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Abstract

Multiple pre-training objectives fill the va-001
cancy of the understanding capability of single-002
objective language modeling, which serves the003
ultimate purpose of pre-trained language mod-004
els (PrLMs), generalizing well on a mass of005
scenarios. However, learning multiple train-006
ing objectives in a single model is challeng-007
ing due to the unknown relative significance008
as well as the potential contrariety between009
them. Empirical studies have shown that the010
current objective sampling in an ad-hoc manual011
setting makes the learned language representa-012
tion barely converge to the desired optimum.013
Thus, we propose MOMETAS, a novel adaptive014
sampler based on meta-learning, which learns015
the latent sampling pattern on arbitrary pre-016
training objectives. The design is lightweight017
with little additional training overhead. To val-018
idate our approach, we adopt five objectives019
and conduct continual pre-training with BERT-020
base, BERT-large models, where MOMETAS021
demonstrates universal performance gain over022
other rule-based sampling strategies on 14 nat-023
ural language processing tasks.024

1 Introduction025

It is appealing for deep neural language mod-026

els to generalize well on multiple downstream027

tasks through large-scale language pre-training, e.g.028

BERT (Devlin et al., 2019), ELECTRA (Clark029

et al., 2020), DeBERTa (He et al., 2021) and030

GPT (Brown et al., 2020). Most pre-trained lan-031

guage models (PrLMs) rely on only one or two032

pre-training objectives, from Masked Language033

Modeling (MLM), Next Sentence Prediction (NSP)034

(Devlin et al., 2019), Sentence Order Prediction035

(SOP) (Lan et al., 2020) and Permutation Language036

Modeling (PLM) (Yang et al., 2019). Even though037

PrLMs are intended for high generalization, stud-038

ies show that they are not always all-rounded and039

tend to be particularly weak in some aspects (Li040

and Zhao, 2021; Li et al., 2020; Yang et al., 2019),041

while an ultimate PrLM for panoramic adaption 042

of language understanding must be able to stand 043

for the nice initialization onto a mass of scenarios 044

simultaneously and effectively (Chen et al., 2018). 045

With the birth of more and more pre-training 046

objectives, a number of specific ones beyond are 047

found of great benefit to enhance task-level under- 048

standing capability, e.g. contrastive learning (Gao 049

et al., 2021), knowledge injection (Xiong et al., 050

2020), algorithmic difference (Li and Zhao, 2021). 051

To enjoy the merits of all worlds and let the model 052

generalize better on more seen or perhaps unseen 053

tasks, there naturally comes a need to combine all 054

these objectives in an organic manner. 055

However, learning multiple pre-training objec- 056

tives simultaneously in a single model is chal- 057

lenging (Chen et al., 2018; Yu et al., 2020). A 058

well-known issue is negative transfer (Wang et al., 059

2019b) in which learning well on one objective 060

impairs another. More importantly, the relative 061

significance between all objectives is supposed to 062

be scheduled. For instance, NSP can take little 063

effect on the model due to its simpleness in the 064

mature stage of training. However, it is of great 065

difficulty to heuristically tune such a ratio consid- 066

ering the large amounts of compute to pre-train 067

once. In most cases we tentatively treat all of them 068

equally (Liu et al., 2019; Lewis et al., 2020), which 069

makes the learned language representation barely 070

converge to the optimal point and limits the model 071

performance. 072

To forge multiple training objectives for PrLMs, 073

this paper presents to learn an optimal sampling 074

strategy so that the more informative objective is 075

more likely to be chosen. The backbone is meta- 076

learning (Thrun and Pratt, 1998) and thus we call 077

it Multi-Objective META-Sampler (MOMETAS). 078

In the proposed framework, we redesign the pre- 079

training process into two phases, meta-train and 080

meta-test. The model is trained alternately on 081

one sampled objective at each step during meta- 082
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train, while the sampling distribution is then up-083

dated during meta-test by measuring the relative084

contribution of each objective. The training de-085

sign is lightweight with little additional overhead086

to guarantee the pre-training efficiency. To vali-087

date our approach, we consider five pre-training088

objectives (e.g. for sentence embedding, knowl-089

edge capture, syntactic understanding) and con-090

tinue to pre-train with BERT-base, BERT-large,091

where MOMETAS demonstrates universal perfor-092

mance gain over other rule-based sampling strate-093

gies on 14 natural language processing tasks.094

2 Related Work095

2.1 Multiple Pre-training Objectives096

Our work is dedicated to improvement of learn-097

ing multiple pre-training objectives on a single098

language model (Liu et al., 2019; Lewis et al.,099

2020). Language pre-training is well-studied in100

recent years and there are various potential ob-101

jectives proposed, e.g. to enhance general lan-102

guage representation (Lewis et al., 2020), text gen-103

eration (Yang et al., 2019; Dong et al., 2019),104

sentence embedding (Gao et al., 2021; Li and105

Zhao, 2021), dialogue understanding (Xu and Zhao,106

2021). MOMETAS is designed to bring them to-107

gether organically.108

Our work is related to balancing training in multi-109

task networks, e.g. gradient normalization (Chen110

et al., 2018), projecting conflicting gradients (Yu111

et al., 2020), weighting training loss based on un-112

certainty (Kendall et al., 2018). For PrLMs, it is113

explored more on fine-tuning (Stickland and Mur-114

ray, 2019; Raffel et al., 2020; Poth et al., 2021). In115

practice, BERT-style pre-training like MLM (De-116

vlin et al., 2019) establishes self-supervised objec-117

tives through certain transformations on text data.118

From this point of view, our work is similar to119

reweighting training samples (Alain et al., 2015;120

Ren et al., 2018) or data selection (Schulman et al.,121

2016; Wang et al., 2020a).122

A related application in natural language pro-123

cessing is to train multilingual models (Arivazha-124

gan et al., 2019; Wang et al., 2020b,c; Zhou et al.,125

2021; Wang et al., 2021b). For instance, MultiDDS126

(Wang et al., 2020b) learns a data scorer to balance127

the data usage of languages. However, designing128

pre-training is more challenging for lack of prior129

knowledge, e.g. data size (Johnson et al., 2017),130

data resource (Neubig and Hu, 2018). Besides, one131

can not access to real downstream tasks. All these132

can lead to so different optimization designs. 133

2.2 Meta Learning 134

Meta-Learning (Learning to Learn) (Thrun and 135

Pratt, 1998) has a long history with vast contribut- 136

ing literature, whereas we could only mention sev- 137

eral related works here. Ravi and Larochelle (2017) 138

designs an LSTM-based meta-learner to learn the 139

update rule for few shot learning. Finn et al. (2017) 140

proposes MAML to learn an optimized initializa- 141

tion ready for fast adaption to new tasks. The idea 142

also emerges in recent natural language process- 143

ing, e.g. generating the text mask for MLM (Kang 144

et al., 2020), optimizing the first-order approxima- 145

tion of dropout to learn dynamic attention pattern 146

(Wu et al., 2021), leveraging MAML-inspired pre- 147

training to find a global representation of down- 148

stream tasks (Lv et al., 2020; Ke et al., 2021). 149

3 Multi-Objective Meta-Sampler 150

In this section, we first take an overview of our 151

meta-learning framework. What follows is the pre- 152

liminaries of the pre-training setting as well as a 153

number of ruled-based samplers. Then we discuss 154

the details of our meta-sampler. 155

3.1 Overview 156

As depicted in Figure 1, we learn the problem in 157

two phases, meta-train and meta-test. In meta-train, 158

the model is trained and updated on a series of pre- 159

training objectives sampled through MOMETAS 160

one by one. After a number of steps, it goes through 161

meta-test, where we evaluate the model over all 162

objectives in one shot. The evaluation is done on a 163

clean validation set in addition to the training one. 164

Based on the evaluation feedback, MOMETAS is 165

then updated. We repeat such train-test cycles until 166

the end of pre-training. 167

3.2 Multi-Objective Pre-training 168

In our multi-objective pre-training, the model is 169

trained on m different objectives. The input text 170

of each objectives passes a common encoder to ob- 171

tain the shared language representation and then 172

output through a specific layer (or head). We de- 173

note all objectives as {T 1, T 2, · · · , T m}, the sam- 174

pling of which is subject to the latent distribution 175

PD. At each training step t, a single objective 176

Tt ∈ {T 1, T 2, · · · , T m} is sampled from PD. 177

3.3 Rule-based Samplers 178

We first consider several rule-based samplers: 179
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Figure 1: An overview of the meta-learning framework of training PrLMs with MOMETAS, where "ob." serves the
short for "objective". We only show the first two and the last samplings for simplicity.

• Uniform-based: The most straightforward and180

simplest approach is to make uniform sampling181

over all objectives. It equals conventional multi-182

objective training and multi-task learning. How-183

ever, when the number of objectives is up, it is hard184

to guarantee the training efficiency, since some185

simpler objectives come close to convergence early,186

while some more difficult ones still require a large187

number of steps to learn well.188

• Gradient-based: Gradient acts as a contributing189

signal of the training state of a network when mak-190

ing gradient descent (Ravi and Larochelle, 2017;191

Wang et al., 2020b; Yu et al., 2020). Larger gra-192

dient may have a greater impact on updating its193

parameters. An intuitive idea is to sample more194

on those objectives with large gradients, while less195

on those with small gradients which tend to take196

minimal impacts on the network. Computationally,197

we may take the norm of gradients over all encoder198

parameters (Ravi and Larochelle, 2017).199

• Loss-based: Similar as above, loss acts as another200

contributing signal of how well a certain objective201

is learned (Kendall et al., 2018). More specifically,202

we may compute the inverse training rate (IR) by203

dividing the current loss by its initial value, so that204

lower IR corresponds to a faster training rate for205

the objective. Thus, the idea is to sample more on206

those objectives with higher inverse training rates.207

3.4 Meta-Sampler 208

Both gradient-based and loss-based approaches 209

merely focus on the state of a single objective in 210

an ad-hoc manner but do not take into account the 211

coupling between them, which makes it hard to 212

achieve the optimal point across all objectives. 213

Thus, we propose to learn a meta-sampler
MOMETAS parametrized as ψ = PD, based on
meta-learning. Suppose that we sample a single
objective at each step t from PD during meta-train
and obtain a sequence of objectives:

τ = {T1, T2, · · · , TK}, τ ∼ PD

where K refers to the number of steps of meta- 214

train (we call it meta length in the paper). In the 215

following meta-test, we evaluate the model over 216

all objectives T1:K on an additional validation set 217

V . The goal of MOMETAS is to learn well or earn 218

more gain on all objectives, that is to maximize: 219

J(ψ) = Eτ∼PD [R(τ)] (1) 220

where R(τ) refers to the overall gain given τ . 221

Since J(ψ) is non-differentiable, it is impossible 222

to apply normal gradient-based methods to update 223

MOMETAS which makes sampling from different 224

objectives. Following REINFORCE (Sutton et al., 225

1999), we take a number of policy gradient steps to 226

accommodate the non-differentiable operations of 227

sampling, that is: 228

ψ ← ψ + β

K∑
t=1

∇ψ logP (Tt;ψ)R(τ) (2) 229
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where β refers to the meta step size. From this230

perspective, R(τ) can be viewed as a rewarding231

function of training gain. Note that R(τ) is only232

obtained at the end of meta-train (t = K).233

Meta length K indicates the accumulation of234

meta knowledge. Intuitively, larger K comes to235

more training samples until each meta update step,236

which stabilizes the training process but lowers237

down the sensitivity of MOMETAS.238

3.4.1 Individual Rewarding239

We further explore the details of the rewarding240

functionR(τ). We first let ri be the individual gain241

on each objective (i = 1 ∼ m) so that R(τ) =242 ∑m
i=1 r

i. However, our empirical results show that243

simply letting ri be the opposite of each evaluation244

loss merely leads to limited performance. This is245

caused by the problem that it cannot address the246

issue of negative transfer. Suppose that there is a247

dominant objective, trained well so that the loss of248

it is continually down. The real situation can be that249

the overall loss is declining, while the individual250

losses of certain objectives are still rising, even251

though MOMETAS is positively rewarded.252

To destroy such confusion, we let ri be the loss253

drop of each objective. Specifically, to compute254

each loss drop, we always maintain the last loss255

value as the baseline bi (the evaluation loss from256

last meta-test). Then we compare the current loss257

value ai (from current meta-test) with it. Because258

the magnitude of loss differs from objectives, we259

further compute the relative loss drop by dividing260

it by the baseline bi. Hence, the final rewarding261

function can be formulated as:262

R(τ) =
m∑
i=1

bi − ai

bi
(3)263

where bi and ai refer to the loss values of the last264

meta-test and current meta-test respectively. Such265

rewarding function forces MOMETAS to explore266

the optimal sampling pattern which is useful across267

all pre-training objectives.268

3.4.2 Entropy Regularization269

To further escape from the local optimum, we im-270

pose maximum entropy regularization as an addi-271

tional constraint (Haarnoja et al., 2018), which is272

widely used in stochastic reinforcement learning.273

The idea behind this is that smaller entropy means274

more deterministic sampling from the distribution275

and MOMETAS will be punished in this situation,276

Algorithm 1 Pre-train with MOMETAS
Input: Model θ, m pre-training objectives
{T 1, T 2, · · · , T m}, meta length K, MOMETAS
distribution PD, validation set V

1: Initialize D with uniform distribution
2: while not converged do
3: Empty τ
4: for t = 1 to K do
5: Sample one objective Tt ∼ PD
6: Update model parameters θt
7: Append Tt into τ
8: end for
9: Fetch data for each objective from V

10: Evaluate with model parameters θK
11: Compute reward via Eq. 3
12: Update PD via Eq. 2
13: end while

which encourages MOMETAS to explore and al- 277

lows it to step out of the local optimal point. Hence, 278

the training objective of MOMETAS comes to: 279

J(ψ) = Eτ∼PD [R(τ) + λH(ψ)] (4) 280

where H(ψ) refers to the entropy regularization 281

term. We find good performances when the tem- 282

perature parameter λ is set to 1 ∼ 3. 283

3.4.3 Algorithm 284

Then we present our meta-learning algorithm, 285

which is summarized in Algorithm A. Specifically, 286

we first initialize MOMETAS distribution PD with 287

uniform distribution. In meta-train, the model is 288

fed with K sampled pre-training objectives one 289

by one. At each step t, we need to record every 290

single sampling Tt in order to update MOMETAS 291

later. What follows is meta-test, where the model is 292

evaluated on the validation set V . MOMETAS will 293

be rewarded based on the evaluation feedback and 294

then updated so as to be ready for the next meta- 295

train. We repeat such a train-test cycle for times 296

until model convergence. Note that we fetch the 297

validation samples from V through random sam- 298

pling to guarantee the training efficiency. 299

When pre-training with MOMETAS, the addi- 300

tional time consumption mainly comes from doing 301

evaluation in meta-test. Though it will rise as the 302

number of objectives increases, the evaluation is 303

done only once every K steps (e.g. 100) and is 304

inherently fast with no backward passes. Thus, the 305

overhead brought by MOMETAS is minimal. 306
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CoLA
(Mcc)

SST-2
(Acc)

MRPC
(Acc)

QNLI
(Acc)

MNLI-m/mm
(Acc)

QQP
(F1)

RTE
(Acc)

STS-B
(Spc)

Avg

BERTbase 51.9 93.5 88.9 90.5 84.6/83.4 71.2 66.4 85.8 79.6
BERTbase (Ours) 52.1 92.9 88.7 90.2 84.6/83.4 71.3 67.4 84.6 79.5

+ Ub 52.0 93.0 89.1 90.6 84.7/83.7 71.5 66.7 85.0 79.7
+ Gb 52.0 93.6 89.2 90.7 84.5/84.0 71.8 66.9 85.9 79.8
+ Lb 53.1 93.3 89.7 90.5 84.8/84.4 71.8 67.3 86.0 80.1
+ MOMETAS 55.9 93.7 90.0 90.7 85.2/84.3 72.1 68.4 86.9 80.8

Table 1: GLUE test results under different sampling strategies. BERTbase refers to the reported results in Devlin
et al. (2019) while BERTbase (Ours) refers to our rerun results. Due to limited number of submissions per day, we
do not report the results over multiple runs in Table 1 (for multiple runs, please refer to Table 2).

4 Experimental Setup307

In this section, we present our experimental setup.308

Our implementations are based on PyTorch using309

transformers (Wolf et al., 2020).310

4.1 Pre-training Objectives311

We adopt five pre-training objectives in our experi-312

ments. The details of them are listed below.313

• General Language Representation - Masked314

Language Modeling (MLM): Following BERT315

(Devlin et al., 2019), we randomly sample 15%316

of the tokens in each input sequence and replace317

them with special [MASK] elements. Added To-318

ken Detection (ATD): We randomly sample 15%319

of the positions in each sequence and insert random320

tokens in them. The model is required to decide321

which positions are superfluous. Different from322

MLM, ATD expands the context of text.323

• Sentence Embedding - Contrastive Learning of324

Sentence Embeddings (CSE): Following SimCSE325

(Gao et al., 2021), we feed the same sequence twice326

by applying different dropout masks and extract the327

[CLS] elements as their sentence representations.328

The model is required to predict the input sentence329

itself from in-batch negatives.330

• Syntax - Dependency Head Prediction (DHP):331

Following K-adapter (Wang et al., 2021a), we parse332

each sentence into a dependency tree and let the333

model predict the head of each token1.334

• Entity & Knowledge - Replaced Entity De-335

tection (RED): Following WKLM (Xiong et al.,336

2020), we randomly replace half of the entities in337

each sequence and replace them with random ones338

within the same types.339

Though we are unable to cover all alternatives in340

1https://github.com/stanfordnlp/stanza

this paper, the experimental results are of great po- 341

tential to be extended to other pre-training setups. 342

4.2 Dataset 343

Based on our pre-training setup, we validate our ap- 344

proach on a wide range of downstream benchmarks 345

(14 tasks in total). In what follows, we summarize 346

them as well as describe how the chosen ones relate 347

to our pre-training objectives. 348

General Natural Language Understanding We 349

adopt GLUE benchmark (Wang et al., 2019a), a 350

collection of eight natural language understanding 351

tasks, including natural language inference, senti- 352

ment analysis and semantic similarity. We exclude 353

problematic WNLI as in Devlin et al. (2019)). In 354

addition, we adopt SICK (Marelli et al., 2014), an- 355

other natural language inference benchmark as a 356

complement. 357

Semantic Similarity We further adopt PAWS- 358

QQP (Zhang et al., 2019), which adds adversar- 359

ial examples to QQP for evaluating model robust- 360

ness. Following the zero-shot setting in Zhang et al. 361

(2019), we train the model on QQP and directly 362

evaluate it on PAWS-QQP. 363

Named Entity Recognition (NER) We adopt 364

two benchmarks, CoNLL-2003 (Sang and Meul- 365

der, 2003) and WNUT-2017 (Derczynski et al., 366

2017). Of these, WNUT-2017 contains a large 367

number of rare entities, which therefore requires 368

the model with stronger generalization. 369

Multi-choice Machine Reading Comprehen- 370

sion (MRC) Two challenging benchmarks are 371

adopted, DREAM (Sun et al., 2019) for multi-turn 372

dialogue understanding, and aNLI (Bhagavatula 373

et al., 2020) for commonsense reasoning, both of 374

which are in format of multi-choice MRC. 375
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Model
Language Inference Semantic Similarity NER Multi-Choice MRC

MNLI SICK P-QQP STS-B CoNLL WNUT DREAM aNLI
(Acc) (Acc) (Acc) (Spc) (F1) (F1) (Acc) (Acc)

BERT-base

Base 83.9(.3) 87.0(.2) 33.4(.6) 84.8(.6) 91.2(.1) 48.8(1.0) 62.5(.6) 63.8(.5)
Ub 84.2(.1) 87.5(.2) 35.6(.8) 85.2(.5) 91.6(.0) 50.8(.7) 63.2(.5) 64.6(.8)
Meta 84.8(.1) 87.9(.3) 36.5(.9) 86.5(.2) 92.0(.2) 52.1(.7) 64.5(.0) 65.8(.3)

BERT-large

Base 86.1(.2) 87.6(.9) 36.2(.9) 86.4(.3) 91.9(.1) 50.2(1.5) 66.3(1.3) 66.9(.8)
Ub 86.1(.1) 88.2(.1) 40.6(.5) 87.5(.2) 92.3(.3) 50.9(1.8) 65.8(.8) 67.7(.7)
Meta 86.5(.1) 88.6(.1) 41.8(.5) 88.5(.6) 92.4(.2) 52.9(1.2) 68.5(.7) 69.1(.5)

Table 2: Results on more different tasks over five runs, where we report the mean as well as the standard deviation.
Respectively, Base, Ub and Meta refer to original models, and multi-objective trained models with uniform-based
sampling and MOMETAS. For MNLI, we average the two scores of in-distribution and out-of-distribution divisions.

Notably for DREAM and aNLI, there are no376

straightforward objectives adopted. However, it is377

desirable that the model is able to learn the inter-378

disciplinary knowledge and generalize better on379

tasks not seen during pre-training through jointly380

learning multiple objectives.381

4.3 Baseline Strategies382

We compare MOMETAS with several earlier dis-383

cussed sampling strategies, including Uniform-384

based (Ub), Gradient-based (Gb), and Loss-based385

(Lb). Experiments are made on BERTbase models.386

Except for Ub, the rest two are based on pro-387

portion, that is we sample the objectives as propor-388

tional to the magnitudes of concerned values. To389

implement, we compute the average gradient (L2390

norm of gradients over encoder parameters) or loss391

of each objective for every certain number of train-392

ing steps (to keep in pace with MOMETAS, alsoK393

steps). At the same point as meta-test, we update394

the distribution. However, we find some large val-395

ues (e.g. big gradient at the start of training) will396

make the probabilities of other objectives close to397

zero. Following Andrychowicz et al. (2016), we398

use Sigmoid function to scale them properly.399

4.4 Training Details400

Pre-training Inherited from the released401

checkpoints, bert-base-uncased and402

bert-large-uncased2, we continue to403

pre-train our models following multi-objective404

2https://github.com/huggingface/
transformers/

setting. For training corpus, we use a subset of 405

Colossal Clean Crawled Corpus (Raffel et al., 406

2020) (we use nearly 100GB of it and randomly 407

sample 1GB for validation). Each single model 408

is trained with 512 batch size and for 50K steps 409

(nearly one epoch). Unless otherwise specified, 410

we fix meta length K to 100 and meta step size to 411

1e-1. Training a base/large-size model takes about 412

12/36 hours on 8 V100 GPUs with FP16 for both 413

uniform-based sampling and MOMETAS. 414

Fine-tuning For all GLUE sub-tasks, we follow 415

the hyperparameters shared in Lan et al. (2020) 416

and fine-tune for 3 epochs, except 10 epochs for 417

RTE and STS-B. For other tasks, we merely sweep 418

through learning rates and batch sizes for efficiency, 419

excluding dropout probabilities or weight decay 420

rates. Readers can refer to Appendix A for details. 421

5 Empirical Results 422

GLUE Table 1 reports the test results on GLUE 423

benchmark under different sampling strategies, all 424

of which are based BERTbase. Intuitively, simple 425

uniform multi-objective pre-training (Ub) merely 426

leads to limited performance gain (79.5→ 79.7). 427

Besides, we find that Gb is also not effective, while 428

Lb brings nice gain (79.5 → 80.1). However, 429

more powerful performance gain can be seen on 430

MOMETAS-empowered one (79.5→ 80.8). Com- 431

pared to Ub, MOMETAS outperforms it on all eight 432

sub-tasks (3.9 points absolute gain on CoLA, 0.7 on 433

SST-2, 0.9 on MRPC, 1.7 on RTE, 2.3 on STS-B), 434

which indicates the strength of our meta-learning- 435

based sampling. 436
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More tasks We make further experiments on437

more different tasks as in Table 2. Generally,438

MOMETAS better facilitates multi-objective pre-439

training compared to uniform-based sampling. We440

first focus on semantic similarity task (STS-B and441

PAWS-QQP), for which we adopt CSE to improve442

the performance. According to Gao et al. (2021),443

single CSE trained BERT can achieve significant444

improvement. When the number of objectives in-445

creases, however, the situation can be difficult. It446

does not work well with Ub (84.8→ 85.2). Contrar-447

ily, MOMETAS brings a huge performance boost448

on BERTbase (84.8→ 86.5 on STS-B, 33.4→ 36.5449

on P-QQP), even surpasses BERTlarge. Similar sit-450

uation can be found on NER comparing Ub with451

MOMETAS (50.8→ 52.1 on WNUT). It demon-452

strates that MOMETAS helps maintain the ben-453

efit of a single objective in the multi-objective454

scenario. Additionally, MOMETAS-empowered455

BERTbase is able to outperform BERTlarge on456

five tasks (SICK, P-QQP, STS-B, CoNLL and457

WNUT), which indicates the great potential of458

multi-objective pre-training. On the other hand,459

because of the attempt to learning cross knowledge460

from other objectives, MOMETAS also enables the461

model to learn well on MRC tasks, even though462

there are no related objectives adopted.463

6 Visualization464

Probability distribution Figure 2 depicts the465

sampling distribution of all pre-training objectives466

learned by MOMETAS. Intuitively, the distribution467

looks more volatile when λ = 2 (bottom), while468

more clustered when λ = 3 (upper), which indi-469

cates the role of entropy regularization. From both470

cases, we may find some common clues. ATD al-471

ways stands a high picking weight up to 0.4 in the472

early stage of training. It uncovers the potential of473

adding corruption when learning denoising encoder.474

However, the significance of MLM is lower. It is475

because MLM has previously been well-trained so476

that the loss drop is less considerable than the other477

new ones. Then we look at CSE, a sentence-level478

objective. Though it is much easier than the other479

token-level ones, it has never been underweight.480

Reward We observe the respective reward curves481

of MOMETAS and Ub to access to their training482

gain for multi-objective pre-training. To make intu-483

itive, we depict the difference of them (the former484

minus the latter) as in Figure 3. Intuitivey, we see485

slight differences at the beginning of training since486

0
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RED
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DHP
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Figure 2: Sampling distribution learned by MOMETAS,
upper for λ = 2, bottom for λ = 3.
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Figure 3: Difference of the total reward, where Ub (a
horizontal line of 0) and Meta-x refer to the uniform-
based sampling and MOMETAS with entropy regular-
ization λ = x. To make more intuitive, we smooth the
curves by convolution.

MOMETAS is initialized with uniform distribution. 487

However, all three curves are positive for majority 488

of the time. When λ = 1 for instance, we see a 489

rising trend of the curve, from negative to positive, 490

while when λ = 3, the curve is always above zero, 491

which implies that MOMETAS learns to achieve 492

more evaluation scores than Ub in meta-test. 493

7 Ablation Studies 494

This section reports our ablation studies over a 495

number of factors of MOMETAS in order to better 496

understand their roles. For all experiments, we 497

report the results over five runs. 498

7.1 Comparison between Rewarding 499

Functions 500

We compare different rewarding functions R(τ) 501

on three GLUE sub-tasks, SST-2, QNLI and STS- 502
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SICK STS-B WNUT

Overall 87.2(.2) 85.2(.5) 50.0(.8)
Hard indiv. 87.6(.0) 86.2(.2) 51.0(1.1)
Relative indiv. 87.9(.3) 86.5(.2) 52.1(.6)

Table 3: Comparison between rewarding functions of
MOMETAS on BERTbase. We keep K and λ the same.

MNLI-m STS-B WNUT

Base (λ = 0) 84.7(.0) 85.8(.3) 51.0(.6)
λ = 1 85.1(.1) 86.2(.2) 51.7(.6)
λ = 2 85.3(.2) 86.2(.5) 50.8(.2)
λ = 3 85.2(.2) 86.5(.2) 52.1(.7)

Table 4: Effect of entropy regularization on BERTbase.
The base model is trained with no regularization.

B: (1) overall loss rewarding: we optimize the503

summation of all losses; (2) relative individual re-504

warding: exactly what we use in MOMETAS, we505

optimize the summation of all relative loss drops506

as Eq. 3; (3) hard individual rewarding: similar507

as the relative one, we replace the individual loss508

drop with ±1 when it is down or up respectively509

and optimize the summation of them.510

As shown in Table 3, slight improvement can511

be seen when simply rewarding MOMETAS with512

overall loss compared to uniform-based sampling513

in Table 1. In this situation, it is hard to learn the514

balance between all objectives. However, individ-515

ual rewarding can achieve stronger performances516

in both hard and relative cases.517

7.2 Effect of Entropy Regularization518

When optimizing MOMETAS, we apply maximum519

entropy regularization to encourage exploration in520

the hope of seeking out the global optima. Ta-521

ble 4 demonstrates the effect of different degrees522

of entropy regularization on pre-training perfor-523

mances. We can see general gain compared to524

original BERT in Table 1 even if there is no regu-525

larization applied. However, regularization further526

boosts the performances. The best case occurs527

when λ = 3, which the model outperforms the528

base one by 0.5, 0.7 and 1.1 points on all three529

tasks, respectively.530

7.3 Effect of Meta Length531

In our pre-training framework, MOMETAS is de-532

signed to be updated everyK steps. K refers to the533

MNLI-m SICK STS-B WNUT

K = 25 84.6 87.5 86.9 51.3
K = 50 85.1 87.5 86.2 51.7
K = 100 85.2 87.9 86.5 52.1
K = 200 85.0 87.7 86.3 52.4

Table 5: Effect of meta length on BERTbase. Note that
the results are based on five runs but we do not list the
variances for space limitation.

number of steps of meta-train and meanwhile re- 534

flects the knowledge accumulation before meta-test. 535

Generally, when K becomes larger, MOMETAS 536

tends to be less sensitive and pay more attention 537

to long-term benefits. Contrarily, when K is close 538

to 1, it is greedy and only cares about the current 539

moment. In practical, it cannot be smaller than the 540

number of objectives. 541

Table 5 shows the pre-training performances un- 542

der a number of values of K. We can see a too 543

small K may lead to worse results (e.g. K = 25). 544

It can be presumed that long-sight helps to find 545

the global optimum. For example, we cannot ac- 546

quire sufficient meta knowledge to justify all objec- 547

tives when K is too small. This can be supported 548

by another fact that MOMETAS is found more 549

uniform-distributed when K becomes smaller 550

under the same degree of entropy regularization. 551

On the other hand, we can see nice overall results 552

when K is larger (e.g. K = 100, 200). It hints 553

that we can choose a properly larger K to speedup 554

pre-training since there are less meta-test steps. 555

8 Conclusion 556

This paper concentrates on multi-objective pre- 557

training of PrLMs and presents Multi-Objective 558

Meta-Sampler (MOMETAS) in the hope of com- 559

bining arbitrary pre-training objectives organically. 560

We adopt five objectives and conduct experiments 561

on base-size and large-size models. The empirical 562

results demonstrate that MOMETAS largely out- 563

performs other rule-based sampling strategies and 564

unlocks more powerful language models on a wide 565

range of natural language processing tasks. 566

Our work is limited in not considering the role of 567

the validation set. The most challenging point is the 568

disconnection between pre-training and fine-tuning. 569

Therefore, it can be positive to introduce signals 570

that are more related to the downstream tasks. We 571

will leave this part for our future work. 572
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BERTbase BERTlarge

Number of hidden layers 12 24
Hidden size 768 1024
Intermediate size 3072 4096
Number of attention heads 12 16
Dropout 0.1 0.1
Batch size 512 512
Learning rate 5e-5 5e-5
Weight Decay 0.01 0.01
Max sequence length 256 256
Warmup proportion 0.06 0.06
Max steps 50K 50K
Gradient clipping 1.0 1.0
FP16 Yes Yes
Number of GPUs 8 8
Training period 12 hours 36 hours

Table 6: Hyperparameters for pre-training.

MNLI SICK QQP STS-B CoNLL WNUT DREAM aNLI

Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Batch size 128 32 128 16 32 16 16 64
Learning rate 3e-5 5e-5 5e-5 5e-5 5e-5 5e-5 3e-5 5e-5
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Max sequence length 128 128 128 128 128 64 128 128
Warmup proportion 0.06 0.06 0.06 0.06 0.1 0.1 0.06 0.06
Max epochs 3 3 3 10 3 5 6 3
FP16 Yes Yes Yes Yes Yes Yes Yes Yes

Table 7: Hyperparameters for fine-tuning.
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