the stability and optimality of location-scale distribution map with mean
squared error. Now we ask when each agent myopically improves his predictive model through
reinforcement learning but their predictions are performative, what is the long term behavior of the
system? Can the system converges to performative stable and optimal point, or behave chaotically?

We provide a threshold result depending on the learning rate and the collective influence Ln. Sec-
tion 4.1 shows the dynamics converge to the performative stable and optimal point when when the
learning rate is small enough. On the other hand, section 4.2 shows the dynamics can have chaotic
behavior if the collective influence Ln is large enough.

Now, we define our dynamics (~θt)t≥0 formally. At each round, each agent accesses the data dis-
tribution which influenced by their previous model, and updates his model through exponentiated
gradient descent. Specifically, given an initial model profile ~θ0 ∈ Θn and a learning rate profile
η := (η1, . . . , ηn), each agent i applies the exponentiated gradient descent with initial parameter θi0
and learning rate ηi > 0: At round t + 1 > 1, each agent i use D(~θt) and estimates the gradient of
the (expected) loss, gi(~θt) defined in eq. (1), and updates his model according to definition 2.3,

θit+1,k =
θit,k exp(−ηigik(~θt))∑d
l=1 θ

i
t,l exp(−ηigil(~θt))

for all t ≥ 0, i ∈ [n], and k ∈ [d]. (3)
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We will use superscript to denote agent, i ∈ [n], and subscript for time, t ≥ 0, and index of feature,
k, l ∈ [d]. Recall that the gradient of agent i’s average loss is ḡi(~θ) :=

∑
l θ
i
lg
i
l(
~θ), and eq. (3)

can be rewritten as θik exp(−ηigik(~θt))∑
l θ
i
l exp(−ηigil (~θt))

=
θik exp(ηi(ḡ

i(~θt)−gik(~θt)))∑
l θ
i
l exp(ηi(ḡi(~θt)−gil (~θt)))

. Finally, given ~θ∗ and i ∈ [d],

we define the support of ~θ∗ as Si ⊆ [d] = {k : (θ∗)ik > 0}, and S̄i := [d] \ Si. Then ~θ∗ is an
equilibrium (or fixed point) of eq. (3) if

gik(~θ∗) = ḡi(~θ∗), for all i ∈ [n], k ∈ Si. (4)
We say a fixed point of eq. (3) is isolated if there exists an open set of it so that no other fixed point
is in the set. Additionally, the performative stable condition in proposition 3.1 is equivalent to

gik(~θ∗) = ḡi(~θ∗) and gil(~θ
∗) ≥ ḡi(~θ∗), for all i ∈ [n], k ∈ Si, l ∈ S̄i. (5)

Therefore, the set of fixed points of eq. (3) contains the performative stable point.

4.1 CONVERGING WITH SMALL LEARNING RATE

In this section, we show when the learning rate of each agent is small enough the the dynamics in
eq. (3) converge to performative stable point. Specifically, if the parameter of multi-agent perfor-
mative learning (n, d,A,λ) is fixed, the dynamics in eq. (3) converge to performative stable point
when η is “small” enough.

By eq. (5), ~θ∗ is a performative stable if the gradient in the support is no less than the average
gradient. We call a performative stable point ~θ∗ proper if the gradient of non-support coordinate
is greater than the average gradient: for all i ∈ [n] l ∈ S̄i, gil(~θ∗) > ḡi(~θ∗). The below theorem
shows if the performative stable point is proper and equilibria satisfying eq. (4) are isolated, eq. (3)
converges when maxi ηi is small enough and the ratio of ηi/ηj is bounded for all i and j.
Theorem 4.1 (Convergence). Consider a constantRη > 0, and a multi-agent performative learning
setting with parameter n, d,A, b,λ such thatA is positive definite, the performative stable point ~θ∗
is proper and its equilibria (defined in eq. (4)) are isolated. There exists η∗ > 0 so that dynamic in
eq. (3) with learning rate profile η converges to the performative stable point, limt→∞ ~θt = ~θ∗, if
the initial state is an interior point and η satisfies maxi ηi ≤ η∗ and maxi ηi/mini ηi ≤ Rη .

Informally, when the learning rate η are small, ~θt in eq. (3) can be approximated by a solution of an
ordinary differential equation, ~ϑ(t‖η‖1), where the initial condition is ~ϑ(0) = ~θ0 and

d

dt
ϑik(t) =

ηi
‖η‖1

ϑik(t)(ḡi(~ϑ(t))− gik(~ϑ(t))) (6)

for all t ≥ 0, i ∈ [n], and k ∈ [d]. We formalize this intuition in the proof of lemma 4.4. Note that
the set of fixed points of eq. (6) is identical to eq. (3) and satisfies eq. (4).

The proof of theorem 4.1 has two parts. First we show the continuous approximation eq. (6) con-
verges to the performative stable point. Then we study the relationship between eq. (3) and eq. (6),
and prove the eq. (3) also converges to a performative stable point.

From Potential Function to Convergence of Equation (6) In this section, theorem 4.2 shows
the dynamics of eq. (6) converge to performative stable point which will be useful to show the
convergence of eq. (3).

Theorem 4.2. If all points satisfying eq. (4) are isolated and A is positive definite, and ~ϑ(0) is in
the interior of Θn, the limit limt→∞ ~ϑ(t) = ~θ∗ is the performative stable point.

Theorem 4.2 can be seen as the continuous version of theorem 4.1. Compared to theorem 4.1, theo-
rem 4.2 does not require that the performative stable point is proper, but theorem 4.2 also implicitly
requires the ratio of learning rate between any two agents is bounded.

To prove theorem 4.2. we prove lemma 4.3 which shows that Φ in eq. (2) is a potential function
for eq. (6) so that time derivative of Φ is decreasing for all non-fixed points. Then, in the proof of
theorem 4.2, we further prove that the dynamics in eq. (6) converge to performative stable points
when the initial condition ~ϑ(0) is an interior point. The proof is similar to a proof in Kleinberg et al.
(2009), and is presented in appendix B.
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Lemma 4.3. Given a solution of eq. (6), the time derivative of Φ in eq. (2) is 0 at fixed points of
eq. (6), and negative at all other points. Furthermore,

d

dt
Φ(~ϑ(t)) ≤ −1

2
∑
i ηi
∑
i λiηi

∑
i,k

λiηi|ϑik(
∑
l

ϑilg
i
l − gik)|

2

≤ −mini λiηi
2
∑
i ηi
∑
i λiηi

‖~ξ(~ϑ)‖21.

From Approximation to Convergence of Equation (3) Given the convergence of eq. (6), we
show the dynamics of eq. (3) also converges to a performative stable point. The argument has two
stages. We first show given any neighborhood of performative stable points D, eq. (3) will hits D
and stay in D in finite amount of steps in lemma 4.4. Then lemma 4.5 shows that eq. (3) converges
to a performative stable point which completes the proof of theorem 4.1.
Lemma 4.4. Given any open set D ∈ Θn that contains the performative stable point, there exists
η∗ small enough so that for all ~θ0 ∈ Θn, there exists τ so that ~θt ∈ D for all t ≥ τ .

The proof is based on standard approximation result of numerical solution to ordinary differential
equations, and is presented in appendix C.

Lemma 4.5. Let ~θ∗ is the performative stable point and D is a small enough neighborhood of ~θ∗.
Besides the condition in theorem 4.1, if the initial condition of eq. (3), ~θ0, is in D and ~θt ∈ D for
all t ≥ 0, the limit of eq. (3) is the performative stable point limt→∞ ~θt = ~θ∗.

The proof uses the fact that the right-hand side of eq. (3) decreases as the dynamic converges to the
fixed point. Therefore, even though the learning rate profile is fixed, the error between eq. (3) and
eq. (6) vanishes as they converge to the fixed point. We present the proof in appendix D.

4.2 CHAOS WITH CONSTANT LEARNING RATE

Now we want to ask the converse question in section 4.1. Do the dynamics in eq. (3) still converge, if
the learning rate is fixed, as the number of agent increases? Alternatively, do the dynamics converge
when the agents have overwhelming influence on the data distribution?

Theorem 4.6 shows that the dynamics is Li-York chaotic whenLn =
∑
i λi is large even with d = 2.

Note that large Ln may be due to a fixed number of agent which have overwhelming influence, or
the number of agents is large. The later case implies for any small η, no matter how cautious the
agents are, as number of agent increases the chaos inevitably occurs.
Theorem 4.6. Given a multi-party induced location scale family distribution with A, b, d = 2,
and a common learning rate η > 0, if all n agents use the exponentiated gradient with a common
learning rate η in eq. (3) and A is diagonally dominant, there exists a carrying capacity L∗ such
that if Ln =

∑n
i=1 λi ≥ L∗ the dynamics (~θt)t∈N is Li-Yorke chaotic and thus has periodic orbits

of all possible periods.

To prove theorem 4.6, we show there exists an uncountable scrambled set defined in definition 2.4.
First we consider all agents start from the same initial model, and show the dynamics eq. (3) can be
captured by the following function,

fu,v(x) =
x

x+ (1− x) exp(u(x− v))
∀x ∈ [0, 1] (7)

with proper choice of u ∈ R and v ∈ R. Note that v is an equilibrium, and u controls steepness.
First, when all agents start from the same initial model, θi0 = θ0 for all i ∈ [n], and use the same
learning rate η, their models are identical for all t ≥ 0. For all t there exists θt so that θit = θt for
all i. Additionally, since d = 2, we can use a single parameter to encode a linear predictive model
with constraints. Given θ ∈ Θ = ∆2, we define p(θ) = θ1 ∈ [0, 1] and omit the input θ when it
is clear. Thus, we can rewrite the dynamics as pt = p(θt) which are one-dimensional dynamics on
[0, 1], and pt+1 = pt

pt+(1−pt)eη(g
i
1(~θt)−gi2(~θt))

. We set

α(L) =2η (1 + L) (A1,1 −A1,2 −A2,1 +A2,2) and β(L) =
(1 + L)(A2,2 −A2,1) + (b1 − b2)

(1 + L)(A1,1 −A1,2 −A2,1 +A2,2)
,

7



Under review as a conference paper at ICLR 2022

and write αn = α(Ln) and βn = β(Ln). By direct computation the dynamic of pt is

pt+1 = fαn,βn(pt) (8)

where αn encodes the update pace and βn is an equilibrium of the dynamic. We further set β∞ :=
A2,2−A2,1

A1,1−A1,2−A2,1+A2,2
and δ(L) := β(L)−β∞ which converges to zero asL→∞. IfA is diagonally

dominant α(L) is positive and increasing for all L ≥ 0. Additionally, because A1,1 − A1,2 and
A2,2 − A2,1 are positive, we can permute the coordinate so that β∞ ∈ (0, 1/2]. With Li et al.
(1982), the lemma below implies the existence of period three points and the proof is in appendix E.

Lemma 4.7. If β∞ ∈ (0, 1/2), there exists a constant L∗ > 0 so that if L ≥ L∗, there exists a
trajectory x0, x1, x2, and x3 with fα(L),β(L)(xi) = xi+1 such that x3 < x0 < x1.

Proof of theorem 4.6. First by lemma 4.7, for all L ≥ L∗, there exists a trajectory x0, x1, x2, x3 so
that x3 < x0 < x1. Additionally, existence of such trajectory implies the exists of period three
points by Li et al. (1982). Finally, by the seminal work of Li & Yorke (1975), it implies that the map
is Li-York chaotic.

5 SIMULATION

(a) (14, 0.001) without noise (b) (1.4, 0.05) without noise (c) (14, 0.05) without noise

(d) (14, 0.001) with noise (e) (1.4, 0.05) with noise (f) (14, 0.05) with noise

Figure 1: Here we plot the temporal behavior of pt starting at p0 = 0.2 for 100 rounds under various
L and η, and noisy estimation of gradient of mean squared error with m samples. The top row
(figs. 1a to 1c) present different combination of (L, η), and bottom row (figs. 1d to 1f) consider the
gradient is estimated from m = 10 and m = 100 samples.

Now we simulate the one-dimensional dynamics in eq. (8) of one agent with different learning rate
η and collective influence L.

We first define a location-scale distribution map. Let the feature x1, x2 and noise x0 are mutually
independent Gaussian distribution with zero mean, and the variance are E[x2

1] = 3, E[x2
2] = 7, and

E[x2
0] = 1. Finally, θ0 = 0. Therefore,

A = E[xx>] =

[
3 0
0 7

]
, and b = Aθ0 + E[x0x] =

[
0
0

]
.

8
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Given learning rate η > 0, and collective influence L, we have α(L) = 20η(1 + L), and the
performative stable point β(L) = 0.7.

The top row of fig. 1 shows the temporal behavior of pt under different (L, η). The bottom row in
fig. 1 demonstrates our (convergent and chaotic) results are robust even when the value of gradient is
noisy. Specifically, we consider at each round t, instead of gi1(~θt)−gi2(~θt) = 2(1+L)(1,−1)Aθt−
2(1,−1)b, the agent replace A and b with empirical moments on m samples. This process can
be seen as a stochastic exponentiated gradient descent which uses a stochastic estimation of the
gradient.

We can see chaotic behavior happens in fig. 1c with L = 14 and η = 0.05, and such behavior
persists in fig. 1f when the evaluations of gradient are noisy. On the other hand, when the learning
rate is small enough (figs. 1a and 1b) the dynamics converge to the performative stable point 0.7.
Furthermore, in figs. 1d and 1e the dynamics converge even with noisy estimation of gradient.

Finally, fig. 2 shows the temporal behavior of the loss. Under the same setting as fig. 1c, fig. 2b
shows not only the temporal behavior pt is chaotic, but also the mean squared loss. On the other
hand, under the same setting as fig. 1a, fig. 2a shows convergent behavior of loss.

(a) (14, 0.001) without noise (b) (14, 0.05) without noise

Figure 2: The temporal behavior of the total cost for 100 rounds under various η.

6 CONCLUSION

We introduce a framework of multi-agent performative prediction and investigate whether classical
reinforcement learning algorithms can converge or behave chaotically depending on the collective
influence of the agents model and learning rate. However, we view our example as only scratching
the surface of the work of multi-agent performative predictions.

Our framework leads to several new theoretical problems. In particular, it would be interesting
to understand whether this threshold is generic and if our results still hold on other reinforcement
learning algorithms or other general multi-agent distribution maps. Our framework also provides a
new viewpoint to several applications. One natural application is strategic classification. Hardt et al.
(2016) In this context, our framework can be seen as strategic learners in strategic classification
problem where both data and classifiers are strategic. However, the features also respond to the
deployed models in conventional strategic classification, which is not captured in our multi-agent
location-scale distribution map. It would be interesting to investigate our dynamics in the context of
strategic prediction. Another application is pricing strategy/prediction, where multiple companies
predict the demand function and set their prices.

Both our digital and real-world environments are increasingly under the influence of or ever more
powerful and numerous ML systems. As these algorithms trigger actions that change the state of
the system that produces their joint input data (e.g., AI-triggered ads shown to users affecting their
behavior, or automated trading systems affecting stock prices, etc), they are effectively forming
closed loop systems and can no longer be understood fully in isolation. As we show in this paper,
even fairly simple and innocuous such settings can exhibit phase transitions going from optimal
behavior to chaos. We believe such phenomena are worthy of a careful investigation and we hope
that this paper sets out some useful building blocks by bringing together optimization/performance
analysis with Lyapunov theory and chaos theory.

9
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ETHICS STATEMENT

Our work showcases the possibility of competing prediction algorithms leading to instability and
chaos. Extra steps should be taken, whenever possible, so that related systems operate within the
range of parameters leading to stability. We hope that our work helps both by identifying a potential
threat for ML systems as well as providing some guidance on how to counter or minimize it.

REPRODUCIBILITY

All of our theoretical results are stated fully, including previous definitions and results on which they
are based. They are accompanied by proofs, either in the main paper or in the appendix. The setting
of our simulation results are stated fully in the main paper.
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A PROOFS AND DETAILS IN SECTION 3

Proof of proposition 3.1. First under the mean squared loss function, each agent i’s decoupled per-
formative loss function `(~θ′,θi) is convex in θi. Thus, for linear predictive model, we can apply the
KKT conditions on definition 2.1 so that a collection of predictive models ~θ ∈ Θn is performatively
stable if and only if for all i ∈ [n], k ∈ [d] with θik > 0, ∂

∂θik
`(~θ′,θi) ≤ ∂

∂θil
`(~θ′,θi) for all l ∈ [d]

where ~θ′ = ~θ. Therefore, with eq. (1), ~θ∗ is performative stable if

gik(~θ∗) ≤ gil(~θ∗) (9)

holds for all i ∈ [n] and k ∈ [d] with θik > 0.

With eq. (9), we now show that there exists a unique performative stable point ~θ∗ by proving that 1)
Φ in eq. (2) is strictly convex, and 2) ~θ∗ is a minimizer of Φ. First, to show Φ is strictly convex, it is
sufficient to show the Hessian of Φ positive definite. Because Φ is a quadratic function on Θn, the
Hessian of Φ is a constant matrix in Rnd×nd By the partial derivative of eq. (2), for all i, j ∈ [n] and
k, l ∈ [d], we have (∇2Φ)ik,jl = ∂2

∂θik∂θ
j
l

Φ = 2λiλjAk,l if i 6= j and (∇2Φ)ik,il = 2λi(λi+ 1)Ak,l.

Let L ∈ Rn×n with Lij = 2λiλj if i 6= j and 2λi(1 +λi) which is positive definite because λi > 0
for all i ∈ [n]. Then, the Hessian of Φ is the Kronecker product of L andA,

∇2Φ =

2λ1(1 + λ1)A . . . 2λ1λnA
...

. . .
...

2λnλ1A . . . 2λn(1 + λn)A

 = L⊗A.

Because L and A are both positive definite, the Hessian is also positive definite. Therefore, Φ is
strictly convex, and there exist a unique minimum of Φ in the compact set Θn. Now we show ~θ∗ is
performative stable if and only if ~θ∗ is a minimizer of Φ. By the first order condition and the partial
derivative of eq. (2), the minimum of eq. (2) at ~θ∗ if and only if gik(~θ∗) ≤ gil(

~θ∗) for all i ∈ [n]

k, l ∈ [d] with (θ∗)ik > 0. Therefore, ~θ∗ is the minimum of Φ if and only if ~θ∗ is a performative
stable point.

Proof of proposition 3.2. Given a profile of models ~θ, the total cost is∑
i

`(~θ, (θ)i) =
∑
i

E(x,y)∼D(~θ)[(y− θi · x)2]

=
∑
i

E


〈x,θ0 −

∑
j

λjθ
j − θi

〉
+ x0

2


which is a convex function on ~θ ∈ Θn. Additionally,

∂

∂θik

∑
ı

`(~θ,θı) = (1 + λi)g
i
k(~θ, ~θ) +

∑
ı∈[n]:ı6=i

λig
i
k(~θ, ~θ) = (1 + nλi)g

i
k(~θ, ~θ)

which is the gradient of decoupled performative loss scaled by (1 + nλi). Thus, we can apply the
KKT conditions and the minimum happens if and only if eq. (9) holds.

B PROOF AND DETAILS FOR THEOREM 4.2

Proof of lemma 4.3. By chain rule,

d

dt
Φ(~ϑ(t)) =

∑
i∈[n],k∈[d]

∂

∂θik
(~ϑ(t)) · d

dt
~ϑ(t), (10)

so the time derivative of the potential function is zero if the dynamics is at a fixed point of eq. (6).
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Now we compute a closed form of the time derivative and show the derivative is zero only if the
dynamics is at a fixed point of eq. (6). Here we omit the input t to simplify the notation.

d

dt
Φ(~ϑ(t)) =

∑
i,k

∂

∂θik
(~ϑ(t)) · ηi

‖η‖1
ϑik(t)(

∑
l

ϑil(t)g
i
l(
~ϑ(t))− gik(~ϑ(t))) (by eqs. (6) and (10))

=
1

‖η‖1

∑
i

λiηi

(∑
k

(
gik
)
· ϑik

(∑
l

ϑilg
i
l − gik

))
(by the partial derivative of eq. (2))

=
1

2‖η‖1

∑
i

λiηi
∑
k,l∈[d]

ϑikϑ
i
l(2g

i
kg
i
l − 2(gik)2) (because

∑
l ϑ

i
l = 1)

=
−1

2‖η‖1

∑
i

λiηi
∑
k,l∈[d]

ϑikϑ
i
l(g

i
k − gil)2

Now we bound the time derivative.

− 2‖η‖1

(∑
i

λiηi

)
d

dt
Φ(~ϑ(t))

=

 ∑
i∈[n],k,l∈[d]

λiηiϑ
i
kϑ

i
l

 ∑
i∈[n],k,l∈[d]

λiηiϑ
i
kϑ

i
l(g

i
k − gil)2

 (
∑
k ϑ

i
k =

∑
l ϑ

i
l = 1)

≥

 ∑
i∈[n],k,l∈[d]

λiηiϑ
i
kϑ

i
l|gik − gil |

2

. (by Cauchy inequality)

≥

 ∑
i∈[n],k∈[d]

λiηi

∣∣∣∣∣∣ϑik
∑
l∈[d]

ϑil(g
i
k − gil)

∣∣∣∣∣∣
2

(by triangle inequality)

Therefore, d
dtΦ(~ϑ(t)) = 0 only if ϑik

(
gik −

∑
l∈[d] ϑ

i
lg
i
l

)
= 0 for all i ∈ [n] and k ∈ [d] which is a

fixed point of eq. (6).

We can further simplify the bound by ~ξ. Because
∑
i,k λiηi|ϑik(

∑
l ϑ

i
lg
i
l − gik)| ≥

(mini λiηi)
∑
i,k |ξik(~ϑ)| = (mini λiηi) ‖~ξ(~ϑ)‖1, d

dtΦ(~ϑ(t)) ≤ −mini λiηi
2
∑
i ηi

∑
i λiηi

‖~ξ(~ϑ)‖21.

Proof of theorem 4.2. When the fixed points are isolated satisfying eq. (4), by lemma 4.3, the dy-
namics in eq. (6) converges to a fixed point of eq. (6), ~θ∗ ∈ Θn. Because ~θ∗ is a fixed point, for all
i ∈ [n], k ∈ [d],

(θ∗)ik

(
ḡi(~θ∗)− gik(~θ∗)

)
= (θ∗)ik

∑
l

(θ∗)ilg
i
l(
~θ∗)− gik(~θ∗) = 0

By proposition 3.1, the fixed point condition implies each coordinate of the gradient of loss in the
support are identical, gik(~θ∗) = ḡi(~θ∗) for all i and k ∈ Si. Thus, if the fixed point ~θ∗ is not
performative stable, there exists ı and κ with (θ∗)ıκ = 0 so that gıκ(~θ∗) < ḡı(~θ∗). Furthermore,
exp(−ηıgıκ(~θ∗)) >

∑
l(θ
∗)ıl exp(−ηıgıl(~θ∗)). We can pick a small enough ε > 0 and define

Uε := {~θ : exp(−ηıgıκ) >
∑
l

θıl exp(−ηıgıl) + ε} (11)

which contains ~θ∗ and is an open set because ~g and the exponential function are continuous. Since
~ϑ(t) converges to ~θ∗ as t → ∞, there exists a time tε so that for all t ≥ tε, ~ϑ(t) ∈ Uε. However,
if ~ϑ(t) ∈ Uε and ~ϑ(t) is an interior point, we get d

dtϑ
i
k(t) > 0 by eqs. (6) and (11). Therefore,

ϑik(t) is positive and increasing for t ≥ tε. We reached a contradiction because ϑik(t)→ (θ∗)ik = 0.
Therefore, ~θ∗ is a performative stable point.
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C PROOF ANS DETAILS FOR LEMMA 4.4

To prove lemma 4.4, show the dynamic eq. (3) can be approximated by eq. (6) and the error vanishes
as η∗ decreases. Thus, we can show the dynamic can hit an arbitrary neighborhood of the performa-
tive stable point. We further use Φ to show the dynamic will stay in the neighborhood. Below we
state two ancillary lemmas to control the error of our approximation.

We define an error vector ~e(~θ) ∈ Rn×d between eqs. (3) and (6) so that

η2
i e
i
k(~θ) :=

θik exp(ηi(ḡ
i − gik))∑

l θ
i
l exp(ηi(ḡi − gil))

− θik − ηiξik

We omit the input ~θ of ~e and ~et := ~e(~θt) when there is no ambiguity. We show if the the error
vector is small, Φ is decreasing in dynamics eq. (3).

Claim C.1 (Approximated potential). There exist C4, so that for all t and ~θ0 ∈ Θn, the difference
of eq. (2) on eq. (3) satisfies

Φ(~θt+1)− Φ(~θt) ≤
−mini λ

2
i η

2
i

2
∑
i λiηi

‖~ξt‖21 + max
i
λiη

2
i max
i,k,~θ
|gik(~θ)| · ‖~et‖1 + d2C4

∥∥∥~θt+1 − ~θt

∥∥∥2

1
.

Claim C.2. If maxi ηi is small enough and satisfies eq. (12), there exists a constant C so that

|eik(~θ)| ≤ C for all i ∈ [n], k ∈ [d], and ~θ ∈ Θn.

The proofs of these two claims are based on first order approximation.

Proof of claim C.1. By the partial derivative of eq. (2), we have ∂2

∂θik∂θ
j
l

Φ(~θ) = 2λiλjAl,k if i 6= j

and ∂2

∂θik∂θ
i
l

Φ(~θ) = 2λi(1 +λi)Al,k. Thus, the second order partial derivatives of Φ can bounded by
the twice of C4 := maxı λı(λı + 1) maxk,lAk,l. By Taylor’s expansion, we have

Φ(~θt+1)− Φ(~θt)

≤∇Φ(~θt) ·
(
~θt+1 − ~θt

)
+
d22C4

2

∥∥∥~θ(t+ 1)− ~θ(t)
∥∥∥2

2

≤
∑

i∈[n],k∈[d]

λig
i
k(~θt)(ηiξ

i
k(~θt) + η2

i e
i
k(~θt)) + d2C4

∥∥∥~θ(t+ 1)− ~θ(t)
∥∥∥2

1

(by the partial derivative of eq. (2))

=
∑

i∈[n],k∈[d]

λiηig
i
t,kξ

i
t,k + λiη

2
i g
i
t,ke

i
t,k + d2C4

∥∥∥~θt+1 − ~θt

∥∥∥2

1

≤ −1

2
∑
i λiηi

∑
i,k

λiηi|ξit,k|

2

+
∑

i∈[n],k∈[d]

λiη
2
i g
i
t,ke

i
t,k + d2C4

∥∥∥~θt+1 − ~θt

∥∥∥2

1
(by lemma 4.3)

Therefore, we have

Φ(~θt+1)− Φ(~θt) ≤
−mini λ

2
i η

2
i

2
∑
i λiηi

‖~ξt‖21 + max
i
λiη

2
i max
i,k,~θ
|gik(~θ)| · ‖~et‖1 + d2C4

∥∥∥~θt+1 − ~θt

∥∥∥2

1

which completes the proof.

Proof of claim C.2. By if η∗ is small enough and satisfies eq. (12), we have ηi(ḡi − gik) ≤ 1, and
θik+ηiθ

i
k(ḡi−gik) ≤ θikeηi(ḡ

i−gik) ≤ θik+ηiθ
i
k(ḡi−gik)+ e

2η
2
i θ
i
k(ḡi−gik)2 for all i, k and ~θ ∈ Θn.

Additionally, with ξik = θik(ḡi − gik), we can rewrite it as

θik ≤ θikeηi(ḡ
i−gik) − ηiξik ≤ θik +

e

2
η2
i θ
i
k(ḡi − gik)2.
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Therefore, the error can be upper bounded as

η2
i e
i
k ≤

θik + ηiξ
i
k + e

2η
2
i θ
i
k(ḡi − gik)2∑

l θ
i
l + ηiξil

− (θik + ηiξ
i
k) =

e

2
η2
i θ
i
k(ḡi − gik)2,

because
∑
l θ
i
l = 1 and

∑
l ξ
i
l = 0. For lower bound, we have,

η2
i e
i
k ≥

θik + ηiξ
i
k∑

l θ
i
l + ηiξil + e

2η
2
i θ
i
l(ḡ

i − gil)2
− (θik + ηiξ

i
k) ≥ −(θik + ηiξ

i
k)

(
eη2
i

2

∑
l

θil(ḡ
i − gil)2

)
.

If we set C := emax~θ
∣∣∑

l θ
i
l(ḡ

i − gil)2
∣∣, because |ηiξik| ≤ ηi2 maxk |gik| ≤ 1 by eq. (12) and

θik ≤ 1, we have
∣∣∣eik(~θ)

∣∣∣ ≤ C.

Proof of lemma 4.4. Because D is open, we can set D′ so that ~θ∗ ∈ D′, D′ ⊂ D, and
sup~θ∈D′ Φ(~θ) < 1

2 inf ~θ/∈D Φ(~θ). We will pick η∗ small enough so that ~θt+1 ∈ D for all
~θt ∈ D′ ⊂ D. The proof has two parts: we first show the dynamics eq. (3) hits the set D. Then we
prove eq. (3) stays in D afterward.

By theorem 4.2, there exists τ so that ~ϑ(τ) ∈ D′. Now by Gronwall’s inequality we can set η∗ small
enough so that ~θτ/‖η‖1 ∈ D. Formally, given the dynamics in eq. (3), we define right-continuous
step functions ~θ(t) = ~θbtc and ~e(t) := ~e(~θbtc) for all t ≥ 0. Then the dynamics in eq. (3) can be
written as

θik(t)− θik(0) =

t−1∑
s=0

(θis+1,k − θis,k) =

t−1∑
s=0

(
ηiξ

i
k(~θs) + η2

i e
i
k(~θs)

)
= ηi

∫ t

0

ξik(~θ(s)) + ηie
i
k(s) ds

On the other hand, the solution of eq. (6) can be written as

ϑik(ηit)− ϑik(0) =
ηi
‖η‖1

∫ t
‖η‖1

0

ξik(~ϑ(s)) ds = ηi

∫ t

0

ξik(~ϑ(‖η‖1s)) ds

Because ξik are continuous and Θn is compact, there exists L > 0 so that ξik is L-Lipschitz with
respect to one norm for all i and k. Thus, the difference between above equations is∣∣θik(t)− ϑik(‖η‖1t)

∣∣ ≤ηi ∫ t

0

∣∣∣ξik(~θ(s))− ξik(~ϑ(‖η‖1s))
∣∣∣ ds+ η2

i

∫ t

0

|eik(s)| ds

≤ηiL
∫ t

0

∥∥∥~θ(s)− ~ϑ(ηis)
∥∥∥

1
ds+ η2

iCt (L-Lipschitz and claim C.2)

Therefore, by Gronwall’s inequality and ηi ≤ η∗, we have∥∥∥~θ(t)− ~ϑ(‖η‖1t)
∥∥∥

1
≤ η∗ndL

∫ t

0

∥∥∥~θ(s)− ~ϑ(‖η‖1s)
∥∥∥

1
ds+ (η∗)

2ndCt ≤ (η∗)
2ndCteη∗ndLt

Because ~ϑ(τ) ∈ D′, we can pick η∗ small enough so that ~θ(τ/‖η‖1) = ~θbτ/‖η‖1c ∈ D and
Φ(~θbτ/‖η‖1c) < inf ~θ/∈D Φ(~θ).

Now we show the second part that ~θt ∈ D for all t ≥ bτ/‖η‖1c. First, with claim C.1, we will prove
that the potential function is decreasing for all ~θt /∈ D′ when η∗ small enough. We estimate three
terms in claim C.1 separately. First, because ~θ∗ ∈ D′ and Θn\D′ is compact, min~θ/∈D′ ‖~ξ(~θ)‖1 > 0

exists. Then mini λ
2
iη

2
i

2
∑
i λiηi

‖~ξt‖21 = Ω(maxi ηi) By claim C.2, maxi λiη
2
i maxi,k,~θ |g

i
k(~θ)| · ‖~et‖1 =

O(maxi η
2
i ). Finally, d2C4

∥∥∥~θt+1 − ~θt

∥∥∥2

1
= O(maxi η

2
i ). Therefore, there exists η∗ small enough

so that the potential function Φ(~θt+1) − Φ(~θt) < 0 for all ~θt /∈ D′ and η. Therefore Φ(~θt) <

min~θ/∈D Φ(~θ) for all t ≥ bτ/‖η‖1c which completes the proof.
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D PROOFS AND DETAILS FOR LEMMA 4.5

Lemma 4.3, shows the value of Φ is decreasing in eq. (6), and the decrease rate is lower bounded by
the one norm of ~ξ. Thus, if we can show the error between eq. (3) and eq. (6) is bounded by ‖~ξ‖1,
we have the value of Φ is also decreasing on eq. (3). The main challenge is that because ~ξ(~θ∗) = 0,
we need to control the error as ~ξ converges to zero but η∗ is fixed.

We first show three ancillary claims, claim D.1 to D.3. Claim D.1 show the vanishing components
of ~θt decrease rapidly once the dynamic is inD. Claim D.2 and D.3 show the supporting component
also decrease once the vanishing components are small enough.

Given (n, d,A,λ), we define the following constants C1 := 1
4 maxi,l,θ∈Θn |gil |, C2 := 2

mini,k(θ∗)ik
,

C3 := edmax(C1, C2), and C4 := maxı λı(λı+1) maxk,lAk,l. We require the maximum learning
rate is bounded by η∗ which satisfies the following conditions.

η∗ max
i,k,~θ∈Θn

|gik(~θ)| ≤ 1

2
(12)

η∗ndC3 max
~θ
‖~ξ(~θ)‖1 ≤ 1 (13)

Additionally, given the bound of learning rate ratio, maxi ηi
mini ηi

≤ Rη , we requires

R2
ηη

3
∗ <

mini λ
2
i

16
∑
i λi

min

{
4

C3 maxi(λi) max~θ ‖~g‖1
,

1

d2C4

}
(14)

Note that max η3i
min η2i

is less then the right hand side of eq. (14). On the other hand, by lemma 4.4, we
can pick D small enough so that the following conditions holds.

1

2
min

i∈[n],k∈Si
(θ∗)ik ≤ min

i∈[n],k∈Si,~θ∈D
θik (15)

We first show for all i and k ∈ S̄i, θit,k is decreasing and converges to zero exponentially fast

as t increases. Because ~θ∗ is a proper performative stable,
∑
l(θ
∗)ile

−ηigil (~θ
∗) = e−ηiḡ

i(~θ∗) >

e−ηig
i
k(~θ∗) for all i and k ∈ S̄i. We can take η∗, ε1, and D small enough so that for all ~θ ∈ D and

all learning rate profile η with max ηi ≤ η∗,

e−ηig
i
k < (1− ε1)

∑
l

θile
−ηigil , i ∈ [n], k ∈ S̄i (16)

Claim D.1 (Vanishing components). Given η∗, ε1, and D in eq. (16), if ~θt ∈ D for all t ≥ 0, for all
i ∈ [n] and k ∈ Si, θik(t) is decreasing in t and for all t ≥ 0

0 ≤ θit,k ≤ θi0,ke−ε1t.

Proof of claim D.1. By eq. (16), for all t ≥ 0, θit+1,k = θit,k
exp(−ηigit,k)∑
l θ
i
t,l exp(−ηigit,l)

≤ (1 − ε1)θit,k.

Therefore, θit,k is decreasing, and θit,k ≤ θi0,ke−ε1t.

Claim D.2. There exists a constant C3 such that for all ~θ ∈ Θn with δ1 > 0 so that ‖~ξ(~θ)‖1 ≥
2
√
δ1, and |ξik(~θ)| ≤ δ1 for all i ∈ [n] and k ∈ S̄i, then

|eik(~θ)| ≤ C3‖~ξ(~θ)‖21, (17)

for all i ∈ [n] and k ∈ [d].

Claim D.2 shows if the one norm of ~ξ is much bigger than the vanishing components, the error term
~e can be bounded by the ‖~ξ‖21. Moreover, claim D.1 ensures that the vanishing components decrease
rapidly, so the condition of claim D.2 readily holds.

16
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Proof of claim D.2. Given ~θ and δ1 > 0 that satisfy the condition, we first show two inequalities to
bound θik(ḡi − gik)2 for supporting and vanishing component respectively. For a vanishing compo-
nent k ∈ S̄i,

θik(ḡi − gik)2 ≤ max
i,l,θ∈Θn

|gil | · |θik(ḡi − gik)| ≤ 4C1 · δ1 ≤ C1‖~ξ‖21. (18)

Then for a supporting component k ∈ Si, with eq. (15) we have

θik(ḡi − gik)2 ≤ 1

mini,l,~θ∈D θ
i
l

(θik(gi − gik))2 ≤ 2

mini,k(θ∗)ik
|ξik|2 ≤ C2‖~ξ‖21. (19)

Now we use above two inequalities to approximate eq. (3). For nominator, because 1 + x ≤
exp(x) ≤ 1+x+ e

2x
2 for all x ≤ 1, θik exp(ηi(ḡ

i−gik)) ≥ θik+ηiθ
i
k(ḡi−gik) = θik+ηiξ

i
k. On the

other hand, because ηi(ḡi−gik) ≤ 1 by eq. (12), θik exp(ηi(ḡ
i−gik)) ≤ θik+ηiξ

i
k+ e

2θ
i
kη

2
i (ḡi−gik)2.

By eqs. (18) and (19), we have

0 ≤ θikeηi(ḡ
i−gik) − θik − ηiξik ≤

e

2
max(C1, C2)η2

i ‖~ξ‖21 (20)

For denominator, we sum over eq. (20). Because
∑
l θ
i
l = 1 and

∑
l θ
k
l (ḡi − gil) = 0, we have

0 ≤
∑
l

θile
ηi(ḡ

i−gil ) − 1 ≤ ed

2
max(C1, C2)η2

i ‖~ξ‖21 (21)

Given i ∈ [n] and k ∈ [d], we apply the above equation to eq. (3). For upper bounds, we have

η2
i e
i
k(~θt) =

θik exp(ηi(ḡ
i − gik))∑

l θ
i
l exp(ηi(ḡi − gil))

− θit,k − ηiξit,k

≤θit,ke−ηig
i
k(~θt) − θit,k − ηiξit,k (by eq. (21))

≤emax(C1, C2)

2
η2
i ‖~ξ‖21 (by eq. (20))

For lower bounds,

η2
i e
i
k(~θt) =

θik exp(ηi(ḡ
i − gik))∑

l θ
i
l exp(ηi(ḡi − gil))

− θit,k − ηiξit,k

≥
θit,k + ηiξ

i
t,k

1 + edmax(C1,C2)
2 η2

i ‖~ξ‖21
− θit,k − ηiξit,k (by eqs. (20) and (21))

≥− (θit,k + ηiξ
i
t,k)

(
edmax(C1, C2)

2
η2
i ‖~ξ‖21

)
(1/(1 + x) ≥ 1− x)

≥− edmax(C1, C2)η2
i ‖~ξ‖21 (θit,k ≤ 1 and ηiξit,k ≤ 1 by eq. (12))

Therefore, with C3 := edmax(C1, C2) we finish the proof.

Claim D.3. There exists ε2 > 0 so that for all ~θt ∈ Θn and δ1 > 0 so that ‖~ξ(~θt)‖1 ≥ 2
√
δ1, and

|ξik(~θt)| ≤ δ1 for all i ∈ [n] and k ∈ S̄i, then Φ(~θt+1)− Φ(~θt) ≤ ε2‖~ξ(~θt)‖21.

Proof for claim D.3. By claim C.1,

Φ(~θt+1)− Φ(~θt) ≤
−mini λ

2
i η

2
i

2
∑
i λiηi

‖~ξt‖21 + max
i
λiη

2
i max
i,k,~θ
|gik(~θ)| · ‖~et‖1 + d2C4

∥∥∥~θt+1 − ~θt

∥∥∥2

1
.

We can bound the later two terms by claim D.2. For the second term, ‖~et‖1 ≤ ndC3‖~ξt‖21. For the
third term, ∥∥∥~θt+1 − ~θt

∥∥∥
1
≤
∑
i,k

(
ηi|ξit,k|+ C3η

2
i ‖~ξ‖21

)
≤max

i
ηi‖~ξ‖1 + ndC3 max

i
η2
i ‖~ξ‖21.

≤2 max
i
ηi‖~ξ‖1 ( by eq. (13))
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With above inequalities, by eq. (14), we have mini λ
2
iη

2
i

4
∑
i λiηi

> maxi λiη
2
i maxi,k,~θ |g

i
k(~θ)|ndC3 and

mini λ
2
iη

2
i

4
∑
i λiηi

> 4d2C4 maxi η
2
i . Therefore there exists a constant

ε2 :=
mini λ

2
i η

2
i

2
∑
i λiηi

−max
i
λiη

2
i max
i,k,~θ
|gik(~θ)|ndC3 − 4d2C4 max

i
η2
i > 0

so that Φ(~θt+1)− Φ(~θt) < −ε2‖~ξt‖21.

Proof of lemma 4.5. To prove limt→∞ ~θt = ~θ∗, there are two equivalent ways to measure the
progress, besides ‖~θt − ~θ∗‖1. First because ~θ∗ is an isolated fixed point of eq. (6), ~θt converges to
~θ∗ if and only if limt→∞ ~ξ(~θt) = ~0. On the other hand, because Φ is strictly convex and and ~θ∗ is
the minimum point, ~θt converges to ~θ∗ if and only if limt→∞Φ(~θt) = min~θ Φ(~θ). With these two
equivalent conditions, given any ε > 0, there exists δ > 0 so that ‖~θ − ~θ∗‖1 < ε when

~θ ∈ Vδ :=

{
~θ : Φ(~θ) ≤ max

~θ′:‖~ξ(~θ′)‖1≤δ
Φ(~θ′)

}
.

Therefore, it is sufficient for us to show for all δ > 0, there is tδ so that ~θt ∈ Vδ for all t ≥ tδ . With
technical claim D.1 to D.2, our proof has two parts. First we show that the dynamic hits Vδ . Then,
the dynamic stays in Vδ .

For the first part, given δ > 0 and 0 < C < 1, by claim D.1 there exists T1 such that each vanishing
component |ξit,k| ≤ C2δ2/4 for all t ≥ T1. Then by claim D.3, there exists T2 ≥ T1 such that
‖~ξT2‖1 ≤ Cδ. Otherwise, the value of Φ decreases by a nonzero constant ε2‖~ξt‖21 ≥ Cε2δ

2 > 0 at
each round which contradicts that the minimum of Φ bounded.

For the second part, if ‖~ξt‖1 ≤ Cδ ≤ δ for all t ≥ T2, then we finish the proof. Other-
wise, there exists τ ≥ T2 so that ‖~ξτ‖1 ≤ Cδ < ‖~ξτ+1‖1. Now we prove that Φ(~θτ+1) ≤
max~θ′:‖~ξ(~θ′)‖1≤δ Φ(~θ′). Because the difference between ~θτ+1 and ~θτ is ‖~θτ+1 − ~θτ‖1 ≤
maxi ηi‖~ξτ‖1 +maxi η

2
i ‖~eτ‖1 ≤ 2 maxi ηi‖~ξτ‖1 when η∗ is small enough, and ~ξ is a Lξ-Lipschitz

~θ for some constant Lξ in one norm, we have

Cδ < ‖~ξτ+1‖1 ≤ ‖~ξτ‖1 + ‖~ξτ+1 − ~ξτ‖1 ≤ ‖~ξτ‖1 + 2Lξ max
i
ηi‖~ξτ‖1 ≤ δ, (22)

when C is small enough so that C(1 + 2Lξ maxi ηi) ≤ 1. Therefore, ‖~ξτ+1‖1 ≤ δ and Φ(~θτ+1) ≤
max~θ′:‖~ξ(~θ′)‖1≤δ Φ(~θ′). Finally, because |ξit,k| ≤ C2δ2/4 for all t ≥ τ + 1, by claim D.3, the

potential function is decreasing for all t ≥ τ + 1, unless ‖~ξ‖t ≤ Cδ. Both make the potential
function less than max~θ′:‖~ξ(~θ′)‖1≤δ Φ(~θ′) which completes the proof.

E PROOF AND DETAIL FOR THEOREM 4.6

Proof of lemma 4.7. Define PL(x) := α(L)(x−β(L)) which is increasing for allL because α(L) >
0. With PL, fα(L),β(L)(x) = x

x+(1−x) exp(PL(x)) . Take x1(L) = x1 := 1−1/α(L), x2(L) = x2 :=

fα(L),β(L)(x1(L)), and x3(L) = x3 := fα(L),β(L)(x2(L)). We will define x0(L) later. We will
omit L and use x1, x2, and x3.

To define x0(L), we set y(L) := β(L)/2, and want to show

fα(L),β(L)(y) > x1, (23)

which is equivalent to (α(L)− 1)(1− y(L)) exp(PL(y(L))) < y(L). When L is large enough, we
have β(L) ∈ ( 2β∞

3 , 4β∞
3 ). Additionally because α(L) > 0, we have PL(y(L)) = − 1

2α(L)β(L) <

− 1
3α(L)β∞. Therefore, we have (α(L) − 1)(1 − y(L))ePL(y(L)) ≤ α(L)e−α(L) β∞3 < β∞

3 <

y(L) when L is large enough, and prove eq. (23). On the other hand, because β(L) < 4
3β∞ and
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PL(β(L)) = 0, we have fα(L),β(L)(β(L)) = β(L) < 1
2 (β∞+1). Moreover, 1

2 (β∞+1) < 1− 1
α(L) ,

holds when L is large enough. These two imply

fα(L),β(L)(β(L)) = β(L) < x1(L). (24)

Combining eqs. (23) and (24), by intermediate value theorem, there exists x0 such that

fα(L),β(L)(x0) = x1 with y < x0 < β(L) < x1. (25)

Now we show x3 < x0. With 1−x1(L) = 1/α(L) and 0 < x1 < 1, we have x2 = fα(L),β(L)(x1) =
x1

x1+α(L)−1 exp(PL(x1)) ≤
α(L)

exp(PL(x1)) . Because β∞ < 1/2, when L is large enough, x1(L) =

1− 1
α(L) >

1
4 (2β(L) + 3) and, thus, PL(x1) > α(L)

(
3
4 −

β(L)
2

)
. Therefore, we have

x2 ≤ α(L) exp

(
−α(L)

(
3

4
− β(L)

2

))
(26)

Finally, because PL(x2) ≥ PL(0) = −β(L), we get

x3 =fα(L),β(L)(x2) ≤ x2

x2 + (1− x2) exp(−α(L)β(L))

=
x2 exp(α(L)β(L))

1 + x2(exp(α(L)β(L))− 1)

≤x2 exp(α(L)β(L)) (since exp(α(L)β(L)) > 1 when L is large)

≤α(L) exp

(
α(L)

(
β(L)−

(
3

4
− β(L)

2

)))
(eq. (26))

=α(L) exp

(
3α(L)

2

(
β(L)− 1

2

))
Finally, because β∞ < 1/2, x3 converges to 0 when L is large enough. Therefore,

x3 < y < x0. (27)

By eqs. (25) and (27), we have x3 < x0 < x1 which completes the proof.

19


	Introduction
	Preliminary
	Multi-agent Performative Prediction
	Learning dynamics
	Dynamical system

	Multi-agent Performative Learning: Stability and Optimality
	Multi-agent Performative Learning: Convergence and Chaos
	Converging with Small Learning Rate
	Chaos with Constant Learning Rate

	Simulation
	Conclusion
	Proofs and Details in sec:equilibrium
	Proof and Details for thm:convergeconti
	Proof ans Details for thm:convergeconst
	Proofs and Details for thm:convergepoint
	Proof and Detail for thm:chaosone

