
Embedding Convolutions for Short Text Extreme Classification with
Millions of Labels

Anonymous ACL submission

Abstract

Automatic annotation of short-text data to a001
large number of target labels, referred to as002
Short Text Extreme Classification, has found003
numerous applications including prediction of004
related searches and product recommendation005
tasks. In this paper, we propose a convolutional006
architecture INCEPTIONXML which is light-007
weight, yet powerful, and robust to the inherent008
lack of word-order in short-text queries encoun-009
tered in search and recommendation tasks. We010
demonstrate the efficacy of applying convolu-011
tions by recasting the operation along the em-012
bedding dimension instead of the word dimen-013
sion as done in conventional usage of CNNs for014
text classification. Towards scaling our model015
to problems with millions of labels, we also pro-016
pose INCEPTIONXML+ framework. This ad-017
dresses the shortcomings of the dynamic hard-018
negative mining framework in the recently pro-019
posed LIGHTXML by improving the alignment020
between the label-shortlister and extreme clas-021
sifier. INCEPTIONXML+ is not only smaller022
than state-of-the-art deep extreme classifier,023
ASTEC, in terms of model size but also sig-024
nificantly outperforms it on popular benchmark025
datasets. For reproducibility, the code is made026
available with this submission.027

1 Introduction028

Extreme Multi-label Classification (XML) in-029

volves classifying instances into a set of most rel-030

evant labels from an extremely large (on the or-031

der of millions) set of all possible labels. For032

scenarios when the input instances are short text033

queries, many successful applications of the XML034

framework have been found in ranking and rec-035

ommendation tasks such as prediction of Related036

Search on search engines (Jain et al., 2019), sug-037

gestion of query phrases corresponding to short038

textual description of products on e-stores (Chang039

et al., 2020) and product-to-product recommenda-040

tion (Dahiya et al., 2021a; Chang et al., 2021).041

Technical difficulties in XML: The XML task has 042

two primary challenges: (i) extremely large number 043

of possible labels which leads to both memory and 044

computational bottleneck, and (ii) a large fraction 045

of these being tail labels paired with a handful of 046

positive samples (Jain et al., 2016) which makes it 047

hard for the extreme classifier to learn rich repre- 048

sentations for these tail labels. 049

Additional challenges from short-text queries: 050

The above problems are exacerbated further as : 051

(i) unlike documents, most short text queries are 052

sparse and contain very few words and (ii) are typi- 053

cally plagued with noise and non-standard phrases 054

which do not always observe the syntax of a writ- 055

ten language (Tayal et al., 2020). Therefore, short 056

texts give rise to a significant amount of ambiguity, 057

making it hard to learn meaningful representations 058

(Wang and Wang, 2016). 059

InceptionXML: To address the above, in this 060

paper, we (i) develop INCEPTIONXML, a light- 061

weight CNN-based encoder, which goes against 062

the traditional paradigm (Kim, 2014; Liu et al., 063

2017) of convolving over the words dimension in 064

favor of the embedding dimension, (ii) propose 065

an embedding-enhancement module that projects 066

the input to a word-order agnostic representation 067

making our approach more robust to lack of struc- 068

ture in short-text queries, (iii) develop INCEP- 069

TIONXML+ to overcome the shortcomings of 070

the dynamic hard-negative mining framework pro- 071

posed in LIGHTXML (Jiang et al., 2021) by bring- 072

ing the label-shortlisting task closer to the extreme 073

classification task and scale our model to millions 074

of labels, (iv) further the state-of-the-art on popular 075

benchmarks by an average of 5% and 8% on P@K 076

and propensity-scored P@K metrics respectively. 077

By balancing model complexity against com- 078

putational complexity, INCEPTIONXML+ finds 079

the sweet-spot between the two extreme ends of 080

modern deep extreme classification pipelines. On 081

one end exist the pre-trained transformer-based en- 082

1

coders (Jiang et al., 2021; Ye et al., 2020; Chang083

et al., 2020) that treat XML as a down-stream task,084

and as a result become unscalable to millions of085

labels due to their compute requirements. On the086

other end, are those which are built on under-fitting087

frugal architectures such as ASTEC (Dahiya et al.,088

2021b), and hence sacrifice accuracy to achieve089

scalability to millions of labels.090

As the real-world use cases of extreme classifica-091

tion require very fast inference times and low mem-092

ory loads, the deployment of large transformer-093

based architectures as in LIGHTXML (Jiang et al.,094

2021) leads to slower training and inference, mak-095

ing them an overkill for the task at hand. We show096

that replacing the transformer encoder with our097

lightweight CNN-based encoder, combined with098

further improvements to dynamic hard-negative099

mining technique leads to better prediction perfor-100

mance apart from faster training and the ability to101

scale to millions of labels. Also, by employing102

a much richer architecture in comparison to the103

frugal ASTEC model, we show that a single INCEP-104

TIONXML model can even outperform an ensem-105

ble of three ASTEC learners on publicly available106

datasets by as much as 10% on P@k metrics.107

2 Related Work108

Extreme Classification: The focus of a majority109

of initial works in this domain has been on de-110

signing one-vs-rest (Babbar and Schölkopf, 2017),111

tree-based (Jain et al., 2016; Prabhu et al., 2018;112

Chalkidis et al., 2019; Khandagale et al., 2020) or113

label embedding based (Bhatia et al., 2015) classi-114

fiers with fixed features in the form of bag-of-words115

representation.116

With advances in deep learning techniques117

which jointly learn the suitable feature representa-118

tion and the final classifier, recent techniques based119

on attention mechanism (You et al., 2019) and pre-120

trained transformer models (Chang et al., 2020; Ye121

et al., 2020; Jiang et al., 2021; Yu et al., 2020) have122

recently shown great promise. Previous advances123

in the domain using CNNs have also been made.124

While (Wang et al., 2017) extended (Kim, 2014)125

for short text classification, (Liu et al., 2017) built126

upon the same for extreme classification.127

Short-text Extreme Classification: In tasks where128

the inputs are short text queries, there has been a129

slew of works lately on designing deep extreme130

classifiers specialized to solve the problem. These131

include ASTEC (Dahiya et al., 2021b), DECAF132

(Mittal et al., 2021a), GALAXC, ECLARE (Mittal 133

et al., 2021b), and SIAMESEXML (Dahiya et al., 134

2021a). Based on the availability of label meta- 135

data, these can be divided into two categories: (i) 136

ones which make no assumptions regarding label 137

text, i.e., labels are numeric identifiers, and (ii) 138

others which assume that the labels are endowed 139

with clean label text. While ASTEC and INCEP- 140

TIONXML belong to the first category, the rest of 141

the above mentioned algorithms identify with the 142

second. Even though the additional label meta-data 143

is useful, it is known for only a small subset of all 144

labels. For instance, on AmazonTitles-3M, label 145

text is available only for 1.3 million labels. On 146

the other hand, the former problem setup, which is 147

the focus of this work, makes no assumption about 148

label-text, and hence is a harder, more general and 149

widely applicable problem. 150

Drawbacks of conventional CNNs in short-text 151

classification: Traditionally, in the usage of CNNs 152

over words in text classification, the intent is to 153

capture the occurrences of n-grams for represen- 154

tation learning (Kim, 2014; Liu et al., 2017). We 155

argue that this formulation is unsuitable for short- 156

text classification problems due to (i) the implicit 157

but incorrect assumption of proper word-ordering 158

in short-text queries (Wang and Wang, 2016), and 159

(ii) as explained next, the much smaller sequence 160

length that restricts the effectiveness of convolution 161

in CNNs over the inputs. 162

In the datasets derived from Wikipedia titles, 163

98% documents have 8 or less words, while 82% 164

have 4 words or less (Table: 4 in Appendix). More- 165

over, 70% of the instances in AmazonTitles-670K 166

consist of 8 words or less (Figure: 5). This makes 167

the convolutional filters spanning over 4-8 words 168

in Kim (2014); Liu et al. (2017); Wang et al. (2017) 169

behave analogously to a weak fully connected layer 170

with very few hidden units, and hence leading to 171

feature maps with very few activations which are 172

sub-optimal for representation learning. 173

3 Embedding Convolutions 174

On looking closely at short-text queries, one can 175

infer that the presence of a word in a query is more 176

important than its exact position for extreme classi- 177

fication tasks. For example, the queries “best wire- 178

less headphones 2021" and “2021 best headphones 179

wireless" (both of which are common in real-world 180

scenarios) should result in similar search results on 181

an e-commerce website (Tayal et al., 2020). 182

2

Figure 1: INCEPTIONXML: Model Architecture. The convolution filters on the input data span only a subset of
adjacent dimensions in the word embeddings while covering all the input tokens (‘who let the dogs out’). The
Embedding-enhancement module (‘EM-module’) is shown in detail with its orthogonal self-attention layers followed
by a projection layer.

In the context of the aforementioned problems,183

we hypothesize and empirically demonstrate the184

suitability of using CNNs to convolve over the em-185

bedding dimensions of the inputs instead of the186

word dimensions for short-text queries.187

Embedding Convolutions, by convolving over em-188

beddings in a stacked setting, enable the model to189

detect correlations or “coupled semantics” between190

different dimensions in the embedding space by191

processing a limited subset of semantics at a time.192

As compared to traditional convolutional operation,193

embedding convolutions create significantly larger194

and enriched activation maps for the same inputs,195

while requiring significantly lesser parameters by196

using smaller filters of size RS×16, where S is the197

maximum sequence length of the input. We show198

empirically that this modified approach works well199

for both short as well as medium queries of up200

to 32 words, significantly outperforming conven-201

tional CNN-based approaches (Liu et al., 2017;202

Kim, 2014) for short-text XML task.203

As some readers might rightfully argue, pre-204

trained word embeddings are typically not trained205

with any incentive for localizing semantic informa-206

tion in the embedding dimension. This means that207

the coupled semantics that our model tries to detect208

may initially occur across spatial distances that are209

too large for the convolution kernel to detect. To210

solve this problem, we process the stacked word211

embeddings with self-attention based embedding212

enhancement module before applying embedding213

convolutions. This lets information flow across214

every pair of semantics irrespective of the spatial215

distance between them, increasing our convolu-216

tional feature extractor’s effective receptive field217

and enabling it to detect the coupled semantics.218

4 Proposed Model - InceptionXML 219

Problem Setup : Given a training set {xi, yi}Ni=1, 220

the input instance xi represents a short-text query, 221

and the corresponding label set is yi ∈ {0, 1}L 222

where L denotes the total number of labels. It may 223

be noted that even though L ∼ 106, an instance is 224

annotated only with a few (Table 4 in Appendix) 225

positive labels. The goal is to learn a classifier 226

which, for a novel test instance x, predicts the top-k 227

labels towards better precision@k and propensity- 228

scored precision@k (Bhatia et al., 2016). 229

Towards this goal, the main body of our encoder, 230

shown in Figure 1, consists of three modules that 231

are applied sequentially on the word embeddings. 232

These are (i) an embedding enhancement module, 233

(ii) embedding convolution layers and (iii) an ex- 234

treme linear classifier. 235

4.1 Embeddings 236

As inputs to our model, we stack the word embed- 237

dings sequentially. The word embeddings are ini- 238

tialized with d-dimensional pre-trained GloVe em- 239

beddings (Pennington et al., 2014) where d = 300. 240

Embeddings of words that do not exist in GloVe are 241

initialized with a random vector sampled from the 242

uniform distribution U(−0.25, 0.25). With NLTK 243

for tokenization, we use white space separated pre- 244

processing function and remove the stop words and 245

punctuation from the raw data (Liu et al., 2017). 246

4.2 Embedding Enhancement Module 247

This module enhances the initially stacked word 248

embeddings lacking structure and contextual in- 249

formation, and make it word order agnostic. The 250

module consists of two orthogonal self-attention 251

layers applied sequentially on the word and the em- 252

3

bedding dimensions followed by a projection layer,253

effectively encoding global information both, on a254

word-level and on a semantic-level (Figure 4).255

We use the SimpleSelfAttention (Doria, 2019)256

variant of self-attention in our model, which is a257

simplification of the corresponding operation de-258

scribed in Zhang et al. (2019). For the key and259

query matrices X and Y respectively, this is given260

by the function G(·, ·) as follows :261

G(X,Y) = γ · (XY T) · f(X) +X262

The equivalent of the value matrix from Zhang263

et al. (2019) is represented by f(X) where f(·)264

is a convolution layer and γ is a learnable scalar265

parameter. The sequential attention formulation in266

our embedding enhancement module is given by:267

SAwords = G(E(x), E(x)) ∈ RS×d268

SAembs = G(SAT
words, E(x)T)T ∈ RS×d269

where E(x) denotes the stacked word embeddings270

for a sample text input x such that E(x) ∈ RS×d.271

Finally, each dimension of the intermediate embed-272

dings SAembs is then projected to a p-dimensional273

space where p = 32 to obtain the final enhanced274

embeddings SAout where SAout ∈ Rp×d. The in-275

formation flow across the embeddings in this mod-276

ule followed by per-dimension projection makes277

SAout independent of the word order in short-text278

queries and makes our model more robust to their279

lack of structure.280

4.3 Embedding Convolution Layers281

We employ three parallel branches of one-282

dimensional convolution layers Vi, i ∈ [1, 2, 3]283

with filter sizes of wi where wi ∈ [4, 8, 16] each284

with a stride of 4 along the embedding dimension285

and p output channels. Let hwi be the result of ap-286

plying Vi over SAout. We concatenate all resultant287

hwi row-wise before passing them to the next layer.288

hwi = Vi ∗ SAout289

hf = Vf ∗ [hw1 , hw2 , hw3]290

A final embedding convolutional layer Vf with ker-291

nel size of 16 and stride 4 is applied on the con-292

catenated feature map, which is further flattened to293

form the final feature representation hf . This for-294

mulation allows Vf to have an effective receptive295

field spanning 1/4th of the enhanced embeddings,296

further obviating the locality constraints of CNNs297

as highlighted in section 3.298

4.4 Extreme Linear Classifier 299

The first layer R transforms the feature map from 300

the encoder with a skip-connection while keeping 301

the dimensions same. The next linear layer W has 302

one-vs-all classifiers for each label in the dataset 303

which projects the features to the label space. 304

g = relu(R · hf) + hf 305

ŷ = σ(W · g) 306

Loss: We use the binary cross entropy loss to 307

train our model. Here y ∈ {0, 1}L represents the 308

ground-truth multi-hot encoded targets and ŷ are 309

the model predictions. 310

BCE(y, ŷ) = −
∑
j∈L

(1−yj) log(1−ŷj)+yj log(ŷj) 311

5 InceptionXML+ Framework 312

INCEPTIONXML described previously scales to 313

datasets with hundreds of thousands of labels. How- 314

ever, scaling up to millions of labels in its existing 315

form is difficult as the loss computation in equa- 316

tion above involves calculation of loss over all L 317

labels, a very large majority of which are negative 318

labels for a given instance. We, thus, propose a 319

scalable extension to our encoder, called INCEP- 320

TIONXML+, in which the loss is computed over 321

only for the hardest negative labels. 322

Hard Negative-Mining of Labels: While tech- 323

niques have been studied for efficient hard-negative 324

label mining under fixed representation of data 325

points (Jain et al., 2019; Dahiya et al., 2021b), 326

only recent algorithms (Jiang et al., 2021) have 327

come up with dynamic hard negative-mining tech- 328

niques. For this work, we improve upon the more 329

recent dynamic hard negative-mining strategy to 330

develop an end-to-end trainable framework INCEP- 331

TIONXML+. Following the approach popularized 332

by these recent methods, our model makes predic- 333

tions in two stages: (i) shortlisting K label-clusters 334

or “meta-labels" using a meta-classifier, and (ii) 335

employing a computationally feasible number of 336

one-vs-all classifiers corresponding to the labels 337

included in the shortlisted clusters to get the final 338

predicted labels and perform backpropagation. 339

Label Clustering To perform label clustering, we 340

construct Probabilistic Label Tree (PLT) using 341

the labels’ Positive Instance Feature Aggregation 342

(PIFA) representation over sparse BOW features 343

of their training samples as done in (Jiang et al., 344

2021; Chang et al., 2020). More specifically, we 345

4

use balanced 2-means clustering to recursively par-346

tition the label set until we have a mapping C from347

L labels to L′ clusters where L′ ≪ L (Table:4 in348

Appendix shows values for L′).349

Drawbacks of LIGHTXML framework: When350

scaling our model using dynamic hard-negative351

mining as done in LIGHTXML (Jiang et al., 2021),352

we noticed that the performance of our encoder353

is bottlenecked by a poorly performing meta-354

classifier. From the training metrics (in Fig: 2),355

we see a smooth increment in the P@1 values for356

the extreme classifier (dashed blue) while the meta-357

classifier is unable to catch-up (dashed red). This358

indicates that these two sub-tasks are not aligned359

well enough for the encoder to learn suitable com-360

mon representations that work well simultaneously361

for both the sub-tasks. Our observations also indi-362

cate the fact that the extreme task is easier to learn363

on shortlisted labels than the meta-task on label364

clusters, and the model tends to learn representa-365

tions that benefit the extreme task at the expense of366

the meta-task.367

We make key changes to the dynamic hard-negative368

mining framework in accordance with these obser-369

vations. These changes can be broadly grouped into370

two sets. The first set of changes consist of archi-371

tectural changes meant to bring the two tasks closer372

in order to enable the encoder to learn better com-373

mon representations. In the second set of changes,374

we make modifications to the training loop in or-375

der to force the encoder to learn representations376

that improve the performance of the meta-classifier377

while not compromising on the performance of the378

extreme task.379

0 10 20 30 40
0

20

40

60

80

100

Epochs

Tr
ai

ni
ng

P@
1

LightXML extreme
LightXML meta
InceptionXML+ extreme
InceptionXML+ meta

Figure 2: Progress of training (Precision@1) for the
extreme and meta-classifier of LIGHTXML and INCEP-
TIONXML+ framework for AmazonTitles-670K

5.1 Decoupled Architecture 380

To bring the two prediction tasks closer, we 381

give them similar structures by adding a linear 382

layer with a residual connection before the meta- 383

classifier. 384

gm = relu(Rm · hf) + hf 385

ŷm = σ(Wm · gm) 386

Ŝ = C−1(topK(ŷm, k)) 387

We create a shortlist Ŝ of all the labels in the top 388

K label clusters as predicted by the meta-classifier 389

using a label cluster to label mapping C−1. The 390

extreme classifier then predicts the probability of 391

the query belonging to only these shortlisted labels, 392

instead of all L labels. 393

ge = relu(Re · hf) + hf 394

ŷe,l = σ(We,l · ge), ∀l ∈ Ŝ 395

Architectural similarity of branches alone doesn’t 396

ensure strong common representation learning. To 397

help the encoder learn suitable common represen- 398

tations, we further bring the two branches closer 399

by (i) increasing the fan out of label clustering, and 400

(ii) adding spectral norm to the penultimate linear 401

layers in both heads. Increasing the fan out of la- 402

bel clustering brings the meta-task closer to the 403

extreme-task by increasing the “extremeness" of 404

the meta-task. Addition of spectral normalization 405

prevents the weights of the hidden layers of both 406

task heads from drifting too far from each other 407

(Dahiya et al., 2021b). Not only does this heav- 408

ily improve upon the original implementation of 409

dynamic negative-hard mining framework as pro- 410

posed in (Jiang et al., 2021), but also inherently 411

combines the task of the two stages of the Deep- 412

XML pipeline into an end-to-end trainable model. 413

Even though we observe substantial gains from 414

increasing the fan out, this comes at the cost of 415

making the meta-classifier heavier. So, in practice 416

we aim to strike a balance (Table:2) between num- 417

ber of clusters and model efficiency for non-trivial 418

gains in accuracy. 419

5.2 Detached Training 420

To force the encoder to learn representations ben- 421

efiting the meta-task, we detach i.e. stop the flow 422

of gradients from the extreme classifier head to 423

the encoder (Algorithm 1), for the initial 1/4-th 424

of the training loop. This results in shortlisting 425

of harder negative labels for the extreme classifier 426

5

to learn during training time and ensuring higher427

recall during inference time.428

Detaching instead of simply removing the ex-429

treme classification head has the advantage of430

training the layers in this head. This keeps it in431

sync with the changing encoder representations432

without allowing it to affect the training of the433

meta-classifier. This setting is possible because434

of the spectral norm (refer Figure 1) applied to the435

weights of the penultimate layers in both the heads436

which ensures that the encoder learnt for the meta-437

task remains relevant for the extreme task when its438

gradients are re-attached.439

Loss: As with INCEPTIONXML, we use BCE loss440

for training. The losses for the meta-classifier and441

the extreme classifier are given by:442

Lmeta = BCE(ym , ŷm),443

Lext = BCE(ye,l , ŷe,l) ∀l ∈ Ŝ.444

The final loss for back-propagation is the sum of445

the above i.e. L = Lmeta + Lext. For prediction,446

the final ranking is produced by using the logits447

of the extreme classifier. The complete training448

algorithm for INCEPTIONXML+ is given below

Algorithm 1: Training algorithm for INCEPTIONXML+

449 1 for epoch in (1, epochs):450
2 for x, y in data:451
3 z = E(x)452
4 h = encoder(z)453
5 y_meta = meta_classifier(h)454
6 y_cluster = label_to_cluster(y)455
7 meta_loss = bce(y_meta, y_cluster)456
8457
9 # shortlisting top K clusters458

10 top_k = get_top_K_clusters(y_meta, k)459
11 candidates = cluster_to_label(top_k)460
12 # add missing positive labels461
13 candidates = add_missing(candidates,y)462
14463
15 # detached training464
16 if epoch <= epochs/4:465
17 h = h.detach()466
18 y_ext = ext_classifier(h, candidates)467
19 ext_loss = bce(y_ext, y, candidates)468
20 loss = meta_loss + ext_loss469
21 loss.backward()470
22471
23 # gradient descent472
24 update(E, encoder, meta_classifier,473

ext_classifier)474
475

476

6 Experiments477

Datasets: We evaluate the proposed INCEP-478

TIONXML(+) frameworks on 4 publicly available479

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

AmazonTitles-670K

INCEPTIONXML+ 41.48 37.49 34.60 26.78 30.15 33.31
INCEPTIONXML 41.83 37.46 34.10 28.17 30.98 33.28

ASTEC 39.97 35.73 32.59 27.59 29.79 31.71
ASTEC-3 40.63 36.22 33.00 28.07 30.17 32.07

LIGHTXML 41.55 37.31 34.10 25.23 28.79 31.92
APLC-XLNET 34.55 30.58 27.49 19.82 22.22 24.19

ATTENTIONXML 37.92 33.73 30.57 24.24 26.43 28.39
XML-CNN 35.02 31.37 28.45 21.99 24.93 26.84

DISMEC 38.12 34.03 31.15 22.26 25.45 28.67
PARABEL 38.00 33.54 30.10 23.10 25.57 27.61
BONSAI 38.46 33.91 30.53 23.62 26.19 28.41
MACH 34.92 31.18 28.56 20.56 23.14 25.79

WikiSeeAlsoTitles-350K

INCEPTIONXML+ 20.51 14.85 11.79 10.11 12.45 14.44
INCEPTIONXML 21.50 15.18 11.98 10.90 13.04 14.93

ASTEC 20.42 14.44 11.39 9.83 12.05 13.94
ASTEC-3 20.61 14.58 11.49 9.91 12.16 14.04

LIGHTXML 20.18 13.59 10.54 8.52 10.04 11.53
APLC-XLNET 19.80 13.80 10.86 7.29 9.31 11.01

ATTENTIONXML 15.86 10.43 8.01 6.39 7.20 8.15
XML-CNN 17.75 12.34 9.73 8.24 9.72 11.15

DISMEC 16.61 11.57 9.14 7.48 9.19 10.74
PARABEL 17.24 11.61 8.92 7.56 8.83 9.96
BONSAI 17.95 12.27 9.56 8.16 9.68 11.07
MACH 14.79 9.57 7.13 6.45 7.02 7.54

WikiTitles-500K

INCEPTIONXML+ 44.93 30.85 22.01 18.81 20.55 21.07
INCEPTIONXML 47.28 27.14 19.39 20.79 21.01 21.17

ASTEC 46.01 25.62 18.18 18.62 18.59 18.95
ASTEC-3 46.60 26.03 18.50 18.89 18.90 19.30

LIGHTXML 36.16 17.54 12.03 9.33 7.81 7.60
APLC-XLNET 41.84 21.87 15.53 14.59 12.95 13.15

ATTENTIONXML 42.89 22.71 15.89 15.12 14.32 14.22
XML-CNN 43.45 23.24 16.53 15.64 14.74 14.98

DISMEC 39.89 21.23 14.96 15.89 15.15 15.43
PARABEL 42.50 23.04 16.21 16.55 16.12 16.16
BONSAI 42.60 23.08 16.25 17.38 16.85 16.90
MACH 33.74 15.62 10.41 11.43 8.98 8.35

AmazonTitles-3M

INCEPTIONXML+ 46.65 45.16 43.45 16.18 19.19 21.28
INCEPTIONXML - - - - - -

ASTEC 47.64 44.66 42.36 15.88 18.59 20.60
ASTEC-3 48.74 45.70 43.31 16.10 18.89 20.94

LIGHTXML - - - - - -
APLC-XLNET - - - - - -

XML-CNN - - - - - -
ATTENTIONXML 46.00 42.81 40.59 12.81 15.03 16.71

DISMEC 41.13 38.89 37.07 11.98 14.55 16.42
PARABEL 46.42 43.81 41.71 12.94 15.58 17.55
BONSAI 46.89 44.38 42.30 13.78 16.66 18.75
MACH 37.10 33.57 31.33 7.51 8.61 9.46

Table 1: Comparison of InceptionXML to state-of-
the-art extreme classification algorithms on benchmark
datasets. The best-performing approach is in bold and
the second best is underlined. ’-’ infront of a model
implies that the model doesn’t scale for that dataset.

benchmarks from the extreme classification reposi- 480

tory (Bhatia et al., 2016). The details of the datasets 481

are given in Table 4 (Appendix), the number of 482

labels range from 350,000 (WikiSeeAlsoTitles- 483

350K) to 2.8 Million (AmazonTitles-3M). Evalua- 484

tion on the Wikipedia datasets involves predicting 485

tags and related pages from Wikipedia page titles 486

and Amazon datasets involves predicting items fre- 487

quently bought together from just product names. 488

6

6.1 Main Results489

The main results of our experiments are shown in490

Table 1. For most of the dataset-metric combina-491

tions, the proposed models, INCEPTIONXML and492

INCEPTIONXML+, not only outperform the previ-493

ous state-of-the-art ASTEC and but also its ensem-494

ble version ASTEC-3 with non-trivial gains. No-495

tably, INCEPTIONXML gains an average of 4.2%496

and 8.18% over ASTEC on all three datasets ex-497

cept AmazonTitles-3M as measured by the P@1498

and PSP@1 metrics. Furthermore, the following499

observations can be made :500

• The proposed models achieves at least 10% rel-501

ative improvement as compared to XML-CNN502

(Liu et al., 2017), which captures n-grams for503

representation learning and the RNN-based AT-504

TENTIONXML (You et al., 2019).505

• Significant gains (upto 20% in some cases) are506

obtained compared to transformer-based models507

such as LIGHTXML (Jiang et al., 2021), and508

APLC-XLNET (Ye et al., 2020). Notably, none509

of these architectures scale to AmazonTitles-3M510

dataset, demonstrating the efficacy and scalabil-511

ity of the proposed light-weight encoder.512

• Our models also significantly outperform non-513

deep learning approaches using bag-of-words514

representations such as the label-tree based al-515

gorithms like BONSAI (Khandagale et al., 2020)516

and PARABEL (Prabhu et al., 2018), and DIS-517

MEC (Babbar and Schölkopf, 2017).518

• We note that INCEPTIONXML generally outper-519

forms INCEPTIONXML+ on several benchmarks,520

especially for the PSP metrics. We attribute this521

to the fact that INCEPTIONXML always gets in-522

formation about all negative labels instead of only523

hard-negative labels. This allows it to perform524

better on tail labels for which the label clusters525

in INCEPTIONXML+ may not be optimal.526

6.2 Ablation Results527

Permuting Embedding Dimension: To show that528

INCEPTIONXML is independent of the order of529

embedding dimensions, we randomly permute the530

dimensions of the input word embeddings before531

start of the training, train with this fixed permuted532

order and evaluate in the standard manner. This533

is repeated 10 times with different permutations534

before training. Only slight variation in perfor-535

mance metrics can be observed in figure 3 with536

Figure 3: Variation in scores after shuffling embed-
ding dimensions randomly before start of training for
AmazonTitles-670K dataset. The boxplot only shows a
variation in the performance metrics from the 10 runs.
Different scores and statistics can be obtained by adding
the values in the y-axis to the base scores on the x-axis.

respect to the median of each boxplot which im- 537

plies that the order of embedding dimensions has 538

little or no impact over the results of our model. 539

InceptionXML+: Table 2 shows a comparison of 540

the proposed INCEPTIONXML+ pipeline vis-à-vis 541

LIGHTXML for AmazonTitles-670K dataset. It is 542

clear that the INCEPTIONXML+ framework signif- 543

icantly improves upon the dynamic hard-negative 544

mining technique as proposed in LIGHTXML in 545

terms of performance in both P@K and PSP@K 546

metrics. While we notice consistent improvement 547

for our decoupled architecture (even without de- 548

tached training) as the fanout is increased for the 549

label clustering step, the results of our encoder 550

in the LIGHTXML framework results only show 551

marginal improvement and a dip later across all 552

(L′, TK) Model P@1 P@5 PSP@1 PSP5

8K, 200
Ours 40.37 33.01 26.02 31.61

Ours w/o Detaching 40.41 33.06 25.95 31.63
in LightXML Framework 39.60 32.54 25.14 30.78

16K, 400
Ours 40.99 33.63 26.36 32.31

Ours w/o Detaching 41.01 33.61 26.30 32.23
in LightXML Framework 39.87 32.86 25.07 31.00

32K, 800
Ours 41.42 34.23 26.64 32.87

Ours w/o Detaching 41.26 34.13 26.52 32.77
in LightXML Framework 39.98 33.11 24.73 31.01

65K, 1600
Ours 41.48 34.60 26.78 33.31

Ours w/o Detaching 41.03 34.23 26.49 32.89
in LightXML Framework 39.67 33.06 23.92 30.64

_, _ in DeepXML Pipeline 38.53 32.21 27.80 31.62

Table 2: Ablation results on AmazonTitles-670K for the
impact of increasing fan-out of label clustering (L′) for
our encoder in different scaling up frameworks where
TK represents the number of Top K shortlisted clusters.
(Ours - InceptionXML+ Framework)

7

Figure 4: Performance with and without self-attention layers on WikiSeeAlsoTitles-350K & AmazonTitles-670K

metrics. Note that we keep the shortlisted labels553

consistent by doubling the number of shortlisted554

meta-labels as the fan-out doubles. It may be also555

be noted that as the fan-out increases, our detached556

training method improves the results more promi-557

nently. This can be attributed to the fact that we558

bring the two tasks closer by increasing the fan-out559

and the representations learnt by the encoder for560

the meta-task become increasingly more relevant to561

the extreme-task when the gradients of the extreme562

classifier are re-attached during training.

Test data P@3 P@5

Original AmazonTitles-670K 37.49 34.60
Permuted Word-order 36.78 ± 0.05 33.92 ± 0.03

Original WikiSeeAlsoTitles-350K 14.85 11.79
Permuted Word-order 14.50 ± 0.03 11.51 ± 0.02

Table 3: Comparison of results with original test data
and that obtained by permuting the word order in the
test set for INCEPTIONXML+563
Robustness to Lack of Word-order: For testing564

the robustness of our method to the order of words565

in input data, we train the InceptionXML+ on the566

original training data for AmazonTitles-670K, but567

randomly permute the words in test set, and eval-568

uate the performance. This is repeated 10 times569

with different test set permutations (Table 3). We570

witness only a minor dip in performance across the571

metrics still outperforming ASTEC-3 and demon-572

strating the robustness of our encoder to lack of573

structure in short-text queries.574

Embedding Enhancement Module: The sequen-575

tially applied self-attention layers improve INCEP-576

TIONXML’s performance by 2-4% on the perfor-577

mance metrics as shown in figure 4. However, the578

superior representation learning capability of our579

encoder for short-text queries are further demon-580

strated in Figure 4 as even without the self-attention581

layers, our model outperforms the ensemble model582

ASTEC-3 and LIGHTXML.583

InceptionXML in DeepXML Framework: We 584

integrate our encoder with the DeepXML (Dahiya 585

et al., 2021b) pipeline as used by ASTEC and find it 586

inflexible to improve upon due to the requirement 587

of fixed representations for their label shortlisting 588

strategy. Moreover, when using our encoder as a 589

drop-in replacement, we find our encoder’s perfor- 590

mance degrades in terms of precision in the Deep- 591

XML Framework as compared to the performance 592

in the vanilla LIGHTXML Framework (Table2: last 593

row). This indicates the overall advantage of using 594

dynamic hard-negative mining compared to tech- 595

niques requiring fixed representations. 596

6.3 Training Time and Model Size 597

Our model’s training time ranges from 7 hours with 598

INCEPTIONXML on the WikiSeeAlsoTitles-350K 599

dataset to 31 hours on AmazonTitles-3M. We ob- 600

serve ~40% improvement in training time by using 601

the INCEPTIONXML+ pipeline compared to the 602

INCEPTIONXML. Furthermore, INCEPTIONXML 603

is extremely lightweight in terms of model size 604

containing only 400K parameters while INCEP- 605

TIONXML+ contains only 630K parameters. 606

7 Conclusion 607

In this work, we revisited the architecture of convo- 608

lution networks for the task of short-text extreme 609

classification. We recast the conventional convo- 610

lutional architecture to capture coupled semantics 611

along the embedding dimensions. Augmented with 612

a self-attention based order-agnostic Embedding 613

Enhancement module, we show that the proposed 614

approach leads to a light-weight encoder which bet- 615

ters state-of-the-art performance on 4 benchmark 616

datasets. By addressing the shortcomings of the 617

training regimen of LIGHTXML, we also develop 618

an extension to our model - INCEPTIONXML+ that 619

scales to dataset with 3 millions labels. 620

8

References621

R. Babbar and B. Schölkopf. 2017. DiSMEC: Dis-622
tributed Sparse Machines for Extreme Multi-label623
Classification. In WSDM.624

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal,625
Y. Prabhu, and M. Varma. 2016. The extreme classi-626
fication repository: Multi-label datasets and code.627

K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. 2015.628
Sparse Local Embeddings for Extreme Multi-label629
Classification. In NIPS.630

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-631
siotis, and Ion Androutsopoulos. 2019. Large-scale632
multi-label text classification on eu legislation. arXiv633
preprint arXiv:1906.02192.634

W-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and635
I. Dhillon. 2020. Taming Pretrained Transformers636
for Extreme Multi-label Text Classification. In KDD.637

Wei-Cheng Chang, Daniel Jiang, Hsiang-Fu Yu, Choon-638
Hui Teo, Jiong Zhang, Kai Zhong, Kedarnath Kol-639
luri, Qie Hu, Nikhil Shandilya, Vyacheslav Ievgrafov,640
et al. 2021. Extreme multi-label learning for se-641
mantic matching in product search. arXiv preprint642
arXiv:2106.12657.643

K. Dahiya, A. Agarwal, D. Saini, K. Gururaj, J. Jiao,644
A. Singh, S. Agarwal, P. Kar, and M. Varma. 2021a.645
Siamesexml: Siamese networks meet extreme classi-646
fiers with 100m labels. In Proceedings of the Inter-647
national Conference on Machine Learning.648

K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave,649
A. Soni, H. Jain, S. Agarwal, and M. Varma. 2021b.650
DeepXML: A Deep Extreme Multi-Label Learning651
Framework Applied to Short Text Documents. In652
WSDM.653

Sebastian Doria. 2019. Simple self-attention654
https://github.com/sdoria/simpleselfattention.655

H. Jain, V. Balasubramanian, B. Chunduri, and656
M. Varma. 2019. Slice: Scalable Linear Extreme657
Classifiers trained on 100 Million Labels for Related658
Searches. In WSDM.659

H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-660
label Loss Functions for Recommendation, Tagging,661
Ranking and Other Missing Label Applications. In662
KDD.663

Ting Jiang, Deqing Wang, Leilei Sun, Huayi Yang,664
Zhengyang Zhao, and Fuzhen Zhuang. 2021.665
Lightxml: Transformer with dynamic negative sam-666
pling for high-performance extreme multi-label text667
classification. In Proceedings of the AAAI Confer-668
ence on Artificial Intelligence, volume 35, pages669
7987–7994.670

Armand Joulin, Edouard Grave, Piotr Bojanowski, and671
Tomas Mikolov. 2016. Bag of tricks for efficient text672
classification. arXiv preprint arXiv:1607.01759.673

S. Khandagale, H. Xiao, and R. Babbar. 2020. Bonsai: 674
diverse and shallow trees for extreme multi-label clas- 675
sification. Machine Learning, 109(11):2099–2119. 676

Y. Kim. 2014. Convolutional Neural Networks for Sen- 677
tence Classification. In EMNLP. 678

J. Liu, W. Chang, Y. Wu, and Y. Yang. 2017. Deep 679
Learning for Extreme Multi-label Text Classification. 680
In SIGIR. 681

A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal, 682
P. Kar, and M. Varma. 2021a. Decaf: Deep extreme 683
classification with label features. In Proceedings of 684
the ACM International Conference on Web Search 685
and Data Mining. 686

A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar, 687
and M. Varma. 2021b. Eclare: Extreme classification 688
with label graph correlations. In Proceedings of The 689
ACM International World Wide Web Conference. 690

Jeffrey Pennington, R. Socher, and Christopher D. Man- 691
ning. 2014. Glove: Global vectors for word represen- 692
tation. In EMNLP. 693

Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and 694
M. Varma. 2018. Parabel: Partitioned label trees for 695
extreme classification with application to dynamic 696
search advertising. In WWW. 697

Kshitij Tayal, Nikhil Rao, Saurabh Agarwal, Xiaowei 698
Jia, Karthik Subbian, and Vipin Kumar. 2020. Reg- 699
ularized graph convolutional networks for short text 700
classification. In Proceedings of the 28th Interna- 701
tional Conference on Computational Linguistics: In- 702
dustry Track, pages 236–242. 703

Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun 704
Yan. 2017. Combining knowledge with deep convo- 705
lutional neural networks for short text classification. 706
In IJCAI. 707

Zhongyuan Wang and Haixun Wang. 2016. Understand- 708
ing short texts. In the Association for Computational 709
Linguistics (ACL) (Tutorial). 710

H. Ye, Z. Chen, D.-H. Wang, and Davison B. D. 2020. 711
Pretrained Generalized Autoregressive Model with 712
Adaptive Probabilistic Label Clusters for Extreme 713
Multi-label Text Classification. In ICML. 714

R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, 715
and S. Zhu. 2019. Attentionxml: Label tree-based 716
attention-aware deep model for high-performance 717
extreme multi-label text classification. In Neurips. 718

Hsiang-Fu Yu, Kai Zhong, and Inderjit S Dhillon. 2020. 719
Pecos: Prediction for enormous and correlated output 720
spaces. arXiv preprint arXiv:2010.05878. 721

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and 722
Augustus Odena. 2019. Self-attention generative 723
adversarial networks. In International conference on 724
machine learning, pages 7354–7363. PMLR. 725

9

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/sdoria/SimpleSelfAttention
https://github.com/sdoria/SimpleSelfAttention
https://github.com/sdoria/SimpleSelfAttention
https://www.microsoft.com/en-us/research/publication/understanding-short-texts/
https://www.microsoft.com/en-us/research/publication/understanding-short-texts/
https://www.microsoft.com/en-us/research/publication/understanding-short-texts/

A Appendix726

A.1 Dataset Details727

Figure 5: Sequence lengths of the input instance plot-
ted against corresponding frequency for AmazonTitles-
670K dataset. For this dataset, 70% of training instances
have ≤ 8 words, and 30% have ≤ 4 words.

Figure 5 above details the distribution of sequence728

lengths in AmazonTitles-670K dataset. Also,729

among the other key features, such as # of train-730

ing/test instances and labels, Table 4 (in Appendix731

below) confirms the short-text nature of these732

datasets. The last three columns give the hyper-733

parameter values for the clustering step used in the734

INCEPTIONXML+.735

A.2 Vocabulary & Word Embedding736

As opposed to taking their TF-IDF weighted linear737

combination as used in some recent works (Dahiya738

et al., 2021b,a; Mittal et al., 2021a) or the more con-739

ventional bag-of-words representations approaches740

like (Babbar and Schölkopf, 2017; Prabhu et al.,741

2018), we use the approach of stacking Glove em-742

beddings (Pennington et al., 2014) as done in (Kim,743

2014; Liu et al., 2017; Wang et al., 2017).744

For a fair comparison, we use exact same size of745

vocabulary space as (Dahiya et al., 2021b) for all746

benchmark datasets. As state before, we use wide-747

space tokenizer and find empirically that our model748

works better without using sub-word tokenizers749

like word-piece or sub-word based embeddings750

like fastText (Joulin et al., 2016).751

A.3 Evaluation Metrics752

As stated earlier, the main application of short-753

text XML framework is in recommendation sys-754

tems and web-advertising, where the objective of755

an algorithm is to correctly recommend/advertise756

among the top-k slots. Thus, for evaluation of757

the methods, we use precision at k (denoted by758

P@k), and its propensity scored variant (denoted 759

by PSP@k) (Jain et al., 2016). These are standard 760

and widely used metrics by the XML community 761

(Bhatia et al., 2016). 762

For each test sample with observed ground truth 763

label vector y ∈ {0, 1}L and predicted vector ŷ ∈ 764

RL, P@k is given by : 765

P@k(y, ŷ) :=
1

k

∑
ℓ ∈ top@k(ŷ)

yℓ 766

where top@k(ŷ) returns the k largest indices of ŷ. 767

Since P@k treats all the labels equally, it doesn’t 768

reveal the performance of the model on tail labels. 769

However, because of the long-tailed distribution 770

in extreme classification datasets, one of the main 771

challenges is to predict tail labels correctly, which 772

are more valuable and informative compared to 773

head classes, and it is essential to measure the per- 774

formance of the model specifically on tail labels. 775

By alluding to the phenomenon of missing labels 776

in the extreme classification setting and its rela- 777

tion to tail-labels, PSP@k was introduced in Jain 778

et al. (2016) as an unbiased variant of original pre- 779

cision at k under no missing labels. This is widely 780

used by the community to compare the relative per- 781

formance of algorithms on tail-labels, and is also 782

another metric used in our relative comparisons 783

among various extreme classification algorithms in 784

Tables 1 and 2 for main results and ablation tests 785

respectively. 786

B Responsible NLP Research Checklist 787

B.1 Limitations 788

• Given that the convolution operation spans 789

over the entire document length, the proposed 790

method is suited for short and medium length 791

text sequences. 792

• Our method is agnostic to the presence of 793

label texts, which despite constraining the 794

problem to a much smaller subset, have been 795

shown to help in achieving better prediction 796

performance. 797

B.2 Potential Risks 798

We do not forsee any potential risks of our meth- 799

ods. Rather, it should be seen to be as energy- 800

efficient alternatives to large-transformer models 801

for the core textual and language problems encoun- 802

tered in search and recommendation. 803

10

Datasets # Features # Labels # Training # Test APpL ALpP #W≤ 4 #W≤ 8 L′ Top K ALpC

WikiSeeAlsoTitles-350K 91,414 352,072 629,418 162,491 5.24 2.33 82% 98% 32K 800 10
WikiTitles-500K 185,479 501,070 1,699,722 722,678 23.62 4.89 83% 98% 65K 1200 8

AmazonTitles-670K 66,666 670,091 485,176 150,875 5.11 5.39 40% 70% 65K 1600 11
AmazonTitles-3M 165,431 2,812,281 1,712,536 739,665 31.55 36.18 15% 52% 131K 1000 22

Table 4: Dataset Statistics. APpL denotes the average data points per label, ALpP the average number of labels
per point. #W is the number of words in the training samples. For our scaled up model, L′ and Top K denote the
number of label-clusters and the value of K for top K clusters chosen per dataset while ALpC denotes the average
labels per cluster.

11

