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ABSTRACT

We explore the use of expert iteration in the context of language modeling applied
to formal mathematics. We show that at same compute budget, expert iteration, by
which we mean proof search interleaved with learning, dramatically outperforms
proof search only. We also observe that when applied to a collection of formal
statements of sufficiently varied difficulty, expert iteration is capable of finding
and solving a curriculum of increasingly difficult problems, without the need for
associated ground-truth proofs. Finally, by applying this expert iteration to a
manually curated set of problem statements, we surpass previous state-of-the-art
on the miniF2F benchmark, automatically solving multiple challenging problems
drawn from high school olympiads.

1 INTRODUCTION

Deep learning has enjoyed spectacular success in many domains, including language (Brown et al.,
2020; Devlin et al., 2019; Wu et al., 2016), vision (Radford et al., 2021; Tan & Le, 2019), and image
generation (Ramesh et al., 2021; Karras et al., 2019). One domain where deep learning has not yet
enjoyed a comparable success is in tasks that require extensive planning and symbolic reasoning,
with the exception of two-player games (Silver et al., 2016; 2017; Berner et al., 2019; Vinyals et al.,
2019). In such games, deep learning systems exhibit a considerable degree of reasoning, especially
when trained with self-play combined with a search procedure such as Monte Carlo Tree Search
(MCTS) (Browne et al., 2012). But the resulting reasoning abilities achieved are limited due to the
relatively narrow scope of games.

As such, theorem proving in interactive proof assistants, or formal mathematics, appears as an
interesting game-like domain to tackle due to its increased scope. The typical tasks consist of
generating a machine-checkable proof given a formal statements. Like games, formal mathematics
has an automated way of determining whether a trajectory (i.e. a proof) is successful (i.e. formally
correct). But the vast scope of formal mathematics means that any strong reasoning result obtained in
it will be more meaningful than comparable results in games (e.g. finding proofs to mathematical
conjectures), and could even be applicable to important practical problems (e.g. software verification).

However, tackling formal mathematics involves two main challenges that we must address in order to
continue making progress:

Infinite action space Not only does formal mathematics have an extremely large search space (like
Go (Silver et al., 2016) for example), it also has an infinite action space. At each step of proof search,
the model must choose not from a well-behaved finite set of actions, but a complex and infinite
set of tactics, potentially involving exogenous mathematical terms that have to be generated (e.g.,
generating a mathematical statement to be used as a witness, an object used steps such as “there exists
an x ...”, or a cut, the introduction and the chaining of a lemma in the middle of a proof).

No direct self-play setup In formal mathematics, a prover is not playing against an opponent but
against a set of statements to prove. When faced with a statement that is just too hard, there is no
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obvious reframing of the formal mathematics setup that will let the prover generate intermediary
easier statements to tackle first. This asymmetry prevents naive application of the symmetric self-play
algorithms commonly used in 2-player games.

These two differences make a naive application of reinforcement learning to formal mathematics
leave a large room for improvement (Whalen, 2016; Winands et al., 2008). Past work proposed to
address the infinite action space problem by sampling from a language model (Polu & Sutskever,
2020), while training such language model requires a large dataset of statements with proof. This
paper focuses on this second problem and our basis for addressing it is the observation that the key
role of self-play is to provide an unsupervised curriculum. We propose instead to supply auxiliary
sets of problem statements (without requiring proofs) of varying difficulty. We empirically show that,
when the difficulty of these auxiliary problems is varied enough, a simple expert iteration procedure
is able to solve a curriculum of increasingly difficult problems, eventually generalizing to our target
distribution. We show that this works with both automatically-generated and manually-curated
auxiliary distributions of problems and leverage this to achieve state-of-the-art on the miniF2F
benchmark. Our results suggest that continuous self-improvement in formal mathematics can
potentially be reduced to the problem of generating such sets of formal statements, which we have
done in part manually in this work, but could eventually be scaled in the future with more automation
(such as more domain-specific statements generator or even informal to formal machine translation).

miniF2F benchmark In this work, we target the miniF2F (Zheng et al., 2022) benchmark, which
consists of 244 validation and 244 test formalized statements of mathematical problems from various
competitions. We believe it to be a better measure of mathematical reasoning compared to a formal
library-derived split. Also, the extreme scarcity in formal libraries of this type of problems makes it
an ideal test-bed for the expert iteration methodology studied in this paper.

2 RELATED WORK

Our work strongly relies on, and can be seen as a natural continuation of the work presented in the
original GPT-f paper (Polu & Sutskever, 2020) which studies the use of language models to generate
tactics, the PACT paper (Han et al., 2022) which applies GPT-f to Lean and studies the benefits from
co-training on self-supervised objectives, and the miniF2F benchmark (Zheng et al., 2022). We
present additional related work in Appendix A.

3 FORMAL ENVIRONMENT

We choose Lean (de Moura et al., 2015; lea) as our formal environment. Unlike Metamath (Megill
& Wheeler, 2019) , which has been studied in the original GPT-f paper (Polu & Sutskever, 2020),
Lean benefits from high-level tactics which were shown to be beneficial in the context of the miniF2F
benchmark. Also, Lean has recently received a lot of attention from the mathematical community,
thanks to projects such as the Perfectoid Spaces (Buzzard et al., 2019) and the Liquid Tensor
experiment (Scholze, 2020), and benefits from a vibrant community of hundreds of contributors to its
main mathematical library called mathlib. We refer to the PACT paper’s Background section (Han
et al., 2022) for a detailed introduction to Lean in the context of neural theorem proving. We refer to
Appendix D for an illustration of miniF2F input and Lean environment.

lean-gym In the PACT paper (Han et al., 2022), proof search is performed by the Lean runtime using
the LEANSTEP environment, with a generic backend interface to models. While easy to use–one
just needs to plug in their model–this approach makes it difficult to alter and iterate on the search
procedure because it is programmed in Lean (which is not designed or intended for cluster-wide
parallelised I/O intensive tasks), and the coupling of the search procedure with the Lean runtime
introduces challenges when scaling to a large number of parallel workers.

To solve these issues we implemented lean-gym1 – a simple REPL interface over the standard
input/output implemented in Lean directly. We present lean-gym’s API and discuss some of its
advantages and limitations in Appendix B.

1https://github.com/openai/lean-gym
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Proof extraction We rely on the proof extraction methodology presented in the PACT paper (Han
et al., 2022) to extract human tactic proof steps from mathlib (the tactic dataset) as well as the
various other proof artifacts (mix1 and mix2 datasets). We also extract mathlib-{train, valid, test}, the
set of statements from mathlib along the split proposed in Han et al. (2022) (the validation and test
splits of tactic, mix1, mix2 being aligned with mathlib-{valid, test} as the splits are determined
by declaration name hashes (across all data sources including proof-term mining) as opposed to
individual proof steps or data-points.

4 EXPERT ITERATION

Expert iteration was introduced in Silver et al. (2017) and broadly consists in iteratively training
models on their previously sampled trajectories, to achieve continuous improvement. In this section
we present our expert iteration methodology, including the models and pre-training strategies. We use
decoder-only Transformers similar to GPT-3 (Brown et al., 2020). Throughout this paper we focus
on a model with 36 layers and 774 million trainable parameters (referred to as the 700m model in the
GPT-f paper (Polu & Sutskever, 2020)).

4.1 PRE-TRAINING

We pre-train our models successively on GPT-3’s post-processed version of CommonCrawl (for 300B
tokens) and an updated version of WebMath (Polu & Sutskever, 2020) (for 72B tokens) whose mix is
presented in Appendix C.

4.2 TRAINING OBJECTIVES

Proofstep objective The proofstep objective, introduced in Polu & Sutskever (2020), consists in
generating a PROOFSTEP (a Lean tactic) given a GOAL (a Lean tactic state). We also condition this
objective on the current DECLARATION (a Lean theorem name), which remains the same throughout a
proof search: DECL <DECLARATION> GOAL <GOAL> PROOFSTEP <PROOFSTEP>.

The rationale for conditioning on the declaration name is to hint our models on the position of the
current declaration in the mathlib library. It can be considered as a weak proxy signal for the large
amount of information not shown to the model (the full environment consisting of the available
imports and currently open declarations such as module names, notations, declared instances, ...). The
declaration name lets models at least in principle memorize and then retrieve some of that information,
knowing that lean-gym errors if a theorem or definition that is not available in the environment
associated with the current declaration is used by tactics generated by our models. Also note that
conversely to Polu & Sutskever (2020) and like Han et al. (2022) <GOAL> is not necessarily a single
goal but a Lean tactic state, which possibly comprises multiple goals.

Proofsize objective We depart from Polu & Sutskever (2020) and use a proofsize objective to
guide our proof searches, which consists in generating one token that represents a proof size
estimate bucket for the current goal (Lean tactic state): DECL <DECLARATION> GOAL <GOAL>
PROOFSIZE <PROOFSIZE_BUCKET_TOKEN>

For a given goal g, either the goal was proved as part of the proof search and we denote its proof size
(the number of tactic applications (compounded Lean tactics counting as one)) as ps(g), or the goal
was not proved in which case we assign the goal to a bucket that virtually represents "infinite" proof
sizes.

We use 11 buckets B = 0...10 and compute the proofsize bucket b(g) for a goal g by assigning
infinite proof sizes to bucket 0, all proof sizes over 20 to bucket 1 and linearly projecting proof sizes
lower than 20 on the remaining buckets 2, ..., 10 (10 being the bucket for the shortest proof sizes). In
practice, when training and sampling from the model, we map B to the tokens ’A’...’K’.

To value goals as we run proof searches, we sample the proofsize bucket token and record the
probability pb(g) for each viable bucket and use them to get a weighted average with the following
formula: v(g) = 1

#B

∑
b∈B pb(g) · b. As an example, if the model assigns p0 = 1 (hence pb̸=0 = 0)

then v(g) = 0. Conversely if the model assigns p10 = 1 (10 being the bucket for the shortest proof
sizes) then v(g) = 1.

3



Published as a conference paper at ICLR 2023

Table 1: Performance of θ0 and θ1 on mathlib-valid and miniF2F-valid compared to PACT Lean
GPT-f as reported in Han et al. (2022); Zheng et al. (2022). All models have the same architecture. θ0
is sampled using cumulative logprob priority best-first search. θ1 is sampled using best-first search
based on the proofsize objective. We report our setup (d = 512 expansions and e = 8 tactic samples
per expansions) as well as the setups used in Han et al. (2022); Zheng et al. (2022) (denoted as θ∗0)
to control for compute. We also report the performance of θ1 on mathlib-valid when trained using
the outcome objective (denoted as θ′1) from Polu & Sutskever (2020) as an ablation of our proposed
proofsize objective.

Model d e pass@1 pass@8 Model d e pass@1 pass@8

mathlib-valid miniF2F-valid
PACT 512 16 48.4% miniF2F 128 16 23.9% 29.3%
θ∗0 512 16 48.5% 57.6% θ∗0 128 16 27.6% 31.8%
θ0 512 8 46.7% 57.5% θ0 512 8 28.4% 33.6%
θ1 512 8 56.3% 66.3% θ1 512 8 28.5% 35.5%
θ′1 512 8 55.6% 65.9% θ′1 512 8 28.3% 34.7%

The rationale for using this proofsize objective instead of the outcome objective described in Polu
& Sutskever (2020) is that (i) it achieves better performance compared to the outcome objective
(see Table 1), and (ii) it prioritizes goals that potentially lead to shorter proofs during proof search,
creating an intrinsic incentive for the system to converge towards shorter proofs. Similarly to Polu &
Sutskever (2020) we favor this token-based approach to the introduction of a separate value head to
keep the overall architecture simple. This way the proofsize objective can be implemented by simply
augmenting the training dataset and without any architectural change.

4.3 BOOTSTRAPPING

Bootstrapping consists in the steps required to train an initial model on both the proofstep objective
and the proofsize objective.

Given a pre-trained model on WebMath, we fine-tune it on the tactic dataset extracted from mathlib
as well as the proof artifacts dataset mix1 as described in Han et al. (2022). This initial model, which
we denote θ0 is solely trained on the proofstep objective. We use the validation splits of the tactic
and m1 datasets to early-stop training. Note that this is our only use of mathlib-valid to influence the
training process throughout this paper.

To generate data for the proofsize objective, we use θ0 to sample proofs for statements from mathlib-
train. For each statement from mathlib-train (25k) we attempt a = 1 proof searches using the
cumulative logprob priority search described in Polu & Sutskever (2020) (which does not require a
trained value function) using d = 512 expansions and e = 8 samples per expansion. We denote the
set of successful proof searches created in this process as S0.

Using S0 we generate dataset D0 by concatenating: (i) the initial tactic dataset (proofstep objective),
(ii) a deduplicated set of proofsteps extracted from the proofs in S0 (proofstep objective) and (iii) a
deduplicated set of proofsize tuples (goals and proofsize) extracted from the full proof searches in S0

(proofsize objective).

Note that the full proof searches in S0 include goals that are visited but eventually remain unproved,
which provides useful negative examples for the trained value function (even if these negatives may
include provable goals that simply were not prioritized by the search). Also note that S0 doesn’t
include failed proof searches.

We fine-tune θ0 on D0 for exactly one epoch (no use of validation data for early-stopping) to obtain
our initial model θ1 trained on both the proofstep objective and the proofsize objective. θ0 is used in
our expert iteration setup as base model to fine-tune from at each iteration, and θ1 is our first iterated
model or mathlib bootstrapped model trained on both objectives.

We report in Table 1 the pass rates of θ0 and θ1 on mathlib-valid and miniF2F-valid and compare with
previously reported pass rates for equivalent amounts of compute. As reported in Polu & Sutskever
(2020), training a value function to guide search greatly improves the pass rates of θ1 on mathlib-valid.
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Interestingly, the gap between θ0 and θ1 on miniF2F-valid is not as significant, demonstrating that
training a value function on proofs sampled from mathlib-train has limited transfer to miniF2F-valid.
The main differences with Zheng et al. (2022), potentially explaining the gap on miniF2F-valid
(27.6% vs 23.9%), consists in the new pre-training described in Section 4.1 as well as the use of a
more recent mathlib checkpoint for the mix1, mix2 and tactic datasets.

4.4 ITERATED SAMPLING AND TRAINING

Our expert iteration process takes as input: (i) a set of formal statements St , (ii) a function a : St −→ N
indicating the number of proof search attempts to run per statement at each iteration, (iii) a base
model θ0 to fine-tune from at each iteration, and (iv) a mathlib bootstrapped model θ1 trained on both
objectives. A high-level illustration of the iterated sampling and training is available in Appendix E.

Each iteration k consists in sampling proof searches for statements in St using θk, filtering successful
proof searches Sk to extract a new dataset Dk, and fine-tuning θ0 on it to obtain θk+1, on which
we can iterate. To sample proof searches from St we use the best-first search described in Polu &
Sutskever (2020) with the value function described in Section 4.2. We attempt a proof searches for
each statement s(s ∈ St) with d = 512 expansions and e = 8 samples per expansion. We denote the
set of successful proof searches for iteration k as Sk.

Using Sk we generate datasets Dk by concatenating: (i) the initial tactic dataset (proofstep ob-
jective), (ii) a deduplicated set of proofsteps extracted from the proofs in

⋃
1≤i≤k Sk (proofstep

objective), and (iii) a deduplicated set of proofsize tuples (goals and proofsize) extracted from the
full proof searches in

⋃
1≤i≤k Sk (proofsize objective).

We use a global deduplication across iterations for both proofsteps and proofsize tuples which
we found to be important to maintain the stability of the expert iteration procedure. This global
deduplication is somewhat equivalent for each statement to growing a unique proof tree by aggregating
all the proof searches that have been run for it across iterations. This virtual proof tree accumulates a
growing number of positive proof paths and visited goals that remain unproven. We use these goals
as negative examples for the proofsize objective, labeling them with an infinite proofsize. Positive
goals are deduplicated keeping the minimum proof sizes across proof searches.

Finally θk is obtained by fine-tuning θ0 for exactly one epoch on Dk. Note that the initial tactic
dataset is included in each Dk, despite θ0 being already trained on it (along with mix1). We found
this repetition to be beneficial overall (as it adds the mathlib extracted proofsteps to our deduplicated
per statements virtual proof trees) despite it leading to a slight overfit on the tactic dataset in terms
of validation loss.

4.5 EXPERT ITERATION ON mathlib-train

In this section we propose to set St to the statements in mathlib-train, run our expert iteration process
with it and report performance on both mathlib-valid and miniF2F-valid. Performance is reported in
terms of pass rate (percentage of successful proof searches) as a function of the number of attempts
per statement, noted pass@k where k is the number of attempts per statement at test time. To reduce
noise in these metrics we run more than k attempts at test time (generally 32 to compute pass@1 and
pass@8), averaging across attempts as needed to obtain a smoother pass@k value.

Given the large number of statements in mathlib-train (25k) we uniformly set a = 1 and use θ0
and θ1 as described in Section 4.3 and report pass@1 and pass@8 across 8 iterations in Figure 1.
The pass@1 on mathlib-valid goes from 56.3% for θ1 to 62.6% for θ9. The performance steadily
improves and follows a clear logarithmic scaling law on mathlib-valid. It is also notable that, initially,
transfer to out-of-distribution miniF2F-valid appears limited but eventually kicks in as we reach
better performance on mathlib-valid. This demonstrates that the expert iteration process does not just
overfit to mathlib but also leads to improved performance on out-of-distribution statements.

We define the cumulative pass rate at iteration k as the pass rate consisting of all proof searches
up to iteration k . Since we set a = 16 for evaluation on mathlib-valid and miniF2F-valid at each
iteration, the cumulative pass rate at iteration k can be seen as a noisy ensembled pass@16k (multiple
models (θk), no averaging). In Figure 2, we report this cumulative pass rate for two iteration loops,
our normal one and a sampling-only loop where we skip re-training the model between iterations
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Figure 1: pass@1 (plain) and pass@8 (dotted)
for mathlib-valid and miniF2F-valid when run-
ning 8 expert iterations with St set to be the
statements in mathlib-train. The x-axis is log-
scaled. It corresponds to the indices of the θk
models and serves as a good proxy to compute
(the amount of test-time and train-time com-
pute per iteration being fixed). The y-axis is
scaled linearly and simply shifted between the
two graphs (spans an equal range).

Figure 2: Cumulative pass rate for our expert it-
eration loop as well as a sample only loop where
we skip re-training the model between itera-
tions. The adjusted compute line is computed
by fitting the sample only curve and shifting it
to approximate a setup where we would focus
all the additional compute used by expert itera-
tion (sampling training data from mathlib-train
as well as re-training models at each iteration)
towards running proof searches against mathlib-
valid.

and solely sample from θ1. This directly compares test-time compute scaling (scaling proof search
attempts) to expert iteration scaling (interleaved training on new data sampled from mathlib-train)
and provides a very clear visualization of the gains of expert iteration. For a fair comparison, we
also report an adjusted compute line which approximates the test-time performance we would get
at each iteration if we were to focus all the additional compute used by expert iteration (sampling
proofs from mathlib-train as well as re-training models at each iteration) towards solely running
proof searches against mathlib-valid.

As shown by Figure 2, the scaling exponent of expert iteration is substantially higher than the
scaling exponent associated with solely scaling test-time compute (running more proof searches),
demonstrating the clear benefit of expert iteration. We’ll denote the fully iterated model from this
section as θmathlib

9 .

Even in the presence of ground-truth proofs for each of the statements in mathlib-train (tactic
dataset), expert iteration generates data that further improves the performance of the model. The
number of statements proved in mathlib-train goes from 17390 (67.8%) at iteration 1 to 19476
(76.0%) at iteration 9, while the average proof length of these statements goes from 4.8 to 4.0. We
hypothesize that this continuously improving performance through expert iteration stems from two
effects: (i) the model finding new original proofs for the same statements and (ii) the model closing
marginally harder statements at each iteration – which in turn provides more useful training data for
the next iteration. By iteration 9, the model is trained on more than 90% generated data. We present
in Appendix I a few examples of original proofs found by our models on mathlib-train compared
with their ground-truth versions.

To verify our hypothesis that expert iteration is capable of closing a curriculum of increasingly
difficult problems out of a set of problem statements, and that this capability is independent of having
access to ground-truth proofs, we propose in the next section to study expert iteration applied to a
synthetically generated set of problems for which we have fine-grained control on the difficulty of
each statement.

5 STATEMENT CURRICULUM LEARNING

In this section we focus on running expert iteration on synthetic statements generated by an inequality
generator. The use of synthetic statements enables us to control the difficulty of each statement to
present evidence that expert iteration can hill-climb the intrinsic difficulty gradient of the resulting set
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of statements. In particular, we show that, at fixed compute budget, expert iteration eventually closes
proofs of hard statements that remain completely out of reach of simply sampling proof searches
without interleaved training.

5.1 SYNTHETIC INEQUALITY GENERATOR

We designed a synthetic inequality statement generator for Lean in the spirit of the INT (Wu et al.,
2021) generator. The generator consists in generating inequalities from well known inequality theo-
rems (AM-GM, Trivial inequality, Cauchy-Schwarz, Bernoulli, Young, Hölder) and composing them.
It is driven by two difficulty parameters: ND which controls depth of composition of inequalities and
NS which controls the complexity of the input expressions to the composed inequalities. We provide
details on its implementation in Appendix F.

Using this generator we generate a curriculum of 5600 inequality statements (for which we don’t have
proofs), 100 for each values of 0 ≤ NS ≤ 7 and 0 ≤ ND ≤ 6. We denote this set of statements as
synth-ineq. To bootstrap our models capabilities on this specific task, we also generate 100 statements
of low difficulty (ND = 1 and NS = 5) and formalize a proof for each of these statements. We refer
to this dataset as synth-ineq-train. In the rest of this paper we adjunct this training dataset to the
tactic dataset used to train our models.

5.2 EXPERT ITERATION ON SYNTHETIC INEQUALITY STATEMENTS

In this section we propose to set St to the union of the statements in mathlib-train and synth-ineq.
Again, we uniformly set a = 1 and use θ0 and θ1 as described in Section 4.3, except that they are
now also trained on synth-ineq-train.

Similarly to the previous section, we report in Figure 3 the cumulative pass rate for two loops, our
standard expert iteration loop, and a proof search only loop where we do not interleave training
between iterations. The pass rates are reported split by values of ND (pooling together 0 ≤ NS ≤ 7)
which we found to be the main driver for difficulty.
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Figure 3: Cumulative pass rate for our expert iteration loop as well as a sample only loop where we
skip re-training the model between iterations. Pass rates are reported for each value of ND (pooling
together 0 ≤ NS ≤ 7).

Despite the challenging nature of these synthetic inequalities, Figure 3 demonstrates that expert
iteration is capable of learning the intrinsic curriculum induced by synth-ineq. In particular, expert
iteration is capable of closing 6 problems of difficulty ND = 6 without having been provided with
any seed ground-truth proof for this difficulty level. Note that difficulty ND = 6 remains completely
out of reach of simply scaling the number of attempts per statements (the sample only loop remaining
stuck at 0 for ND = 6).

This confirms on our synthetic statements dataset synth-ineq that not only expert iteration is capable
of learning the curricula occurring in a set of statements, but this process also enables the emergence
of new capabilities without the need for ground-truth proofs (ability to close, highly challenging,
deeply composed inequalities).
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6 TARGETING miniF2F

Motivated by the results from Section 5, we curated and manually formalized a set of math exercises
denoted as miniF2F-curriculum to target miniF2F. miniF2F-curriculum contains 327 statements
from various sources, with their provenance and analysis detailed in Appendix G.

miniF2F statements being quite out of distribution compared to mathlib statements (which typically
are generic theorems and lemmas), we hypothesized that if the difficulty of miniF2F-curriculum was
made varied enough, expert iteration could potentially leverage it to effectively shift our models’
distribution closer to miniF2F’s, and in turn, improve their eventual performance on it.

6.1 TRANSFER TO miniF2F

In this section we propose to set St to the union of the statements in mathlib-train, synth-ineq
and miniF2F-curriculum. We uniformly set a = 1 on mathlib-train and synth-ineq and a = 8 on
miniF2F-curriculum and use θ0 and θ1 as described in Section 5.

Similarly to previous sections, we report in Figure 4 (left) the cumulative pass rate on miniF2F-valid
of our full curriculum expert iteration loop and compare them with the mathlib-train only expert
iteration from Section 4.5. Since more compute is deployed in our full-curriculum loop (more
statements), we also report a mathlib-train only loop taking a = 2. At the end of the expert iteration,
100 out of the 327 statements from miniF2F-curriculum end up being closed, suggesting a lack of
density in our manually formalized set of statement.

We also report in Figure 4 (right) the pass@1 and pass@8 for our full curriculum expert iteration loop.
The steady improvement on miniF2F-valid shows that the expert iteration procedure we propose does
not overfit on the statements that compose the curriculum it uses. Despite the potential inefficiency
of our curriculum, the improved performance associated with its use demonstrates, as hypothesized,
an effective transfer between miniF2F-curriculum, synth-ineq and miniF2F-valid through expert
iteration. We will denote the fully iterated model from this section as θfull

9 .
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Figure 4: Left: cumulative pass rate on miniF2F-valid for our expert iteration loop using our full
curriculum (mathlib-train, synth-ineq and miniF2F-curriculum) compared to the expert iteration loop
from Section 4.5. The total number of attempts per iteration in our full loop is 25k+5.6k+8∗327 ≈
33.2k, which means the total compute deployed is higher than in the mathlib-train only loop (25k).
We therefore also report in dotted a mathlib-train only loop, taking a = 2, whose total number of
attempts per iteration is ≈ 50k. Right: pass@1 (plain) and pass@8 (dotted) for our expert iteration
loop using our full curriculum (mathlib-train, synth-ineq and miniF2F-curriculum) compared to the
expert iteration loop from Section 4.5.

6.2 RESULTS

We report in Table 2 the pass rates on mathlib-{valid, test} and miniF2F-{valid, test} for the models
trained in previous sections, namely θ1, θmathlib

9 , and θfull
9 . We achieve a 47.3% pass rate (using a = 64

attempts) on miniF2F-valid and a 36.6% pass rate on miniF2F-test, substantially improving from the
previous state-of-the-art (Zheng et al., 2022).

These results include the resolution of 26 AMC12 problems, 6 AIME problems and 2 IMO-adapted
problems. Out of these statements, 4 AMC12 problems (amc12b_2020_p5, amc12a_2009_p9,
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Table 2: Performance of θ1 (value-function based search), θmathlib
9 (expert iterated on mathlib-train)

and θfull
9 (expert iterated on our full curriculum) on mathlib-{valid, test} and miniF2F-{valid, test}.

All proof searches are run with d = 512 and e = 8.

Model pass@1 pass@8 pass@64 pass@1 pass@8 pass@64

mathlib-valid mathlib-test
PACT (Han et al., 2022) 48.4% - - - - -
θ1 56.3% 66.3% 72.0% 56.5% 66.9% 73.7%
θmathlib
9 62.6% 70.7% 75.8% 63.0% 71.5% 77.1%
θfull
9 61.7% 69.8% 75.3% 62.9% 71.6% 76.3%

miniF2F-valid miniF2F-test
PACT (Zheng et al., 2022) 23.9% 29.3% - 24.6% 29.2% -
θ1 28.5% 35.5% 41.2% 25.9% 31.1% 33.6%
θmathlib
9 31.3% 38.3% 44.1% 27.2% 33.0% 35.2%
θfull
9 33.6% 41.2% 47.3% 29.6% 34.5% 36.6%

amc12a_2003_p24, amc12b_2003_p17), 2 AIME problems (aime_1984_p1, aime_1990_p4), and
2 IMO-adapted problems (imo_1961_p12, imo_1964_p2) are uniquely solved by expert iterated
models, the two IMO-adapted and the two AIME problems being uniquely solved by θfull

9 .

We provide a selection of the proofs found by our models for these statements as well as a qualitative
analysis of them in Appendix J. Also, we achieve a new state-of-the-art: higher than 75% pass rate
(using a = 64 attempts) on mathlib-{valid, test}, suggesting that our models could potentially be
effectively leveraged as proof assistants in the formalization efforts associated with mathlib.

7 DISCUSSION AND LIMITATION

Throughout this paper, we used a single model size (774m trainable parameters). We refer readers
to Appendix H for more discussion on model size, compute budget and training time. Despite our
models’ capability, as discussed in Appendix J.1, to generate cuts and witnesses, we believe that their
current main limitation lies in their inability (under our proposed search procedure) to chain more
than 2 or 3 non-trivial steps of mathematical reasoning, preventing them from consistently solving
challenging olympiad problems. We’ve been repeatedly impressed by the complexity of some of
the proofsteps generated by our models. But, proofs requiring many of such reasoning steps remain
beyond our current compute horizon. Even if we solved a selection of challenging olympiad problems,
our models are still far from being competitive with the brightest students in these competitions.

While our models have demonstrated some capabilities to generate cuts, the cuts they generate are
often shallow (they involve only a few proofsteps and don’t necessarily deeply change the structure
of the proof–we refer the reader to the Cut-Elimination theorem and Carbone & Semmes (1996) for a
discussion of the influence of cuts on proof size). We believe that studying language models’ ability
to generate cuts, and designing search procedures that leverage that capability (related ideas can be
found in Czechowski et al. (2021)), are interesting avenues of research to alleviate this limitation.

8 CONCLUSION

In this paper we presented an expert iteration procedure for GPT-f (Polu & Sutskever, 2020), demon-
strating that it is capable of solving a curriculum of increasingly difficult problems out of a set of
formal statements of sufficiently varied difficulty. Our results suggest that the lack of self-play in
the formal mathematics setup can be effectively compensated for by automatically/manually curated
sets of formal statements, which are much cheaper to formalize than full proofs. Finally, we hope
that the statement curriculum learning methodology we presented in this work will help accelerate
progress in automated reasoning, especially if scaled with automated generation and curation of
formal statements in the future.

2This IMO-adapted statement from miniF2F-valid is a much weaker version than the original problem (see
Appendix J for more context).
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A RELATED WORK

Deep learning applied to premise selection and proof guidance Early applications of deep
learning to formal mathematics focused primarily on premise selection and proof guidance. Deep-
Math (Irving et al., 2016) explored the use of CNNs and RNNs to predict whether a premise is
useful to demonstrate a given conjecture. Their results were later improved with FormulaNet (Wang
et al., 2017) by the use of graph neural networks, reminiscent of NeuroSAT (Selsam et al., 2019).
Proof guidance consists in selecting the next clause to process inside an automated theorem prover.
Loos et al. (2017) investigated the use of models similar to DeepMath’s for proof guidance and
demonstrated a significant uplift on the Mizar library. More recently Firoiu et al. (2021) demonstrated
the potential of deep learning techniques to be competitive with E prover’s heuristics when applied to
resolution calculus while training on fully synthetic data.

Deep learning applied to automated theorem-proving HOList (Bansal et al., 2019b) proposes
a formal environment based on HOL Light. They achieve their best performance (Bansal et al.,
2019a) with a GNN model designed for premise selection and the use of exploration. The same team
studied the use of a skip-tree objective with Transformers on formal statements (Rabe et al., 2021),
demonstrating, along with GPT-f (Polu & Sutskever, 2020), the potential of leveraging Transformers
for formal reasoning. GamePad (Huang et al., 2019) and CoqGymn/ASTactic (Yang & Deng, 2019)
introduce environments based on the Coq theorem prover. ASTactic generates tactics as programs by
sequentially expanding a partial abstract syntax tree. Urban & Jakubuv (2020) studied the capability
of GPT-2 to produce useful conjectures for the Mizar library and IsarStep (Li et al., 2021) explored
the synthesis of intermediate propositions in declarative proofs for Isabelle/HOL using Transformers.

Targeting miniF2F Lample et al. (2022) designed HyperTree Proof Search (HTPS), an online
training procedure targeting Lean, Metamath and hand-crafted environment named Equations. Lample
et al. (2022) report 41% pass-rate on miniF2F-test and 42.5% pass-rate on miniF2F-curriculum in
Lean (de Moura et al., 2015; lea) setup. Thor (Jiang et al., 2022) combined language model and
Sledgehammer (Paulson, 2010) and achieved 29.9% pass-rate on miniF2F-test in Isabelle setup,
which is later improved to 35.2% by Wu et al. (2022) leveraging autoformalization and expert
iteration.

B LEAN-GYM

lean-gym presents the following API:

• init-search: declaration → tactic_state. Takes a declaration name (a theorem name
from the loaded library) and initializes a search while setting the run-time environment at
that particular declaration. It returns the initial tactic state along with a fresh search_id
and tactic_state_id.

• run_tac: (tactic_state, tactic) → tactic_state. Takes a search_id and a
tactic_state_id to identify a tactic state, as well as a tactic string to apply to it. It
returns a new tactic state and its associated tactic_state_id.

Below is an example in-terminal trace demonstrating the use of lean-gym’s REPL interface:

$ lean --run src/repl.lean
["init_search", ["int.prime.dvd_mul", ""]]
{

"error":null,
"search_id":"0",
"tactic_state":"⊢ ∀ {m n : Z} {p : N}, nat.prime p →

↑p | m * n → p | m.nat_abs ∨ p | n.nat_abs",
"tactic_state_id":"0"

}
...
["run_tac",["1","1","apply (nat.prime.dvd_mul hp).mp"]]
{
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"error":null,
"search_id":"1",
"tactic_state":"m n : Z, p : N, hp : nat.prime p, h : ↑p | m * n

⊢ p | m.nat_abs * n.nat_abs",
"tactic_state_id":"2"

}
...

Using lean-gym is virtually equivalent to opening a Lean editor at a specific theorem, deleting its
proof and interacting with Lean to reconstruct it.

Providing a REPL interface over the standard input/output makes it very easy to integrate lean-gym
from any programming language. Writing a wrapper in Python, as an example, only takes a few
dozen lines of code. Since lean-gym is a Lean program, managing the loaded libraries is done
directly using Lean’s own infrastructure (using leanpkg.toml), making it quite straightforward to
have access to both mathlib and miniF2F statements from the same lean-gym instance.

Note that lean-gym is stateful, meaning that distributing proof searches on multiple lean-gym
instances requires to track which instance is associated with which proof search. In practice, we were
able to scale the use of lean-gym to thousands of cores running thousands of proof searches in parallel.
Finally, lean-gym’s REPL interface is blocking, preventing inner-proof search parallelization, though
this limitation can probably be removed in the future.

C WEBMATH

Our updated WebMath pre-training dataset consists in the mix presented in table 3.

Table 3: Mix and source of data involved in the updated WebMath pre-training.

Dataset Size Mix

Github Python 179 GB 25%
arXiv Math 10 GB 25%
Math StackExchange 2 GB 25%
PACT mix2 28 GB 17%
Math Overflow 200 M 5%
ProofWiki 30 M 2%
PlanetMath 25 M 1%

As demonstrated in table 3, we empirically up-weighted (compared to their token size) parts of
WebMath with high-quality mathematical content while making sure they don’t overfit (despite
running >1 epochs for some of them). We also included PACT mix2 directly in the WebMath
pre-training to avoid having to sequence more than two pre-training phases to prepare Lean models.
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D EXAMPLE OF MINIF2F INPUT, LEAN ENVIRONMENT AND MODEL OUTPUT

We illustrate an example of the interaction between Lean environment and our model. In the figure
shown below, the model has 1 output for each current goal (corresponding to 1 expand budget). The
model could have expand budget bigger than 1, in which case the search procedure becomes a tree.

Figure 5: Input from miniF2F consists of a mathematical statement written in formal language (here
the Lean version) without proof. Lean environment parses the statement and exposes to users the
goal to be proved. The model outputs a line of code (tactics and corresponding arguments). Lean
environment receives the model output and transforms the previous goal to another goal to be proved.
This process is repeated till all remaining goals are closed. In this case, the original statement is
proved: the final proof is collected by following the trajectory of model’s output.

E ILLUSTRATION OF EXPERT ITERATION

Figure 6: Illustration of expert iteration. The notation in this figure corresponds to Section 4.4 in
main text.
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F SYNTHETIC INEQUALITIES

F.1 DESIGN

The generator consists of three phases:

Seed expressions generation The first phase consists in generating seed expressions for which
we track the sign. We start by initializing an expression set E composed of tuples of expressions
and sign constraints, by generating nv variable names (letters) assumed strictly positive as well as
nn integers (for which we know the sign). For NS rounds, we compose elements of E using unary
(log(·), log(1/·), sqrt(·)) or binary operations (+,−,×, /,∧,max,min) for which we can deduce
the sign based on the sign condition of the input expression(s) and re-inject the resulting expression
and sign constraint in E. This produces a set E of signed seed expressions of size nv + nn +NS .

Inequality composition The second phase consists in generating inequalities from well known
inequality theorems (AM-GM, Trivial inequality, Cauchy-Schwarz, Bernoulli, Young, Hölder) taking
as input to these theorems expressions from E based on the sign constraints required for each theorem.
We finally compose these inequalities ND times using compositions theorems detailed in F.2. The
resulting inequality is a composed inequality of depth ND based on nv + nn +NS seed expressions.

Simplification We finally post-process these inequalities so that they are parsable by Lean and run
them through Lean’s simp tactic for a final simplification.

ND and NS together control for the difficulty of the resulting inequality. ND controls depth of
composition, while NS controls for obfuscation as it increases the complexity of the input expressions
to the composed inequalities. When sampling inequalities, we nn = 4 and randomly sample
2 ≤ nv ≤ 8 at each generation. We report below examples of generated inequalities for various
values of ND and NS .

F.2 LIST OF INEQUALITY COMPOSITION THEOREMS

Below is the list of theorem names from mathlib that we use to compose inequalities together. One
third of the time, we only transform the current composed inequality with one of the following
theorems:

• neg_le_neg

• inv_le_inv

• mul_self_le_mul_self

• div_le_one_of_le

We otherwise compose the current composed inequality with a newly generated inequality using the
following theorems:

• mul_le_mul

• add_le_add

• div_le_div

• mul_le_mul_of_nonneg

• le_mul_of_ratio

F.3 EXAMPLES

ND = 0 NS = 0

ND = 0 NS = 4
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Compositions
AmGm a b (67:R) ((1:R)/(10:R)) ((1:R)/(10:R))

((8:R)/(10:R))

Statement

theorem synthetic_ineq_nb_seed_var_0_depth_0_p_1
(a b : R)
(h0 : 0 < a)
(h1 : 0 < b) :
(67:R) ^ ((8:R) / (10:R)) * b ^ (10:R)−¹ *

a ^ (10:R)−¹ ≤ (8:R) / (10:R) * (67:R) +
(10:R)−¹ * a + b * (10:R)−¹ := sorry

Compositions Sqnonneg a ((a) + ((-68:R)))

Statement

theorem synthetic_ineq_nb_seed_var_4_depth_0_p_4
(a b : R)
(h0 : 0 < a)
(h1 : 0 < b) :
(2:R) * (a * (a + -(68:R))) ≤

(a + -(68:R)) ^ 2 + a ^ 2 := sorry

ND = 4 NS = 4

Compositions

AddLeAdd
Bernoulli 99 c
AddLeAdd
SelfDivConst ((a) / (f)) 6
LeMulOfRatio
SelfDivConst c 70
DivLeDiv
Cauchy ((a) / (f)) d c (log (((59:R) + f)))
Young ((a) / (f)) a ((3:R)/(2:R)) ((3:R)/(1:R))

Statement

theorem synthetic_ineq_nb_seed_var_4_depth_4_p_13
(a b c d e f : R)
(h0 : 0 < a)
(h1 : 0 < b)
(h2 : 0 < c)
(h3 : 0 < d)
(h4 : 0 < e)
(h5 : 0 < f) :
(1:R) + (99:R) * c + (a / f / (6:R) + a * (a / f) /

((d ^ 2 + a ^ 2 / f ^ 2) *
(real.log ((59:R) + f) ^ 2 + c ^ 2))) ≤
((a / f) ^ ((3:R) / (2:R)) / ((3:R) / (2:R)) +
a ^ 3 / (3:R)) /
(real.log ((59:R) + f) * d + a / f * c) ^ 2 *
(c / (c / (70:R))) + a / f + (c + (1:R)) ^ 99

:= sorry
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G MINIF2F-CURRICULUM

The 327 statements of miniF2F-curriculum3 are manually formalized from:

• AOPS Books (Lehoczky & Rusczyk, a;b): 302 examples and exercises. The books are
classic problem solving textbooks for students in grades 7-12 preparing for contests such
as AMCs and AIMEs. We skipped problems that were too challenging to formalize due
to missing infrastructure in mathlib or non-suitable format for formalization (see section
Formalization effort and challenges in Zheng et al. (2022)).

• MATH (Hendrycks et al., 2021) dataset: 25 problems. All problems were drawn from the
train split of the dataset, focusing on difficulty 5 problems (miniF2F only contains problems
from the test split).

We verified (based on problem provenance and manual inspection of statements) that miniF2F-
curriculum had an empty intersection with miniF2F-{test, valid}. We refer to Zheng et al. (2022) for
more details on the formalization procedure and the typical time needed for it as these problems were
formalized in similar conditions.

H MODEL SIZE

Other than the single model size we use in the experiment reported in the main text (774m trainable
parameters), we briefly experimented with different model sizes (not reported in this paper) and found
that model size scaling is not as straightforward as in the case of unsupervised learning (Kaplan et al.,
2020). We found that bigger models are better, in the sense that they consistently exhibit higher
pass@1. But, they are also much more expensive to sample from. And despite their pass@1 being
higher, it is often the case that for a fixed amount of compute, sampling more attempts from a smaller
model leads to a better final performance.

For the compute budget we had available, we estimated the model size we used to be a compelling
trade-off. We leave as future work a more thorough study of these dynamics to better understand
the different compute frontiers involved. Indicatively, with our 774m parameters model, running a
full expert iteration to train θfull

9 required about 2000 A100 days of compute. Running one full proof
search (a = 1 d = 512 e = 8) when properly parallelised, requires on average about 0.1 A100 hour
of compute.

3https://github.com/openai/miniF2F/tree/statement_curriculum_learning/lean/src/
statement_curriculum_learning
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I EXAMPLE PROOFS FROM mathlib-train

We present in this section original proofs found by our models from mathlib-train, compared with
their ground-truth version.

comap_eq_of_inverse

Statement

lemma comap_eq_of_inverse {f : filter α} {g : filter β}
{ϕ : α → β} (ψ : β → α) (eq : ψ ◦ ϕ = id)
(hϕ : tendsto ϕ f g) (hψ : tendsto ψ g f) :
comap ϕ g = f :=

Ground-truth

begin
refine ((comap_mono $

map_le_iff_le_comap.1 hψ).trans _).antisymm
(map_le_iff_le_comap.1 hϕ),

rw [comap_comap, eq, comap_id],
exact le_rfl

end

Model proof

begin
refine le_antisymm _ (filter.map_le_iff_le_comap.1 hϕ),
refine λ s hs, _,
rw mem_comap,
use [ψ −¹' s, hψ hs],
rw [← preimage_comp, eq, preimage_id]

end
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sum_range_sub_sum_range

Statement

lemma sum_range_sub_sum_range {α : Type*}
[add_comm_group α] {f : N → α} {n m : N}
(hnm : n ≤ m) :∑

k in range m, f k -
∑

k in range n, f k =∑
k in (range m).filter (λ k, n ≤ k), f k :=

Ground-truth

begin
rw [← sum_sdiff (@filter_subset _ (λ k, n ≤ k) _

(range m)), sub_eq_iff_eq_add,
← eq_sub_iff_add_eq, add_sub_cancel'],

refine finset.sum_congr
(finset.ext $ λ a, 〈λ h, by simp at *; finish,
λ h, have ham : a < m :=

lt_of_lt_of_le (mem_range.1 h) hnm,
by simp * at *〉)

(λ _ _, rfl)
end

Model proof

begin
rw [← sum_Ico_eq_sub _ hnm],
congr,
apply finset.ext,
simp [Ico.mem, *],
tauto

end

21



Published as a conference paper at ICLR 2023

prod_inv_distrib

Statement
lemma prod_inv_distrib : (

∏
x in s, (f x)−¹) =

(
∏

x in s, f x)−¹ :=

Ground-truth

begin
classical,
by_cases h : ∃ x ∈ s, f x = 0,
{ simpa [prod_eq_zero_iff.mpr h, prod_eq_zero_iff]

using h },
{ push_neg at h,

have h' := prod_ne_zero_iff.mpr h,
have hf : ∀ x ∈ s, (f x)−¹ * f x = 1 := λ x hx,
inv_mul_cancel (h x hx),
apply mul_right_cancel' h',
simp [h, h', ← finset.prod_mul_distrib,
prod_congr rfl hf] }

end

Model proof

begin
classical; induction s using

finset.induction_on with a s has ih,
{ simp, },
simp only [has, prod_insert has, mul_inv_rev'],
finish

end
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J EXAMPLE PROOFS FROM miniF2F-{test, valid, curriculum}

We present in this section proofs found by our models from miniF2F-{test, valid, curriculum},
demonstrating some of the capabilities emerging from our training procedure.

J.1 QUALITATIVE ANALYSIS OF PROOFS

We provide qualitative insights in the nature of the proofs found by our models, which we believe
are useful to build a better intuition of their capabilities beyond pass rate numbers. Throughout this
section, we refer to statements and solutions found by our models that are presented in Appendix J
along with comments describing the specificity of each proof.

First, we observe that a large number of olympiad problems that are designed to be computationally
challenging for humans are rendered trivial for our models through the use of Lean tactics. As an
example, mathd_numbertheory_447 which is not necessarily considered straightforward for humans,
can be closed in Lean by a simple refl (proof found by our models).

In recent years, Lean’s mathlib community has developed high-powered tactics such as
linarith/nlinarith (solves (non)linear inequalities), norm_num (normalizes numerical expres-
sions), simp (simplifies goals and hypotheses) and ring (normalizes expressions in a ring). These
tactics can be used with arguments to guide their underlying search procedure. As mentioned in
Zheng et al. (2022), we confirm here that our models acquire advanced capabilities to leverage these
high-level tactics by providing exogenous arguments which are not present in the current tactic
state. The generation of these exogenous arguments through language modeling seems to require a
non-trivial amount of mathematical intuition. imo_1964_p2, imo_1961_p1 and aime_1990_p15 are
good examples of such uses.

We have also observed a number of proofs that require multiple non-trivial reasoning steps through the
use of lower-level tactics such as use, have, or by_cases that generally involve producing a witness or
chaining implications, requiring the generation of context specific exogenous terms. These interesting
reasoning steps are structurally different from simple normalization, simplification and rewriting
of hypotheses or goals because they heavily rely on our models ability to generate meaningful
cuts or witnesses. This capability is, in our opinion, the most exciting stepping stone towards
solving more challenging mathematical problems. See, aopsbook_v2_c8_ex1, amc12b_2020_p6
and mathd_train_algebra_217 for examples of such proofs.

More generally, we also observe that proofs generated by our models have a distinctive style compared
to proofs formalized by humans. This stems in part from the model’s capability to leverage high-level
tactics in a way that is challenging for humans as discussed in this section (e.g. one-liners such
as nlinarith [sq_nonneg (x - y), sq_nonneg (y - z)] where humans would generally
decompose the problem in a less machine-like way). Additionally, as a result of our search procedure
and despite the bias towards shorter proofs introduced by our value function, extraneous proofsteps
(such as reversion/introduction of hypotheses, or no-op rewrites) are often interleaved with useful
ones, which rarely happens in human formalizations.
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imo_1961_p1

Natural language

Solve the system of equations:

x+ y + z = a

x2 + y2 + z2 = b2

xy = z2

where a and b are constants. Give the conditions that a and b must satisfy so
that x, y, z (the solutions of the system) are distinct positive numbers. Note: the
formalized statement in miniF2F is a weaker problem as it focuses on the second
part of the question, providing the actual conditions, and asking for a proof that the
requirement entails them.

Model proof

theorem imo_1961_p1
(x y z a b : R)
(h0 : 0 < x ∧ 0 < y ∧ 0 < z)
(h1 : x ̸= y)
(h2 : y ̸= z)
(h3 : z ̸= x)
(h4 : x + y + z = a)
(h5 : x^2 + y^2 + z^2 = b^2)
(h6 : x * y = z^2) :
0 < a ∧ b^2 < a^2 ∧ a^2 < 3 * b^2 :=

begin
revert_all,
intros,
rw mul_comm,
split,
{ nlinarith [sq_nonneg (x - y), sq_nonneg (y - z)], },
split,
{ nlinarith [sq_nonneg (z - 1)], },
revert h3 h4,
field_simp [mul_comm a b],
rw [mul_comm, ← h5],
contrapose!,
rw mul_comm at h6,
rw mul_comm,
intro h,
nlinarith [sq_nonneg (x - y), sq_nonneg (y - z)]

end

Comments

The model is able to close this problem by splitting into cases, contraposing for the
last case and using nlinarith. It must be noted that the arguments for the first two
nlinarith uses are not necessary, however the [sq_nonneg (x - y), sq_nonneg
(y - z)] argument provided on the last line is crucial to close the goal and are
completely exogenous (present in no form in the tactic state before).
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imo_1964_p2

Natural language

Suppose a, b, c are the sides of a triangle. Prove that

a2(b+ c− a) + b2(c+ a− b) + c2(a+ b− c) ≤ 3abc

Model proof

theorem imo_1964_p2
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
a^2 * (b + c - a) + b^2 * (c + a - b) + c^2 *

(a + b - c) ≤ 3 * a * b * c :=
begin

nlinarith [sq_nonneg (b - a), sq_nonneg (c - b),
sq_nonneg (a - c), sq_nonneg (c - a)]

end

Comments

The model is able to close an IMO problem in one-line. It correctly provides
exogenous arguments to nlinarith, which are necessary to close the goal. Note
that either one of the last two arguments in the sequence [sq_nonneg (b - a),
sq_nonneg (c - b), sq_nonneg (a - c), sq_nonneg (c - a)] can be omitted.
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aime_1990_p15

Natural language

Find ax5 + by5 if the real numbers a, b, x, and y satisfy the equations

ax+ by = 3,

ax2 + by2 = 7,

ax3 + by3 = 16,

ax4 + by4 = 42.

Note: the formalized statement in miniF2F provides the answer and asks for a proof
of it.

Model proof

theorem aime_1990_p15
(a b x y : R)
(h0 : a * x + b * y = 3)
(h1 : a * x^2 + b * y^2 = 7)
(h2 : a * x^3 + b * y^3 = 16)
(h3 : a * x^4 + b * y^4 = 42) :
a * x^5 + b * y^5 = 20 :=

begin
revert_all,
intros a b x y h3 h1 h2 h4,
ring_nf at h1 h2,
rw ← sub_eq_zero at h1,
nlinarith [sq_nonneg (x - y), sq_nonneg (a + b - 2),

sq_nonneg (x + y - (2:R)), sq_nonneg (a - b - 2)]
end

Comments

The model is able to close a challenging AIME problem by providing crucial ex-
ogenous arguments sq_nonneg (x - y) and sq_nonneg (x + y - (2 : R))
to nlinarith, which are required to close the goal (while the other two can be
removed).
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mathd_train_algebra_217

Natural language
Let f(x) = Ax+B and g(x) = Bx+A, where A ̸= B.
If f(g(x))− g(f(x)) = B −A, what is A+B? Note: the formalized statement in
our curriculum provides the answer and asks for a proof of it.

Model proof

theorem mathd_train_algebra_217
(a b : R)
(f g : R → R)
(h0 : ∀ x, f x = a * x + b)
(h1 : ∀ x, f x = b * x + a)
(h2 : a ̸= b)
(h3 : ∀ x, f (g x) - g (f x) = b - a) :
a + b = 0 :=

begin
revert_all,
intros a b,
intros f g,
contrapose!,
rintro 〈h0, 〈h1, h2〉〉,
use (0 : R),
simp only [sub_eq_iff_eq_add, h0, mul_zero] at *,
simp only [*, zero_add],
norm_num at h0

end

Comments

The model is able to close the goal by contraposing, supplying a witness by the
use of use (0 : R) and finally leveraging the simp and norm_num. This example
demonstrates the model’s ability to chain multiple non-trivial steps of reasoning
including the generation of witnesses.
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amc12b_2020_p6

Natural language

For all integers n ≥ 9, the value of

(n+ 2)!− (n+ 1)!

n!

is always which of the following?
(A) a multiple of 4 (B) a multiple of 10 (C) a prime number
(D) a perfect square (E) a perfect cube.

Model proof

theorem amc12b_2020_p6
(n : N)
(h0 : 9 ≤ n) :
∃ x : N, (x:R)^2 = (nat.factorial (n + 2) -

nat.factorial (n + 1)) / nat.factorial n :=
begin

revert_all,
intros n hn,
use n + 1,
field_simp [nat.factorial_ne_zero, pow_succ'],
ring_exp

end

Comments
The model exhibits here its ability to implicitly interpret factorial expressions by
guessing the correct answer with the use of use n + 1 and straightforwardly proving
its claim right after.
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mathd_algebra_140

Natural language
The expression 24x2 − 19x− 35 can be written as (Ax− 5)(2Bx+ C), where A,
B, and C are positive numbers. Find AB − 3C. Note: the formalized statement in
miniF2F provides the answer and asks for a proof of it.

Model proof

theorem mathd_algebra_140
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : ∀ x, 24 * x^2 - 19 * x - 35 =

(((a * x) - 5) * ((2 * (b * x)) + c))) :
a * b - 3 * c = -9 :=

begin
revert_all,
rintro a b c h1,
rw mul_comm,
rw ←sub_eq_zero,
field_simp,
rw sub_eq_add_neg,
rw ← eq_neg_iff_add_eq_zero,
rw [mul_comm, ← sub_eq_add_neg, sub_eq_add_neg,
← sub_eq_add_neg],
rw ←sub_eq_zero,
simp only [mul_add, neg_mul_eq_neg_mul_symm, mul_comm,
add_left_comm],
norm_num,
simp only [pow_two],
intro h0,
rw ← sub_eq_zero,
linarith [h1.2, h1.1, h0 3, h0 1, h0 2]

end

Comments

The model mostly "struggles" to make progress up to the last line. There, it presents
us with the idea to specialize the statement given in h1 (which became h0 in the
process of the proof) at three consecutive natural numbers 1, 2, 3 which closes the
goal with nlinarith. This proof is interesting as it demonstrates the model’s ability
to evaluate symbolic expressions implicitly.
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aime_1984_p1

Natural language
Find the value of a2 + a4 + a6 + a8 + . . .+ a98 if a1, a2, a3 . . . is an arithmetic
progression with common difference 1, and a1 + a2 + a3 + . . .+ a98 = 137. Note:
the formalized statement in miniF2F provides the answer and asks for a proof of it.

Model proof

theorem aime_1984_p1
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 :

∑
k in finset.range 98, u k.succ = 137) :∑

k in finset.range 49, u (2 * k.succ) = 93 :=
begin

revert_all,
simp [finset.sum_range_succ],
ring,
simp [pow_succ, mul_comm, add_left_comm, add_assoc],
simp [two_mul],
rintro p,
revert p,
simp [add_comm],
intros p hp,
simp [hp], ring_nf,
intros,
nlinarith

end

Comments
The model finds a rather short proof of the statement compared to typ-
ical human formalizations (see https://gist.github.com/MantasBaksys/
3efd5c0d42f440d16c09076db42822f2).
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aopsbook_v2_c8_ex1

Natural language Consider the sequence { n
n+1

} = 1
2

, 2
3

, 3
4

, ...
Prove that this sequence tends to 1 as n→ ∞

Model proof

theorem aopsbook_v2_c8_ex1
(u : N → R)
(h0 : ∀ n, u n = n / (n + 1)) :
filter.tendsto u filter.at_top (N 1) :=

begin
revert_all,
simp [← nnreal.coe_one],
norm_cast,
intros,
revert h0,
assume h,
simp [tendsto_const_nhds, ← nnreal.coe_one, h],
revert u,
assume f,
norm_num,
rw tendsto_iff_norm_tendsto_zero,
assume H,
convert tendsto_norm_zero.comp

tendsto_one_div_add_at_top_nhds_0_nat,
funext n,
have h0 : (((n:R) + 1) : R) ̸= 0,
{ norm_cast, exact n.succ_ne_zero, },
rw H,
field_simp [h0, norm_neg],
ring,
rw [← sub_eq_zero],
simp [← sub_eq_zero],
simp [sub_eq_add_neg],

end

Comments
An interesting example of a generated have statement, denoted by h0, which is
introduced as a cut in order to simplify the expression containing divisions by using
field_simp[h0, norm_neg] at a later step.

mathd_numbertheory_447

Natural language What is the sum of the units digits of all the multiples of 3 between 0 and 50? Note:
the formalized statement in miniF2F provides the answer and asks for a proof of it.

Model proof

theorem mathd_numbertheory_447 :∑
k in finset.filter (λ x, 3|x)

(finset.erase (finset.range 50) 0), (k % 10) = 78 :=
begin

refl
end

Comments
Because the predicate λ x, 3|x is registered as decidable over N, we can state the
problem by using finset.filter, which is computable. Hence, refl is able to
close the goal.
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