
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Accurate and Efficient Channel pruning
via Orthogonal Matching Pursuit

Anonymous Author(s)∗∗∗

ABSTRACT
The deeper and wider architectures of recent convolutional neu-
ral networks (CNN) are responsible for superior performance in
computer vision tasks. However, they also come with an enormous
model size and heavy computational cost. Filter pruning (FP) is one
of the methods applied to CNNs for compression and acceleration.
Various techniques have been recently proposed for filter pruning.
We address the limitation of the existing state-of-the-art method and
motivate our setup. We develop a novel method for filter selection
using sparse approximation of filter weights. We propose an orthog-
onal matching pursuit (OMP) based algorithm for filter pruning
(called FP-OMP). We also propose FP-OMP Search, which aims
to alleviate the problem of removal of uniform number of filters
from all the layers of a network. FP-OMP Search performs a search
over all the layers with a given batch size of filter removal. We
evaluate both FP-OMP and FP-OMP Search on benchmark datasets
using standard ResNet architectures. Experimental results indicate
that FP-OMP Search consistently outperforms the baseline method
(LRF) by nearly 0.5 − 3%. We demonstrate both empirically and
visually, that FP-OMP Search prunes different number of filters
from different layers. Further, timing profile experiments show that
FP-OMP improves over the running time of LRF.

KEYWORDS
Filter Pruning, OMP, Multiple channels, Weight compensation

1 INTRODUCTION
Computer vision has been revolutionized with the advent of con-
volutional neural networks (CNNs) such as AlexNet [21], VGG
[28], and ResNet [10]. In order to obtain higher performance, addi-
tional heavier networks [17, 30] were later developed. The massive
computing that these networks require has been made possible by
technological advancements. However, the computing resources
are constrained in some contexts, such as in mobile devices. Also, in
certain contexts higher efficiency at similar performance levels can
lead to newer applications being more practical given a resource
budget. Hence, methods that can prune unnecessary weights are
in demand. Moreover, it has been argued that pruning individual
weights [9] leads to irregular sparsity [26]. Hence, it is not effec-
tive for reduction of computation in case of convolutional neural
networks [19]. This has lead to development of many channel prun-
ing methods, e.g. geometric medians [13], learning filter pruning
criteria [11], transformable architecture search [6], etc.

Recently, linearly replacable filters (LRF) [19] has outperformed
the existing methods by removing filters which can be expressed
as linear combinations of other filters in the same layer. However,
there are two shortcomings with the method. Firstly, the filters are
removed one at a time and the weights are compensated through
fine tuning after each removal, causing this method to be time
consuming. Secondly, same fraction of filters are removed from all

the layers. However, certain layers may have a higher fraction of
redundant filters compared to other layers. In this paper, we seek
to alleviate these limitations.

In order to alleviate the first shortcoming, we propose to remove
multiple filters at a time. We develop the formulation based on
sparse approximation of filter weights and propose an orthogonal
matching pursuit (OMP) [29] based algorithm (called FP-OMP) for
the solving the problem. FP-OMP also performs the initial weight
compensation using 1x1 convolutions for the existing filters. This
decouples the pruning of multiple layers while incurring minimal
overhead in an optimized final network. Note that the original
weight compensation developed in [19] only compensates weights
for a single removed filter.

We also propose FP-OMP Search, which aims to alleviate the
second limitation, by performing a search over all the layers with
a given batch size of filter removal. We evaluate both FP-OMP
and FP-OMP Search on benchmark datasets using standard ResNet
architectures. Experimental results indicate that FP-OMP Search
consistently outperforms the baseline method (LRF) by ∼ 0.5 − 3%.
Also, we show that FP-OMP Search prunes very different number
of filters from different layers. Further, anecdotal evidence suggests
that the layers from which lower number of filters are pruned en-
code more diverse feature maps compared to layers with higher
number of pruned filters. We also demonstrate that FP-OMP im-
proves over the running time of LRF, albeit FP-OMP Search is more
computationally expensive.

2 RELATEDWORK
Network Pruning:A neural network that has already been trained
can have its superfluous weights removed while still performing
well. Early pruning [9] started with the elimination of small-norm
weights or nodes from the Deep Neural Networks(DNN); however,
as CNN developed, the practical effectiveness of removing a single
weight or node decreased. Channel pruning or filter pruning thus
became widely used in this industry. At the early stage of channel
pruning research, a number of heuristic techniques that make use of
the average proportion of zero activations [16] and Lasso regression
[14, 26] were developed. Since then, a number of methods have been
suggested, including regularising the scaling factor of BatchNorm
(BN) [18] to prune the appropriate channel [23], assessing the rele-
vance score by backprop [33], and identifying essential channels
by adding a new loss to the intermediate layer [34]. More novel
techniques have recently surfaced [13, 22, 32], such as investigating
the value of pruning [25] or using meta-learning [24].

A straightforward method of filter selection is to remove the
filters with lower value of norm as they are expected to contribute
relatively less to the output feature maps. Filter Pruning via Geo-
metric Median (FPGM) [13] notes the two limitations with this
criterion: (1) The deviation of filter norms should be significant
else, the lower norm filters that are removed would be almost as

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

important as the remaining filters. (2) The norms of the pruned
filters should be close to zero. However these prerequisites are not
always true. FPGM addresses these limitations and proposes a bet-
ter criterion. According to the geometric median’s [8] property, the
remaining filters can be used to represent filters that are close to it
in a layer of filters. Thus they can be pruned without affecting the
network and since this isn’t norm based, it doesn’t suffer from the
above limitations.

The earlier techniques employ the same pruning criteria for var-
ious network layers, according to Learning Filter Pruning Criteria
LFPC [11]. Setting a single pruning criterion for each layer may not
be appropriate because various layers have distinct filter distribu-
tions. A Differentiable Criteria Sampler (DCS), the main element of
LFPC, learns the appropriate criteria from a set of preset criteria to
utilise for various layers. LFPC simultaneously takes into account
all layers and pruning criteria.

Transformable Architecture Search (TAS)[6] is a differentiable
searching algorithm that learns the optimal architecture size of the
network. Once each layer’s ideal number of filters is established,
a network with this architecture is trained through knowledge
distillation [15] using the unpruned original network in the final
step. This approach is in sharp contrast with other papers as it
allows the number of channels per layers to be explicitly optimized
to get the smaller model. One problem with this approach is that
the first step of searching the optimal network architecture is time
expensive. This is due to the increase in the candidate search space.

Linearly Replaceable Filter (LRF) [19] frames each filter as a
synthesis of other filters in a specific layer. If the approximation
for a certain filter as a linear combination of remaining filters is
accurate enough, we can consider this filter to be replaceable such
that the pruned network is unaffected. Our work is essentially built
on this idea of filter representation.

A large body of dataset selection works exist such as those of
data valuation [5, 27, 31] that constructs a value function based on
the validation set, using which a set of high value data samples get
selected; facility location based approaches [4, 7] that select data in
a streaming setting using convex approximation; uncertainty based
method [3] that believes including samples with low confidence
in the subsets have higher impact on optimisation; submodular
optimisation based coreset approaches [1, 2] that finds a set of rep-
resentative samples fulfilling a defined objective function; gradient
based methods [20] that use Orthogonal Matching Pursuit (OMP)
algorithms to match the gradients on full set with that of the subset.
Owing to OMP being a sparse approximation algorithm, that is also
used in the area of data selection for speed enhancement, we resort
to adapting this method in the area of filter selection.

3 FILTER PRUNING FOR CNNS
In this section, we describe the setup for filter pruning/selection
for the architecture of Convolutional Neural Networks. We lay the
background of the problem in Section 3.1 where we describe the
limitations of the existing state-of-the-art methodology. This serves
as a motivation for our proposed pruning framework in Section 3.2.
Inspired from Joo et al.[19], we derive the weight compensation

module for our setup in Section 3.3. Additionally, we finally moti-
vate and describe a variant of our proposed framework in Section
3.4.

3.1 Background and Problem Setup
With the rapid progress in the field of deep learning, the size of
the models are getting larger, leading to several computational
bottlenecks like decreasing speed, increasing energy requirements
and carbon footprints. Pruning models is one of the ways to recover
from these bottlenecks. We focus our attention on filter channel
pruning for the CNN architectures. This serves as an effective way
of reducing computation along with the size of the model.

Inspired from Joo et al.[19], we setup the foundation of the prun-
ing framework. Given a trained model with any 𝐾 × 𝐾 convolu-
tional layer 𝑐 having its filter weights as F𝑐 ∈ R𝐾𝑥𝐾𝑥𝑚𝑥𝑛 , where
𝑚 and 𝑛 are the number of input and output channels, any filter
𝑓:, 𝑗 ∈ R𝐾𝑥𝐾𝑥𝑚 ∀𝑗 = {1, 2, .., 𝑛} can be represented as a linear com-
bination of other 𝑛 − 1 filters using Equation 1.

𝑓:, 𝑗 =
∑︁
𝑙≠𝑗

𝜆 𝑗,𝑙 𝑓:,𝑙 + 𝜖 𝑗 (1)

Here 𝜖 is the approximation error and 𝜆 𝑗,𝑙 is the weight coeffi-
cient of the respective filters 𝑙 ∈ {1, 2, .., 𝑛} \ { 𝑗} in representing
filter 𝑗 . The objective is to find a set of filters that best approximate
Equation 1. The intuition behind this is that the filter with the low-
est approximation error can be well represented by the other filters
and hence can be pruned.
Limitations of Joo et al.[19]: The proposed technique Linearly
Replaceable Filters(LRF) by Joo et al.[19] uses 1𝑥1 convolution at
the top of the convolutional layers to be pruned, preventing any
effect of pruning on the computation of the network model. The
algorithm proceeds by solving for 𝜆 𝑗,𝑙 for each 𝑗 ∈ {1, 2, .., 𝑛} using
Equation 2, followed by computing 𝜖 𝑗 from Equation 1.

min | |𝑓:, 𝑗 −
∑︁
𝑙≠𝑗

𝜆 𝑗,𝑙 𝑓:,𝑙 | |2 (2)

The filter with minimum approximation error (𝑎𝑟𝑔𝑚𝑖𝑛 𝑗 | |𝜖 𝑗 | |)
gets pruned at the end of each turn. However, for pruning filters by
a fraction of 𝛽 using their algorithm, one needs to prune the network
𝛽 of 𝑁𝑐 times where 𝑁𝑐 is the total number of filters in layer 𝑐 . It
is followed by fine-tuning the network each time after removing a
filter. Hence, this approach is both slow and sub-optimal. In order to
speed up the pruning method, we develop an algorithm that prunes
the filters of a layer for a given fraction together, followed by fine
tuning, thus reducing the pruning time by a reasonable margin.
Next, we describe our proposed algorithm.

3.2 Identifying Multiple Channels for Pruning
In this section, we describe our algorithm for pruning multiple
channels together. We develop an Orthogonal Matching Pursuit
(OMP) based algorithm for filter pruning, Filter Pruning-OMP (FP-
OMP) that addresses the limitations of the existing state-of-the-art
method [19]. Starting from Equation 2, we arrive at our formulation
for sparse approximation as:

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Accurate and Efficient Channel pruning
via Orthogonal Matching Pursuit Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑆∗, 𝜆∗ = min
|𝑆 | ≤(𝑁𝑐−𝛽∗𝑁𝑐),𝜆

∑︁
𝑗 ∈{1,2,..,𝑁𝑐 }

| |𝑓:, 𝑗 −
∑︁
𝑙 ∈𝑆

𝜆 𝑗,𝑙 𝑓:,𝑙 | |2 ,∀𝑗 ∈ {1, 2, ..., 𝑁𝑐 }

(3)
where S is the set of the selected/retained filters of layer 𝑙 , 𝑁𝑐 is
the total number of filter in layer 𝑐 , and 𝛽 is the pruning fraction of
filters in layer 𝑐 .

Therefore, we can rewrite Equation 1 as

𝑓:, 𝑗 =
∑︁
𝑙 ∈𝑆

𝜆 𝑗,𝑙 𝑓:,𝑙 + 𝜖 𝑗 ,∀𝑗 ∈ {1, 2, .., 𝑁𝑐 } (4)

Algorithm 1 describes our approach of selecting filters into 𝑆
from layer 𝑙 , that are to be retained. We can hence obtain the filters
that are to be pruned from {1, 2, ..., 𝑛} \ 𝑆 . The key idea behind the
algorithm is to (a) develop a sparse approximation approach that
is faster than the adopted matrix computation approach in [19]
and (b) prune the network for a given layer all at once for a given
fraction, compared to the one-at-a-time filter pruning approach in
[19], thus making the pruning method efficient.

Algorithm 1 : Filter Pruning-OMP (FP-OMP)
1: Input:
2: Layer 𝑐 , Number of filters 𝑁𝑐 , filters 𝑓:, 𝑗 ∀𝑗 ∈ {1, 2, ..., 𝑁𝑐 } ,

pruning fraction 𝛽
3: Initialize:
4: Normalize 𝑓:, 𝑗 such that | |𝑓:, 𝑗 | |2 = 1
5: 𝑅 𝑗 = 𝑓:, 𝑗 ∀𝑗 ∈ {1, 2, .., 𝑁𝑐 } // Residual error
6: 𝑆 = 𝜙 // Set of selected filters
7: Output:
8: 𝑆 , Weight coefficients 𝜆 𝑗,𝑙 ∀𝑙 ∈ 𝑆,∀𝑗 ∈ {1, 2, .., 𝑁𝑐 }
9: Algorithm:
10: while ∥𝜆∥0 ≤ (𝑁𝑐 − 𝛽 ∗ 𝑁𝑐) do
11: for 𝑖 in 𝑆 ′ do
12: for 𝑗 in {1, 2, .., 𝑁𝑐 } do
13: Compute 𝑃𝑟𝑜 𝑗𝑖 𝑗 = 𝑅 𝑗 .𝑓:,𝑖
14: end for
15: Absolute total projection 𝜉𝑖 =

∑𝑁𝑐

𝑗=1 |𝑃𝑟𝑜 𝑗𝑖 𝑗 |
16: end for
17: 𝑖𝑛𝑑 = max

𝑖
𝜉𝑖

18: 𝑆 ←− 𝑆 ∪ {𝑖𝑛𝑑}
19: for 𝑗 in {1, 2, .., 𝑁𝑐 } do
20: ®𝜆 𝑗,: = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆 𝑗 | |𝑓:, 𝑗 −

∑
𝑙 ∈𝑆 𝜆 𝑗,𝑙 𝑓:,𝑙 | |2

21: 𝑅 𝑗 ←− 𝑓:, 𝑗 −
∑
𝑙 ∈𝑆 (®𝜆 𝑗,: 𝑓:,𝑙)

22: end for
23: end while

3.3 Weight compensation for multiple channel
pruning

Joo et al.[19] had proposed the weight compensation module for
a single filter pruning for two purposes: (a) the change in weights
of the pruned model will get adjusted by the updation of the 1𝑥1
convolution and (b) usage of 1𝑥1 convolution enables the pruning
of any network, regardless of its architecture. We adopt this module

and derive the compensated weights as per our framework for
multiple channel pruning.

Consider the input and output of any 𝐾 ×𝐾 convolution layer to
be𝑋 = {𝑋1, ..., 𝑋𝑚} and𝑌 = {𝑌1, ..., 𝑌𝑛}. Since the 1×1 convolution
is built on the top of the 𝐾 × 𝐾 layer, 𝑌 goes as an input to the
1 × 1 convolution. Let the output of the 1 × 1 convolution layer be
𝑍 = {𝑍1, ..., 𝑍𝑛}, followed by 𝑓 ∈ 𝑅𝑚×𝑛 and 𝑔 ∈ 𝑅𝑛×𝑛 being the
filter weights of 𝐾 ×𝐾 and 1× 1 convolution layer respectively. We
can formulate the above setup as:

𝑌𝑗 =

𝑚∑︁
𝑖=1

𝑋𝑖 ∗ 𝑓𝑖, 𝑗 := 𝑋 ∗ 𝑓:, 𝑗 (5)

𝑍𝑘 =

𝑛∑︁
𝑗=1

𝑌𝑗 ∗ 𝑔 𝑗,𝑘 :=
𝑛∑︁
𝑗=1

𝑋 ∗ 𝑓:, 𝑗 ∗ 𝑔 𝑗,𝑘 (6)

Now, let 𝑓:,𝑙 : 𝑙 ∈ 𝑆 be the selected filter weights and similarly, let
𝑓:,𝑙 ′ : 𝑙 ′ ∈ 𝑆 ′ be the pruned filter weights. Dividing Equation 6 into
the two sets of filter weights, we can re-frame it as:

𝑍𝑘 =
∑︁
𝑙 ∈𝑆

𝑋 ∗ 𝑓:,𝑙 ∗ 𝑔𝑙,𝑘 +
∑︁
𝑙 ′∈𝑆′

𝑋 ∗ 𝑓:,𝑙 ′ ∗ 𝑔𝑙 ′,𝑘 (7)

Following the above terminology, revisiting Equation 4, we can
write it as:

𝑓:,𝑙 ′ =
∑︁
𝑙 ∈𝑆

𝜆𝑙 ′,𝑙 𝑓:,𝑙 + 𝜖𝑙 ′ ;∀𝑙 ′ ∈ 𝑆 ′ (8)

Substituting Equation 8 in Equation 7, we rewrite 𝑍𝑘 as 𝑍 ′
𝑘
in

terms of retained filter weights 𝑓:,𝑙 :

𝑍 ′
𝑘
=
∑︁
𝑙 ∈𝑆

𝑋 ∗ 𝑓:,𝑙 ∗ 𝑔𝑙,𝑘 +
∑︁
𝑙 ′∈𝑆′

𝑋 ∗ (
∑︁
𝑙 ∈𝑆

𝜆𝑙 ′,𝑙 𝑓:,𝑙 + 𝜖𝑙 ′) ∗ 𝑔𝑙 ′,𝑘 (9)

The above can also be re-structured as:

𝑍 ′
𝑘
=
∑︁
𝑙 ∈𝑆
[𝑋 ∗ 𝑓:,𝑙 ∗ (𝑔𝑙,𝑘 +

∑︁
𝑙 ′∈𝑆′

𝜆𝑙 ′,𝑙 ∗𝑔𝑙 ′,𝑘)] +
∑︁
𝑙 ′∈𝑆′

𝑋 ∗𝜖𝑙 ′ ∗𝑔𝑙 ′,𝑘 (10)

Once the pruning is performed, Equation 7 reduces to∑︁
𝑙 ∈𝑆

𝑋 ∗ 𝑓:,𝑙 ∗ 𝑔𝑙,𝑘 (11)

and Equation 10 reduces to∑︁
𝑙 ∈𝑆
[𝑋 ∗ 𝑓:,𝑙 ∗ (𝑔𝑙,𝑘 +

∑︁
𝑙 ′∈𝑆′

𝜆𝑙 ′,𝑙 ∗ 𝑔𝑙 ′,𝑘)] (12)

Thus, the weight difference after pruning, for 𝑍𝑘 and 𝑍 ′
𝑘
, are

∥∑𝑙 ′∈𝑆′ 𝑋 ∗ 𝑓:,𝑙 ′ ∗ 𝑔𝑙 ′,𝑘 ∥ and ∥∑𝑙 ′∈𝑆′ 𝑋 ∗ 𝜖𝑙 ′ ∗ 𝑔𝑙 ′,𝑘 ∥ respectively.
Owing to the fact that 𝜖𝑙 ′ < 𝑓:,𝑙 ′ , the weight difference in using
𝑍 ′
𝑘
is lesser than that of 𝑍𝑘 . Also, lower the difference in weights,

better the approximation. Hence, we use Equation 12 for the weight
compensation step to have a lesser weight difference and define
the following step:

𝑔′
𝑙,𝑘

= 𝑔𝑙,𝑘 +
∑︁
𝑙 ′∈𝑆′

𝜆𝑙 ′,𝑙 ∗ 𝑔𝑙 ′,𝑘 ;∀𝑘 ∈ [1, 𝑛], ∀𝑙 ∈ 𝑆 (13)

For the output channel pruning, Equation 13 is re-defined as

𝑔′
𝑙,: = 𝑔𝑙,: +

∑︁
𝑗 ∈𝑆𝑐

𝜆 𝑗,𝑙 ∗ 𝑔 𝑗,: ,∀𝑙 ∈ 𝑆 (14)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

while for input channel pruning, it is re-defined as

𝑔′:,𝑙 = 𝑔:,𝑙 +
∑︁
𝑗 ∈𝑆𝑐

𝜆 𝑗,𝑙 ∗ 𝑔:, 𝑗 ,∀𝑙 ∈ 𝑆 (15)

3.4 Optimal filter search
One other caveat of the work of Joo et al.[19] was sub-optimality.
In this section, we describe a variant of our proposed algorithm in
Section 3.2. We intend to prune the filters from the entire network
with C layers, whose inclusion do not lead to much change in
entropy of the system. In order to find the optimal set of filters
across the entire network, we discard the necessity of removal of
uniform number of filters from each layer.

Algorithm 2 describes the approach. The algorithm proceeds by
pruning a batch of filters from each layer followed by assessing the
performance of the model in the pruned stage, and then putting
back the removed filters. We keep a running record of the perfor-
mance metric (𝑎𝑐𝑐) across all the layers. Eventually, the filters from
a particular layer, on removing which gives the maximum accuracy
compared to removing filters from other layers, are finally pruned
from the network. This continues till we achieve the pruning crite-
ria. Next, we empirically show the performance of our proposed
frameworks FP-OMP and FP-OMP Search.

Algorithm 2 : Filter Pruning-OMP Search (FP-OMP Search)

1: Initialize:
2: 𝐾 = 0
3: Pruning fraction : 𝛽
4: Batch of filters : 𝑘
5: Total number of layers : C
6: Total number of filters across all the layers {1, 2, .., C} : 𝑁𝐶
7: Algorithm:
8: while 𝐾 < 𝛽 ∗ |𝑁C | do
9: for 𝑐 in C do
10: Prune k filters from layer 𝑐 using Algorithm 1
11: Calculate entire network accuracy 𝑎𝑐𝑐𝑐
12: Put back the pruned filters in the layer 𝑐
13: end for
14: 𝑖𝑛𝑑 = max

𝑐
𝑎𝑐𝑐𝑐

15: Prune k filters from layer 𝑖𝑛𝑑 using Algorithm 1
16: Fine tune for one epoch
17: 𝐾 = 𝐾 + 𝑘
18: end while

4 EXPERIMENTAL RESULTS
In this section, we describe the experimental setup and the datasets
used in Section 4.1. We compare the performance of the proposed
methods with the state-of-the-art baselines in Section 4.2. We also
do a detailed analysis of the working of the proposed method in
Section 4.3.

4.1 Experimental settings:
Dataset Description: We use CIFAR-10, CIFAR-100, and TinyIm-
agenet datasets for the task of image classification. CIFAR-10 has
10 classes comprising of 50k training set images and 10k test set

images of resolution 32 × 32, with 5k training set and 1k test set
images in each class. Similar to CIFAR-10, the CIFAR-100 dataset
comprises of 100 classes with 500 training images and 100 testing
images for each class. TinyImagenet has 200 class categories with a
total of 0.1M images. For our experimentation, we resized its 64×64
images to 224 × 224.

Training Details:We run our experiments for ResNet-32 and
ResNet-56 model architectures on CIFAR-10, CIFAR-100 and Tiny-
Imagenet dataset with a pruning ratio of 50%. We use a pretrained
model while pruning and all the other training settings are adapted
from LRF [19]. Using the pretrained model, we add a warmup of 20
epochs before the pruning starts. Unlike the work of Joo et al. [19]
where the network is fine-tuned for an epoch, after each filter re-
moval from a layer, we fine-tune the model after pruning the entire
𝛽 fraction of filters from each layer. Towards the end of pruning
the entire model, the network is again fine-tuned for 300 epochs.
The initial learnng rate for fine-tuning is set to 1𝑒−2 with a decay
of 1𝑒−4. We also use a step scheduler that divides the learning rate
by 10 at epoch 150.

4.2 Performance Comparison: Accuracy and
Efficiency

ResNet on CIFAR10: We used ResNet-32 and ResNet-56 as the
model architectures for our experiments. Table 1 shows the perfor-
mance comparison with four other baselines. We report the baseline
accuracy using the pre-trained model that gets used while pruning.
Owing to the fact that the same pre-trained model get used for all
baselines, the baseline accuracy stays the same. We can observe
from the pruned accuracy, that the proposed methods (FP-OMP and
FP-OMP Search) are having a higher accuracy compared to other
baselines and eventually a higher accuracy drop from the baseline
(pre-trained) model, thus denoting the efficacy of the method.

We report the reduction in parameter count and FLOPs which
when reduces more, indicates a more pruned and efficient model.
Parameter count refers to the number of parameters/weights across
all the retained filters in all the layers, while FLOPs refers to the
number of operations (in this case convolutions) within the retained
filters in all the layers across the network. We observe a higher
reduction in parameter count and FLOPs (param ↓ , FLOPs ↓) for
FP-OMP compared to other baselines. FP-OMP Search leads to an
accurate model but has a trade-off in reduction in parameter count
and FLOPs due to the non uniform pruning across all layers. A
possible workaround can be increasing 𝛽 for FP-OMP Search that
can lead to more reduction in parameter count and FLOPs.
ResNet on CIFAR-100: We continue our experiments with the
best performing baseline [19] and can observe in Table 2 that the
proposed methods consistently perform better. We can observe that
the difference in pruned accuracy with the baseline has increased
compared to that in Table 1. This can be attributed to the nature of
this dataset which is more complex than that of CIFAR-10, used in
Table 1.
ResNet on TinyImagenet:We use ResNet-34 for the experiments
on TinyImagenet. We can observe in Table 4 that our proposed
method performs better compared to the baseline [19] and also
has a much higher difference in pruned accuracy compared to
[19]. Overall, from the Tables 1, 2 and 4, we can conclude that

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Accurate and Efficient Channel pruning
via Orthogonal Matching Pursuit Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Performance comparison of FP-OMP and FP-OMP Search for ResNet-32 and ResNet-56 on CIFAR10 for 50% pruned
filters of the network. Acc ↓ , FLOPs ↓ and Param ↓ are the drops in accuracy, parameter count and FLOPs of pruned model
compared to the baseline model (Baseline Acc). Higher the drop, better the method.

Models Method Baseline Acc Pruned Acc Acc ↓ Param ↓ FLOPs ↓

ResNet-32

SFP [12] 92.63% 92.08% 0.55% - 41.5%
LFPC [11] 92.63% 92.12% 0.51% - 52.6%
FPGM [13] 92.63% 91.93% 0.70% - 53.2%
LRF [19] 92.63% 92.66% -0.03% 63.3% 62.55%
FP-OMP 92.63% 92.79% -0.16% 63.3% 62.55%

FP-OMP Search 92.63% 92.81% -0.18% 58.58% 44.9%

ResNet-56

DCP [34] 93.80% 93.79% 0.01% 70.3% 47.1%
HRank [22] 93.80% 93.17% 0.63% 42.4% 50.0%
SFP [12] 93.80% 93.26% 0.54% - 52.6%

FPGM [13] 93.80% 93.49% 0.31% - 52.6%
LFPC [11] 93.80% 93.24% 0.56% - 52.9%
GBN [32] 93.80% 93.43% 0.37% 42.5% 55.1%
LRF [19] 93.80% 93.85% -0.05% 63.3% 62.55%
FP-OMP 93.80% 94.03% -0.23% 63.3% 62.55%

FP-OMP Search 93.80% 94.08% -0.28% 56.50% 43.32%

Table 2: Performance comparison of FP-OMP and FP-OMP Search for ResNet-32 and ResNet-56 on CIFAR100 for 50% pruned
filters of the network.

Models Method Baseline Acc Pruned Acc Acc ↓ Param ↓ FLOPs ↓

ResNet-32
LRF [19] 68.78% 68.78% -0.07% 62.5% 62.54%
FP-OMP 68.78% 69.05% -0.27% 62.5% 62.54%

FP-OMP Search 68.78% 69.11% -0.33% 50.72% 53.18%

ResNet-56
LRF [19] 69.98% 70.07% -0.09% 63% 62.92%
FP-OMP 69.98% 70.39% -0.41% 63% 62.92%

FP-OMP Search 69.98% 70.43% -0.45% 50.72% 53.18%

Table 3: Time comparison of different methods on ResNet for channel pruning on CIFAR10 and CIFAR100 dataset.

Models Method Pruning
Time (hr)

Fine Tuning
Time (hr)

Total
Time (hr)

CIFAR10

ResNet-32
LRF 0.58 3.43 4.01

FP-OMP 0.54 3.41 3.95
FP-OMP Search 13.63 3.45 17.08

ResNet-56
LRF 1.80 4.27 6.07

FP-OMP 1.55 4.25 5.8
FP-OMP Search 58.84 4.33 63.17

CIFAR100

ResNet-32
LRF 0.60 3.38 3.98

FP-OMP 0.48 3.37 3.85
FP-OMP Search 12.97 3.39 16.36

ResNet-56
LRF 1.61 4.09 5.70

FP-OMP 1.57 4.07 5.64
FP-OMP Search 54.01 4.11 58.12

the difference in pruned accuracy with the baseline method [19], increases with increasing complexity of datasets and models, thus
showcasing the robustness of our proposed framework.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: Performance comparison of FP-OMP and FP-OMP Search for ResNet-34 on TinyImagenet for 50% pruned filters of the
network.

Models Method Baseline Acc Pruned Acc Acc ↓ Param ↓ FLOPs ↓

ResNet-34
LRF [19] 64.18% 62.86% 1.32% 62.79% 60.76%
FP-OMP 64.18% 65.68% -1.50% 62.79% 60.76%

FP-OMP Search 64.18% 65.75% -1.57% 51.67% 55.73%

Table 5: Percentage removal of filters from each layer of ResNet32 on CIFAR100 dataset using FP-OMP Search method with
overall 50% removal of filters from the ResNet32.

Output Channel

Block 1
Layers 1 2 3 4 5 6 7 8 9 10

Before/After 16/1 16/1 16/11 16/11 16/11 16/11 16/16 16/11 16/1 16/1
Percent removed 93.75 93.75 31.25 31.25 31.25 31.25 0 31.25 93.75 93.75

Block 2
Layers 11 12 13 14 15 16 17 18 19 20

Before/After 32/22 32/22 32/2 32/2 32/27 32/27 32/2 32/2 32/27 32/17
Percent removed 31.25 31.25 93.75 93.75 15.62 15.62 93.75 93.75 15.62 46.87

Block 3
Layers 21 22 23 24 25 26 27 28 29 30

Before/After 64/64 64/54 64/14 64/14 64/9 64/4 64/34 64/29 64/64 64/54
Percent Removed 0 15.62 78.12 78.12 85.93 93.75 46.87 54.68 0 15.62

Input Channel

Block 1
Layers 1 2 3 4 5 6 7 8 9 10

Before/After 16/1 16/1 16/11 16/6 16/11 16/11 16/16 16/16 16/1 16/1
Percent removed 93.75 93.75 31.25 62.5 31.25 31.25 0 0 93.75 93.75

Block 2
Layers 11 12 13 14 15 16 17 18 19 20

Before/After 16/16 32/17 32/2 32/2 32/37 32/27 32/7 32/2 32/17 32/17
Percent removed 0 46.87 93.75 93.75 0 15.62 78.12 93.75 46.87 46.87

Block 3
Layers 21 22 23 24 25 26 27 28 29 30

Before/After 32/32 64/59 64/9 64/14 64/9 64/4 64/39 64/24 64/64 64/59
Percent Removed 0 7.81 85.93 78.12 85.93 93.75 39.06 62.5 0 7.81

Time Comparison: We compare the efficiency of the proposed
method in terms of their running times in Table 3. We can observe
that FP-OMP clearly takes lesser pruning time than LRF [19]. This
happens due to the sparse approximation approach which is less
expensive compared to the matrix computation method adopted
by Joo et al. [19]. However, we notice an increase in pruning time
for FP-OMP Search. This is due to the fact that we use a batch
of 5 filters for the current set of experiments for FP-OMP Search
(see Algorithm 2). Increasing the batch size will lead to pruning
time reduction. The fine-tuning time remains the same across all
methods, having minor changes with differing architectures.

4.3 Analysis of FP-OMP and FP-OMP Search
We analyse the working of the proposed methods in terms of their
pruning quality. We show in Table 5 the pruning count using FP-
OMP Search for ResNet32 on CIFAR-100. We maintain a global
pruning ratio of 50% across the entire network and report the %
of filters removed from each layer within each block of the model.
Unlike LRF [19] or FP-OMP, where pruning is done uniformly across
each layer, FP-OMP Search prunes the filters of a given fraction 𝛽 ,
across the entire network, and retains the others.

In order to understand the intuition behind the filter choices for
pruning using FP-OMP Search, we show a visualisation diagram

of the feature maps for two layers, Layer 4(pruned by 31.25%) and
Layer 10(pruned by 93.75%).We can observe visually that the feature
map of Layer 4 in Figure 1 has a diverse set of filter outputs, that
indicates its usefulness in capturing different features of the inputs.
Consequently, our proposed method prunes only 31.25% of its filters
(see Table 5), thus retaining around 68.75%. Similarly, Figure 2 shows
the feature map outputs from Layer 10 that looks very similar, thus
denoting its redundancy in filter outputs. We can observe the same
in Table 5 that Layer 10 has 93.75% of its filters removed, thus
retaining only about 6.25%. Thus, we can conclude that the pruning
percentages yielded from FP-OMP Search correlate with the amount
of information held by each filter in each layer.

We also observe the norm of difference in filter weights obtained
from unpruned model (𝑓𝑢𝑝) and pruned model (𝑓𝑝) in Figure 3 using
FP-OMP and FP-OMP Search. We can observe that for about 53%
of the layers, FP-OMP Search has a lower norm difference than
FP-OMP indicating better approximation of filter weights with
non-uniform pruning ratio.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Accurate and Efficient Channel pruning
via Orthogonal Matching Pursuit Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 1: Visualisation of output feature map of ResNet-32
4𝑡ℎ layer on CIFAR-100

Figure 2: Visualization of output feature map of ResNet-32
10𝑡ℎ layer on CIFAR-100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Layer Depth
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

||f
up

f p
||

FP-OMP Search
FP-OMP

Figure 3: Norm of filter difference of Unpruned model and
Model pruned using FP-OMP and FP-OMP Search

5 CONCLUSION AND FUTUREWORK
In this study, we propose the FP-OMP and FP-OMP Search algo-
rithm, a fresh and efficient channel pruning technique. It is a novel
pruning criterion that chooses the channel using a sparse approxi-
mation method. Regardless of kernel size, block type, or even archi-
tectures, it shows a good performance across all of them. Extensive
experiments on the 3 datasets with 2 differing architectures prove
our hypothesis. A lead that could be followed for enhancing the
effectiveness of our suggested pruning strategy is to prune each
layer in a different ratio to maximise network performance.

REFERENCES
[1] Olivier Bachem, Mario Lucic, and Andreas Krause. 2017. Practical coreset con-

structions for machine learning. arXiv preprint arXiv:1703.06476 (2017).
[2] Niv Buchbinder, Moran Feldman, and Roy Schwartz. 2014. Online submodular

maximization with preemption. In Proceedings of the twenty-sixth annual ACM-
SIAM symposium on Discrete algorithms. SIAM, 1202–1216.

[3] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman,
Peter Bailis, Percy Liang, Jure Leskovec, and Matei Zaharia. 2019. Selection via
proxy: Efficient data selection for deep learning. arXiv preprint arXiv:1906.11829
(2019).

[4] Soumi Das, Harikrishna Patibandla, Suparna Bhattacharya, Kshounis Bera, Niloy
Ganguly, and Sourangshu Bhattacharya. 2021. TMCOSS: Thresholded Multi-
Criteria Online Subset Selection for Data-Efficient Autonomous Driving. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 6341–
6350.

[5] Soumi Das, Arshdeep Singh, Saptarshi Chatterjee, Suparna Bhattacharya, and
Sourangshu Bhattacharya. 2021. Finding High-Value Training Data Subset
Through Differentiable Convex Programming. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 666–681.

[6] Xuanyi Dong and Yi Yang. 2019. Network pruning via transformable architecture
search. Advances in Neural Information Processing Systems 32 (2019).

[7] Ehsan Elhamifar and M Clara De Paolis Kaluza. 2017. Online Summarization via
Submodular and Convex Optimization.. In CVPR. 1818–1826.

[8] P Thomas Fletcher, Suresh Venkatasubramanian, and Sarang Joshi. 2008. Robust
statistics on Riemannian manifolds via the geometric median. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 1–8.

[9] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. Advances in neural information
processing systems 28 (2015).

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[11] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang.
2020. Learning filter pruning criteria for deep convolutional neural networks
acceleration. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2009–2018.

[12] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. 2018. Soft filter
pruning for accelerating deep convolutional neural networks. arXiv preprint
arXiv:1808.06866 (2018).

[13] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. 2019. Filter pruning
via geometric median for deep convolutional neural networks acceleration. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
4340–4349.

[14] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE international conference on
computer vision. 1389–1397.

[15] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).

[16] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. 2016. Network
trimming: A data-driven neuron pruning approach towards efficient deep archi-
tectures. arXiv preprint arXiv:1607.03250 (2016).

[17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[18] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[19] Donggyu Joo, Eojindl Yi, Sunghyun Baek, and Junmo Kim. 2021. Linearly re-
placeable filters for deep network channel pruning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 8021–8029.

[20] Krishnateja Killamsetty, Durga Sivasubramanian, Baharan Mirzasoleiman,
Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. 2021. GRAD-MATCH: A
Gradient Matching Based Data Subset Selection for Efficient Learning. arXiv
preprint arXiv:2103.00123 (2021).

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[22] Mingbao Lin, Rongrong Ji, YanWang, Yichen Zhang, Baochang Zhang, Yonghong
Tian, and Ling Shao. 2020. Hrank: Filter pruning using high-rank feature map. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
1529–1538.

[23] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE international conference on computer vision.
2736–2744.

[24] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting
Cheng, and Jian Sun. 2019. Metapruning: Meta learning for automatic neural
network channel pruning. In Proceedings of the IEEE/CVF international conference
on computer vision. 3296–3305.

[25] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018.
Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270 (2018).

[26] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. Thinet: A filter level prun-
ing method for deep neural network compression. In Proceedings of the IEEE
international conference on computer vision. 5058–5066.

[27] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. 2020.
Estimating Training Data Influence by Tracing Gradient Descent. In Advances in
Neural Information Processing Systems.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

[28] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[29] Joel A Tropp and Anna C Gilbert. 2007. Signal recovery from random measure-
ments via orthogonal matching pursuit. IEEE Transactions on information theory
53, 12 (2007), 4655–4666.

[30] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492–1500.

[31] Jinsung Yoon, Sercan Arik, and Tomas Pfister. 2020. Data valuation using re-
inforcement learning. In International Conference on Machine Learning. PMLR,
10842–10851.

[32] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. 2019. Gate
decorator: Global filter pruning method for accelerating deep convolutional
neural networks. Advances in neural information processing systems 32 (2019).

[33] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S Davis. 2018. Nisp: Pruning networks
using neuron importance score propagation. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 9194–9203.

[34] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao
Wu, Junzhou Huang, and Jinhui Zhu. 2018. Discrimination-aware channel
pruning for deep neural networks. Advances in neural information processing
systems 31 (2018).

8

	Abstract
	1 Introduction
	2 Related Work
	3 Filter pruning for CNNs
	3.1 Background and Problem Setup
	3.2 Identifying Multiple Channels for Pruning
	3.3 Weight compensation for multiple channel pruning
	3.4 Optimal filter search

	4 Experimental Results
	4.1 Experimental settings:
	4.2 Performance Comparison: Accuracy and Efficiency
	4.3 Analysis of FP-OMP and FP-OMP Search

	5 Conclusion and Future Work
	References

