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ABSTRACT

Active learning (AL) aims at reducing labeling efforts by identifying the most
valuable unlabeled data points from a large pool. Traditional AL frameworks have
two limitations: First, they perform data selection in a multi-round manner, which
is time-consuming and sometimes impractical. Second, they assume that there
are a small amount of labeled data points available in the same domain as the
data in the unlabeled pool. We propose D2ULO as a solution that solves both
issues. The key observation that enables our approach is that there often exists
labeled data from domains (i.e., source domains) related to the unlabeled data’s
domain (i.e., target domain). Based on this observation, our approach leverages the
idea of domain adaptation (DA) to train a data utility model that can effectively
predict the utility for any given unlabeled data in the target domain. The trained
data utility model can then be used to select high-utility data and at the same time,
provide an estimate for the utility of the selected data. Our algorithm can work
standalone as a zero-round active learning approach which selects unlabeled data
all at once and independently of the human labeler’s feedback. It can also work in
tandem with existing multi-round active learning approaches by providing a warm-
start. Our experiments evaluate both use cases. We first focus on the zero-round
AL setting and show that D2ULO outperforms the existing state-of-the-art AL
strategies equipped with domain adaptation, a natural baseline for our approach,
over various domain shift settings (e.g., real-to-real data and synthetic-to-real data).
Particularly, D2ULO is applicable to the scenario where source and target labels
have mismatch, which is not supported by the existing works. Moreover, when
used as a warm-start, our approach can effectively improve the performance of
existing multi-round AL methods.

1 INTRODUCTION

Deep neural networks (DNNs) have been successful on various tasks across different fields with
the help of large-scale labeled datasets. However, data labeling processes are often expensive and
time-consuming. One popular framework to reduce labeling costs is active learning (AL), which
strategically selects and labels the data instances from the unlabeled data pool with the goal of
achieving comparable performance with fewer labeled instances.

In a typical AL framework (Fine et al., 2002; Freund et al., 1997; Graepel & Herbrich, 2000; Seung
et al., 1992; Campbell et al., 2000; Schohn & Cohn, 2000; Tong & Koller, 2001; Ash et al., 2019b;
Sener & Savarese, 2017; Wei et al., 2015; Killamsetty et al., 2020; Kirsch et al., 2019), a learner begins
with a small number of labeled data points and request labels for more data points sequentially. For
existing methods to be effective, they require multiple rounds of selection. However, the multi-round
nature could be a limitation for applying AL to real-world applications, because the most common
labeling platforms, e.g., Amazon Mechanical Turk and annotation outsourcing companies, usually
do not support a timely interaction between the learner and data annotators. Although batch-mode
active learning allows the labeling of a batch of data points in each round, it does not allow complete
parallelization of labeling efforts. Another drawback of the existing AL strategies is that they rely on
a small amount of labeled data points to start with. These initially labeled data are either randomly
selected and sent to the annotator for labeling or assumed to already exist in the target domain.
However, AL is often utilized in a new domain where no initially labeled data are available.

In this paper, we explore the possibility of zero-round AL and ask the question: can we select
unlabeled data in a way that rely on zero feedback from potential annotators but works better than
random selection? Such data selection strategies, if exist, can be directly plugged into the widely used
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labeling platforms and work standalone, allowing for parallelizing labelers to reduce the overall time
costs. Moreover, they can serve as a warm-start for existing multi-round AL approaches by providing
better initially labeled data rather than randomly selected data. Our key idea to enable effective
zero-round data selection is inspired by the observations that there are often labeled datasets available
from related domains. In some applications, such as autonomous driving, there are off-the-shelf
simulators that can simulate a large set of labeled data points that are related to the dataset to be
labeled. Intuitively, these labeled data, although from a different domain, might still provide useful
information about what types of data are worth being labeled.

In this paper, we present Domain adaptive Data Utility function Learning and Optimization (D2ULO),
an algorithm that can leverage labeled datasets from a source domain to help select the unlabeled data
instances in the target domain. Importantly, our approach does not rely on any labeled instances from
the target domain and any interactions with the data labeler to design the unlabeled data selection
strategy; hence, we call it a zero-round active learning strategy. Specifically, we train a data utility
model that predicts the utility for any given unlabeled dataset, along with a feature extractor. We
design our training scheme modified from domain adaptation techniques so that the feature extractor
will extract domain-invariant features that are, at the same time, effective for predicting the utility
of the dataset. Another important benefit enabled by the utility modeling is that our approach can
provide an estimate for utility of the selected data, which is useful in practice for learners to decide
the amount of unlabeled points to annotate.

Our experiments evaluate two use cases: standalone zero-round AL or warm-start for multi-round
AL. We first focus on the zero-round AL setting and show that D2ULO outperforms the existing
state-of-the-art AL strategies equipped with domain adaptation, a natural baseline for our approach,
over various domain shift settings, including the challenging one where the source domain is synthetic
data while target domain is real-world data. Besides, D2ULO can also be applied to the scenario
where the source and target domain have different label spaces, while typical AL strategies cannot.
Moreover, when used as a warm-start, our approach can effectively improve the performance of
existing multi-round AL methods.

2 RELATED WORK
Active Learning. Active learning aims to reduce labeling effort by selecting data that are most
valuable for model training, and it usually performs in an iterative manner. Earlier works (Fine
et al., 2002; Freund et al., 1997; Graepel & Herbrich, 2000; Seung et al., 1992; Campbell et al.,
2000; Schohn & Cohn, 2000; Tong & Koller, 2001) select only one sample each round. Such AL
strategies cannot parallelize labeling efforts and are often time-consuming in practice. Batch-mode
active learning (Ash et al., 2019b; Sener & Savarese, 2017; Ash et al., 2019b; Wei et al., 2015; Kirsch
et al., 2019; Killamsetty et al., 2020), by contrast, queries data in groups and hence improves learning
efficiency; particular, it can better handle models with slow training procedures (e.g., DNNs).

AL strategies above which are designed to proceed iteratively until exceeding the labeling budget,
hence require timely interaction with data labeler and is not fully parallelized. A most recent work
(Wang et al., 2021) proposes DULO for one-round AL, which selects the desired amount of unlabeled
points all at once based on an initially labeled set. They formulate the problem of one-round AL as the
one of maximizing data utility functions, which map a dataset to some performance measure of the
model trained on the set. While DULO addressed the multi-round limitation of current AL strategies,
it still relies on initially labeled data to start with, which are not applicable in some scenarios. This
motivates us to investigate a new setting, which AL is conducted under limited interaction with data
labeler and without relying on pre-labeled data. We propose D2ULO which is effective to acquire
data smartly in this setting.

Domain Adaptation. Domain adaptation (DA) is a common solution to dealing with distribution
shifts between source and target domain. The core idea is to learn some domain-invariant features,
so the task model trained on the source domain can be readily applied to the target domain. There
are three categories of DA depending on the data available from the target domain: unsupervised
DA, semi-supervised DA, and supervised DA. Unsupervised DA is a setting where labeled target
data is not available and agrees with the problem setting studied by our paper. Earlier works in this
setting focus on minimizing some specific measurements of distributional discrepancy in the feature
space. For example, Long et al. (2015), Long et al. (2017b) and Tzeng et al. (2014) characterize
distribution distance via the Maximum Mean Discrepancy (MMD) of kernel embeddings; Saito et al.
(2018) and Lee et al. (2019) utilizes category predictions from two task classifiers to measure the
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Figure 1: Overall Workflow of D2ULO.

domain discrepancy. These approaches were further improved by the use of an adversarial objective
loss function regarding to a domain discriminator that tries to distinguish between source and target
feature embeddings (Tzeng et al., 2015; Ganin & Lempitsky, 2015; Ganin et al., 2016; Long et al.,
2017a). However, the adversarial training may encounter the technical difficulty of model collapse
(Mirza & Osindero, 2014). A recent work (Hoffman et al., 2018) combines generative adversarial
networks (GAN) with cycle-consistent constraints and adapts representations at both feature-level
and pixel-level effectively.

Combining Active Learning and Domain Adaptation. Although both active learning and domain
adaptation are two possible solutions to problem of insufficient labels, only a few work in the literature
integrate these two methodologies into a single framework. Chattopadhyay et al. (2013) proposes a
method that re-weights source data and selects target data to query simultaneously, so that the dataset,
consisting of re-weighted source samples, labeled target samples and queried target samples, is closest
to the distribution of target unlabeled data. Saha et al. (2011) and Rai et al. (2010) propose ALDA
that consists of three models: a domain adaptation classifier which adapts feature representation of
source domain; a domain classifier that avoids querying labels for “source” data that are similar to
target samples; a source classifier that provide labels for “source“ data that resemble target samples.
AADA, recently proposed by Su et al. (2020), starts from training a unsupervised domain adaptation
classifier, then targets sample selection using importance weights. Model retraining are performed
iteratively in AADA. These methods share the same limitation as most of the existing AL strategies
as they are all designed to proceed for multi-rounds until exceeding the selection budget. To the best
of our knowledge, D2ULO is the first that leverages the idea of domain adaptation to perform AL in
the zero-round setting.

3 APPROACH

Setting. Existing AL strategies rely on a small amount of labeled data in the target domain T . By
contrast, our goal is to develop zero-round AL strategies, which do not require any labeled data in
the target domain. We assume that there exists a source domain S whose distribution ps is closely
related to the target distribution pt, while unlike target domain T , the label of instances from S is
already available or easily accessible.

In this section, we introduce our algorithm D2ULO. The key idea is to first learn a data utility
model that can predict the utility for any set of unlabeled instance. We leverage domain adaptation
techniques to ensure that the model is useful for predicting the utility for unlabeled instances in the
target domain and further use this model to guide the data selection. We will denote labeled data by
L, unlabeled data by U , and input and output spaces by X ,Y , respectively.
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Algorithm 1: Data Utility Sampling

Input :a subset of samples LI = (X I ,YI) chosen from training set which the index is given
by I; validation set Lval; classifier f ; feature extractor Gf ; metric function u.

Output :utility dataset SDS for DeepSets training.
1 Initialize utility dataset SDS = ∅.
2 for i = 1, . . . , N do
3 Randomly choose a subset Li = (Xi,Yi) where Li ⊆ LI .
4 Train classifier f with Li

5 ui ← u(f,Lval)
6 SDS = SDS ∪ {(Xi, ui)}.
7 end
8 return SDS

3.1 OVERVIEW
The concept central to our AL strategy is a data utility function, which maps any set of unlabeled
instances to the performance the ML model trained on the set once it is labeled. With such a function,
AL can be done by simply selecting the unlabeled instances that maximize the output of the data utility
model. Although data utility functions may have a close form for certain types of learning algorithms
and model performance metrics (e.g., the test classification accuracy of K-Nearest-Neighbor (Wei
et al., 2015)), for most models data utility functions cannot analytically derived. Recent work (Wang
et al., 2021) proposed to learn data utility functions from data. Note that data utility functions are set
functions, in which the input is a data set and the output is a real value indicating the utility of the
data. Hence, each training samples for data utility function learning consist of a set of data points
and the corresponding utility score, indicating the performance of the ML model trained on the set.
Constructing the training set for data utility learning could be expensive, because to label each training
sample, one needs to re-train the model. Fortunately, Wang et al. (2021) presents some empirical
evidence that the learning of data utility functions could be sample-efficient due to its “diminishing
return” property. Also, one can replace the original ML model with a efficiently-trainable proxy
model (such as logistic regression) while still retaining good data selection performance.

Note that data utility learning require labeled data instances, which make it possible to creating the
training set. Wang et al. (2021) assumed a small labeled set in the target domain for data utility
learning. However, this assumption no longer holds true in the zero-round AL setting. To resolve this
problem, we propose to learn the data utility model on the source domain and mitigate the effects of
domain shifts via domain adaptation.

3.2 D2ULO ALGORITHM
The workflow of our algorithm is summarized in 1.

Step 1: Utility Sampling. The goal of this step is to construct the training set for learning data
utility functions. Given a set of samples LI and a validation set Lval in the source domain, each time
we randomly sample a subset Li ⊆ LI and train a classifier f on it. Utility of this subset is then given
by utility metric u which in this paper is the validation accuracy of f on Lval. The utility training set
SDS is thus {(Li, ui)}. A general utility sampling workflow is demonstrate in Algorithm 1.
Step 2: Utility model training. The goal of this step is to train a utility model effective for
predicting the utility for unlabeled data in the target domain. Following Wang et al. (2021), we adopt
the popular set function model–DeepSets (Zaheer et al., 2017)–as the data utility model. DeepSets
is a DNN has the property of permutation invariance and equivariance, which makes it suitable for
set function modeling. Specifically, a feature extractor Gf will be utilized to get the embedding of
the training instances in SDS , and the DeepSets model fDS maps the feature embedding of a set of
points to its corresponding utility.

In the setting of interest to our paper, labeled data is not available in the target domain and the utility
model fDS can only be trained on data from another domain. Hence, domain adaptation is needed to
mitigate the performance drop caused by domain shift.

A domain adaptation framework usually consists of three components: a feature extractor Gf , a class
predictorGy which takes the output embedding ofGf and make class predictions, and a discriminator
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Algorithm 2: D2ULO

Input : labeled source data Ls = (Xs,Ys); unlabeled target data Ut; utility dataset
SDS = (X,U), where X = (X1, . . . , XN ), U = (u1, . . . , uN ).

Model :G = {Gf , Gy, Gd}; feature extractor Gf ; class predictor Gy; discriminator Gd;
DeepSets utility model fDS

9 for epoch = 1, . . . do
10 for k steps do
11 Train G with (Ls,Ut)
12 end
13 Fix Gf ; extract the feature embedding Es of utility dataset Es ← Gf (X)
14 Train a DeepSets model fDS on (Es, U)
15 Fix fDS ; train Gf with (X,U)
16 end
17 return Gf ; fDS

Gd that aims to distinguish between source and target domain data. DA typically has two goals: 1)
map examples from two domains to a common feature space; and 2) retain useful information for
classification. Those two goals are usually achieved through optimizing the GAN loss LGAN and
classification loss Lcls, given by

LGAN = −
[
Ex∼ps(x) logGd(Gf (x)) + Ex∼pt(x) log(1−Gd(Gf (x)))

]
. (1)

Lcls = CrossEntropy (Gy(Gf (x)), y) (2)

We now discuss how to leverage domain adaptation in data utility learning to train a utility model
useful for data selection in the target domain. Direct application of existing DA techniques to training
the feature extractor cannot achieve a decent result on data selection, as the feature extractor learned
in this way is only optimized towards the goal of being useful for classification, ignoring the goal
of being useful for predicting data utility. For example, the best possible features for classification
tasks would be simply the label for the data points. However, this kind of features contain no
information about the quality of the data points. To solve this challenge, we modify the DA process
and incorporate a DeepSets loss into the training objective in order to learn a feature representation
useful for predicting data utility, which in turn facilitates data selection.

We also notice that training the data utility model together with DA models (including feature
extractor, class predictor, and discriminator) simultaneously is unstable. To solve this problem, we
propose an iterative training process where DeepSets model is trained and used to update the feature
extractor Gf after k steps training of DA models. Such a training process realizes consistent stability
in the experiments.

Specifically, given the labeled source data Ls, unlabeled target data Ut, a utility training set SDS

obtained from Algorithm 1, we alternate between k steps of general domain adaptation training and
one step of utility training. The former one just follows the usual DA framework. For the latter one, a
DeepSets model fDS is first trained on SDS given current feature extractor Gf , and it will be fixed
and used to optimize Gf in turn given the same objective of minimizing DeepSets Loss:

min
fDS

min
Gf

LDS =

N∑
i=1

‖fDS(Gf (Xi))− ui‖2 (3)

Note that D2ULO can be combine with any state-of-the-art DA frameworks, and we use CyCADA
(Hoffman et al., 2018), UDA (Sun et al., 2019), AFN (Xu et al., 2019) in this paper.

Step 3: Unlabeled Data Selection. The last step of D2ULO is to seek for the unlabeled data at-
taining maximal utility under the learned utility model. Formally, we solve the following optimization
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problem:

argmax
|S|=M,S⊆U

fDS(Gf (S)) (4)

via a stochastic greedy algorithm: for each iteration, we randomly select a subset of data and then
find the best data point within that subset. When the size of subsets in the inference stage are much
larger than the training size of DeepSets(like 20000 vs. 500), the generalization error could be
overwhelming. In this case, one can perform block-selection proposed in (Wang et al., 2021).

4 EVALUATION

4.1 EVALUATION SETTINGS

4.1.1 EVALUATION PROTOCOL

We use two approaches to evaluate the utility of selected subset: 1) Train-from-Scratch: we train a
model from scratch on the data points selected from the target domain, and the utility of selected data
points is given by the trained model’s accuracy; 2) Fine-tune: we adopt the method proposed in Zou
et al. (2019) to fine-tune the classifier Gy obtained from our algorithm using both selected samples
and unlabeled samples with hypothesized labels. Specifically, given a batch of labeled target samples
chosen by the strategy, we compute the centroid of each class in the feature space and generate a
hypothesized label for each unlabeled sample given its similarity between different centroids. We use
the inverse of Wasserstein distance as the similarity metric.

Source Target Domain Adaptation

MNIST USPS CyCADA (Hoffman et al., 2018)
USPS MNIST CyCADA
SVHN MNIST CyCADA

CIFAR-10 STL-10 UDA (Sun et al., 2019)
VISDA-Synthetic VISDA-Real AFN (Xu et al., 2019)

MNIST-04 MNIST-59 N/A
MNIST-04 USPS-59 CyCADA

Table 1: Dataset and Training Settings.

.

4.1.2 BASELINE ALGORITHMS

For baseline algorithms, we combine
state-of-the-art active learning strategies
with domain adaptation. Specifically, we
pre-train a feature extractor that mini-
mizes the distance between source and
target domain in the feature space, apply
it to extract features for the unlabeled
data pool and perform active data selec-
tion on the extracted features. Note that
most of these existing AL strategies cannot be directly applicable to the zero-round AL setting.

We compare D2ULO with the following state-of-the-art batch active learning strategies equipped
with domain adaption. Specifically, our baselines contain as follows:

• FASS. Wei et al. (2015) performs subset selection as maximization of Nearest Neighbor submod-
ular function on unlabeled data with hypothesized labels.
• BADGE. Ash et al. (2019a) selects a subset of samples with hypothsized label whose gradients

span a diverse set of directions.
• GLISTER. Killamsetty et al. (2020) formulates the selection as a discrete bi-level optimization

on samples with hypothesized labels.
• AADA. Su et al. (2020) uses a sample selection criterion which is the product of importance

estimation and entropy of unlabeled data.
• Random. In this setting we randomly select a subset from all the unlabeled target data.

Moreover, we also train an “optimal” DeepSets model on labeled target domain data, which corre-
sponds to DULO, serves as an upper bound of the active learning performance with only labeled
source domain data available. We label this upper bound with Optimal. Note that this upper bound
is not realizable in the zero-round AL setting because of the lack of labeled target domain data. We
plot this setting in the figures only to better understand how much room our strategy could be further
improved.
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4.1.3 DATASETS AND IMPLEMENTATION DETAILS

Table 1 summarizes the datasets and implementation settings. We evaluate the performance of
D2ULO and baseline approaches over four pairs of domain shifts: MNIST ⇒ USPS, USPS ⇒
MNIST, SVHN⇒MNIST, CIFAR10⇒ STL10. We also evaluate two more challenging transfer
settings, where the source domain has inconsistent labels with the target domain: MNIST with
digits 0-4⇒ MNIST with digits 5-9, as well as MNIST with digits 0-4⇒ USPS with digits 5-9.
None of the baselines is applicable to these two settings by design. Following the settings in prior
work (Killamsetty et al., 2020; Wang et al., 2021), we examine the effectiveness of different strategies
on robust data selection, where partial data is corrupted by white noise to simulate real-world scenario.
Specifically, we add Gaussian noise with different scales to 85% unlabeled data of USPS, 75%
unlabeled data of MNIST, 25% of STL-10 and 20% of VISDA-Real.

For all the source datasets, we randomly sample 300 (MNIST, USPS) or 500 (SVHN, CIFAR10,
STL10) data points of the training set as LI to perform data utility sampling demonstrated in
Algorithm 1. We follow the implementation of DULO (Wang et al., 2021) to set N = 5000 and split
the obtained SDS into training and validation set with a ratio 4 : 1. We use small models (i.e., SVM,
Logistic, Small CNN) as the classifier f in Algorithm 1 to obtain the data utility. This is because f
needs to be trained for thousands times to construct an utility dataset. DULO (Wang et al., 2021)
empirically finds that data utility functions for small models are positively correlated with those for
large models. Since data selection based on utility models only relies on the relative utility values
between different set, utility models trained on samples obtained from small proxy models could still
be useful for selecting data for large models.

We consider the state-of-art domain adaptation techniques for the specific transfer settings. Specifi-
cally, we combine our method with three different DA frameworks: CyCADA (Hoffman et al., 2018),
UDA (Sun et al., 2019), and AFN(Xu et al., 2019), and the DA framework used for each transfer
setting is given in Table 1. For training the DeepSets model, we use the same hyper-parameter as
Wang et al. (2021): we use Adam optimizer with learning rate 1e− 5, mini-batch size of 32, β1 = 0.9,
and β2 = 0.999.

For Fine-tune performance evaluation, the starter model isGf in the corresponding domain adaptation
framework in each setting. For Train-from-Sratch evaluation, we use three types of models to calculate
the performance: 1) SVM, which is implemented with scikit-learn (Pedregosa et al., 2011) with
regularization parameter C = 0.1; 2) Logistic model; and 3)Small CNN model which has two
convolutional layers and two max pooling layers and three fully-connected layers. Adam optimizer
with learning rate 1e− 3, ε = 1e− 7 is used for training the small CNN model.

We use GeForce RTX 2080 ti for experiments on VISDA and NVIDIA Tesla K80 GPU for all the
other experiments.

4.2 EXPERIMENT RESULTS

Real-to-Real Adaptation. We start from comparing D2ULO with baselines on various domain
shifts between real datasets.

Figure 3: True Utiltiy vs Es-
timated Utility. (Spearman’s
correlation coefficient is 0.96.)

Figure 2 shows the results averaged over multiple random seeds.
The x axis shows the number of target sample selected by different
strategies, and the y axis is the accuracy of the model trained on
selected points. In this figure, D2ULO outperforms all baselines
in various shifts. The accuracy drop of fine-tune in Figure 2 (a)
is caused by the large portion of noise in the unlabeled data pool.
After the clean data are all selected (300 clean data points in total),
more and more noisy data will be picked as the selection process
proceeds, which degrades the model performance. Note that while
all the baselines exhibit poor performance from beginning to end,
our method appears to improve the accuracy significantly before 600
data points are selected (at least 300 noisy samples are included),
indicating our superior ability to recognize noisy samples. Another
interesting finding is that the margin between D2ULO and Optimal
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Figure 2: Performance of D2ULO on various adaptation shifts. The first row gives the results of
Train-from-Scratch, where ‘SVM’, ‘Logistic’ and ‘SmallCNN’ indicate the model used for obtaining
utilities. The second row give the results of Fine-tune, and the start points are the classifier accuracy
on target validation set after domain adaptation.

is small, except for Figure 2 (d) where Optimal is worse than D2ULO. This may caused by the
overfitting of DeepSets.

Figure 4: Performance of existing AL ap-
proaches with 100 initially labeled data
points selected randomly or by D2ULO
(warm start, denoted by ‘_ws’).

Another advantage of D2ULO over existing AL strate-
gies is that we can provide a utility estimate for the se-
lected data using the data utility model. Such a utility
estimate could be very useful in practice for making an
informed decision about the labeling budget. We compare
our DeepSets estimated utility with the true utility for the
MNIST⇒ USPS setting. Here, we randomly choose 300
data points of the target domain (USPS) and perform Al-
gorithm 1 to sample 4000 subsets. The true utilities is
given by a SVM model trained on the subsets. Note that
these 300 data points are unseen during DeepSets training.
Figure 3 shows that the estimated utility underestimates
the true utility systematically but is substantially positively
correlated with the true utility, with a Spearman’s corre-
lation coefficient of 0.96. Such underestimating may be
due to the target domain (USPS) being easier to learn than
the source domain (MNIST). Hence, the utility estimates
provided by D2ULO can serve as a lower bound on the
actual utility, which is still useful for guiding the choice of labeling budget. With better modeling
between the relationship between the estimated and the true utility, one may be able to correct the
bias in our estimation. We leave the exploration of this interesting direction to future work. Figure 3
also sheds light on the strong ability of D2ULO on differentiating unlabeled data quality in the target
domain, even without the access to any labeled data from the domain.

Synthetic-to-Real Adaptation. We further study the effectiveness of different strategies on the
synthetic-to-real transfer setting. This setting could have great practical value because in many
application domains, there exist sophisticated simulators that can generate a large amount of labeled
data. We experiment on the VISDA-2017 dataset which has significant synthetic-to-real domain gap.
The source domain of VISDA are synthetic images generated by rendering from 3D models; the
target domain are real object images collected from Microsoft COCO (Lin et al., 2014) and contains
some natural variations in image quality.

As shown in Figure 5, D2ULO achieves the best performance among all the strategies. We also
notice that even a very small amount of labeled target data can help improve the classifier accuracy
by a large margin. For instance, in Figure 5 (b), the Fine-tune accuracy increases rapidly at the
beginning while only 100 data points are selected. This emphasizes the need of selecting data in the
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Figure 5: VISDA-2017 result: synthetic ⇒ real. (a) gives the results of Train-from-Scratch, (b)
and (c) give the result of Fine-tune. One interesting finding is that, all the strategies achieve a large
performance improvement on classification accuracy. This indicates the needs to select data points
from the target domain.

target domain for further improvement of domain adaptation performance. Since the target domain is
relatively clean, random baseline works already very well.

Figure 6: Performance of D2ULO on domains that have
inconsistent label space.

Label Mismatch. There are many
real-world datasets that do not have
overlap in the label space or only
share a few common classes. Hence,
we also conduct experiments in the
setting where the source domain has
entirely different object categories
from the target domain. Specifically,
we use digit 0-4 of MNIST dataset
as the source domain, digit 5-9 of
MNIST and USPS datasets as the tar-
get domain. This setting has great
practical value yet has not been stud-
ied by previous AL literature. The
reason is that most AL strategies rely
on hypothesized labels generated by
the classifier trained on the source domain and they become infeasible in this setting. For the same
reason, we omit the Fine-tune performance metric and only report the accuracy of Train-from-Scratch.
As we can see from Figure 6, D2ULO outperforms random by a large margin and is comparable to
Optimal.

Warm-Starting Existing Multi-Round Approaches. As shown in Figure 4, using D2ULO as a
warm start, the performance of existing AL approaches can be consistently improved by a large
margin.

5 FUTURE WORK

There are many interesting venues for future work. For instance, in our experiments, we observe that
the DeepSet-based utility learning often overfits to the training samples, which directly affects the
efficacy of subsequent data selection tasks. One interesting future work is to develop preventative
measure against overfitting for DeepSets training via new training algorithm, model architecture, and
regularization techniques. It is also interesting to explore the application to domains beyond image
and study how to customize the synthetic data generation to the goal of improving active learning
performance.
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A APPENDIX

A.1 DETAILS OF DATASETS USED IN SECTION 4

MNIST (LeCun, 1998). MNIST dataset contains a training set of 60,000 examples and a test set
of 10,000 examples. The images are grayscale handwritten digits with size 28× 28. We resize the
images to 32× 32 in setting SVHN⇒MNSIT.

USPS (Alpaydin & Kaynak, 1998). USPS dataset is a digit dataset scanned from envelopes. It
contains a total of 9,298 16 × 16 grayscale pixels. We resize them to 28 × 28 in both MNIST⇒
USPS and USPS⇒MNIST setting.

SVHN (Netzer et al., 2011). SVHN is a real-world color house-number dataset containing 73,257
images for training and 26,032 images for testing. We use the version where all digits have been
resized to 32× 32 pixels.

CIFAR-10 (Krizhevsky et al., 2009). The CIFAR-10 is an image recognition dataset containing
60,000 32× 32 3-channel images in 10 classes.

STL-10 (Coates et al., 2011). The STL-10 dataset consists of 13,000 color images of size 96× 96
in 10 classes. We resize them to 32× 32 in the experiments.

VISDA2017 (Peng et al., 2017). VISDA2017 dataset is designed for unsupervised domain
adaptation challenge which contains more than 280K images across 12 object categories with large
domain gap. The source domain are synthetic 2D images rendering of 3D models which the angles
and lighting conditions are different. The target domain are photo-realistic or real-images. In the
experiment, we resize all the images to 256× 256 and crop at the center obtaining images with size
224× 224. An example of synthetic-real image pair is shown in Figure 7.

Figure 7: Example images in VISDA2017. The left is an image of source domain (synthetic) while
the right is an image of target domain (real).

A.2 DETAILS OF MODELS AND BASELINE ALGORITHMS IN SECTION 4

SVM. We use Linear Support Vector Classification (SVC) implemented by scikit-learn (Pedregosa
et al., 2011) with L2 penalty and regularization parameter C = 0.1. Others remain as default.

Logistic Regression. We use Logistic Regression implemented by scikit-learn (Pedregosa et al.,
2011). We set the maximum number of iterations to be 1000.

Small CNN. The small CNN model we used has two convolutional layers and two max pooling
layers and three fully-connected layers. We use Adam optimizer with learning rate 10−3, ε = 10−7,
batch size 32 for training the small CNN model.

DeepSets Model. A DeepSets model can be represented as fDS(S) = ρ(
∑

x∈S φ(x)) where both
ρ and φ are neural networks. In our experiments, both ρ and φ contain 3 linear layer with ELU
activation, and we set the number of neurons to be 256 in each hidden layer, the dimension of set
features which is the output of φ network to be 256. For training DeepSets models, we use Adam
optimizer with learning rate 10−5, batch size 32, β1 = 0.9, and β2 = 0.99.
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Baseline AL Techniques. We use BADGE, FASS, and GLISTER implemented by DISTIL1.
Specifically, we set batch size to be 32 for all of the three strategies, and learning rate to be 0.001 for
glister.

A.3 OTHER IMPLEMENTATION DETAILS

Domain Adaptation. We test our method with three state-of-the-art domain adaptation frameworks
in this paper: CyCADA (Hoffman et al., 2018), UDA (Sun et al., 2019), AFN (Xu et al., 2019).

For CyCADA2, we follow their official implementation where a source classifier is firstly trained
using Adam optimizer with learning rate 10−4, batch size 128, β1 = 0.9, and β2 = 0.99. Then,
weights of this source classifier are used as the initial weights of target classifier to perform domain
adaptation. Same optimizer are used for training target classifier. We set the k in Line 10 of Algorithm
2 to be 10.

For UDA3, we use SGD optimizer with initial learning rate 0.1. We later decay the learning rate to
0.001 after 10 epochs. And we set k to be 5.

For AFN4, we use SGD optimizer with learning rate 0.001 and weight decay 5× 10−4 for training
feature extractor, and SGD optimizer with learning rate 0.001, momentum 0.9 and weight decay
5× 10−4 for training class predictor. We set k to be 5.

When integrating all of the above three DA frameworks into D2ULO, we use the same Adam optimizer
with learning rate 10−6, β1 = 0.9, and β2 = 0.99 for DeepSets Loss back-propagation.

Data Selection. We apply stochastic greedy optimization (Mirzasoleiman et al., 2015) to solve
Equation (4), and we set ε = 10−3.

1https://github.com/decile-team/distil
2https://github.com/jhoffman/cycada_release
3https://github.com/yueatsprograms/uda_release
4https://github.com/jihanyang/AFN
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