Embedding Convolutions for Short Text Extreme Classification with
Millions of Labels

Anonymous ACL submission

Abstract

Automatic annotation of short-text data to a
large number of target labels, referred to as
Short Text Extreme Classification, has found
numerous applications including prediction of
related searches and product recommendation
tasks. In this paper, we propose a convolutional
architecture INCEPTIONXML which is light-
weight, yet powerful, and robust to the inherent
lack of word-order in short-text queries encoun-
tered in search and recommendation tasks. We
demonstrate the efficacy of applying convolu-
tions by recasting the operation along the em-
bedding dimension instead of the word dimen-
sion as done in conventional usage of CNNs for
text classification. Towards scaling our model
to problems with millions of labels, we also pro-
pose INCEPTIONXML+ framework. This ad-
dresses the shortcomings of the dynamic hard-
negative mining framework in the recently pro-
posed LIGHTXML by improving the alignment
between the label-shortlister and extreme clas-
sifier. INCEPTIONXML+ is not only smaller
than state-of-the-art deep extreme classifier,
ASTEC, in terms of model size but also sig-
nificantly outperforms it on popular benchmark
datasets. For reproducibility, the code is made
available with this submission.

1 Introduction

Extreme Multi-label Classification (XML) in-
volves classifying instances into a set of most rel-
evant labels from an extremely large (on the or-
der of millions) set of all possible labels. For
scenarios when the input instances are short text
queries, many successful applications of the XML
framework have been found in ranking and rec-
ommendation tasks such as prediction of Related
Search on search engines (Jain et al., 2019), sug-
gestion of query phrases corresponding to short
textual description of products on e-stores (Chang
et al., 2020) and product-to-product recommenda-
tion (Dahiya et al., 2021a; Chang et al., 2021).

Technical difficulties in XML: The XML task has
two primary challenges: (i) extremely large number
of possible labels which leads to both memory and
computational bottleneck, and (ii) a large fraction
of these being tail labels paired with a handful of
positive samples (Jain et al., 2016) which makes it
hard for the extreme classifier to learn rich repre-
sentations for these tail labels.

Additional challenges from short-text queries:
The above problems are exacerbated further as :
(i) unlike documents, most short text queries are
sparse and contain very few words and (ii) are typi-
cally plagued with noise and non-standard phrases
which do not always observe the syntax of a writ-
ten language (Tayal et al., 2020). Therefore, short
texts give rise to a significant amount of ambiguity,
making it hard to learn meaningful representations
(Wang and Wang, 2016).
InceptionXML: To address the above, in this
paper, we (i) develop INCEPTIONXML, a light-
weight CNN-based encoder, which goes against
the traditional paradigm (Kim, 2014; Liu et al.,
2017) of convolving over the words dimension in
favor of the embedding dimension, (ii) propose
an embedding-enhancement module that projects
the input to a word-order agnostic representation
making our approach more robust to lack of struc-
ture in short-text queries, (iii) develop INCEP-
TIONXML+ to overcome the shortcomings of
the dynamic hard-negative mining framework pro-
posed in LIGHTXML (Jiang et al., 2021) by bring-
ing the label-shortlisting task closer to the extreme
classification task and scale our model to millions
of labels, (iv) further the state-of-the-art on popular
benchmarks by an average of 5% and 8% on P@K
and propensity-scored P@K metrics respectively.
By balancing model complexity against com-
putational complexity, INCEPTIONXML+ finds
the sweet-spot between the two extreme ends of
modern deep extreme classification pipelines. On
one end exist the pre-trained transformer-based en-

coders (Jiang et al., 2021; Ye et al., 2020; Chang
et al., 2020) that treat XML as a down-stream task,
and as a result become unscalable to millions of
labels due to their compute requirements. On the
other end, are those which are built on under-fitting
frugal architectures such as ASTEC (Dahiya et al.,
2021b), and hence sacrifice accuracy to achieve
scalability to millions of labels.

As the real-world use cases of extreme classifica-
tion require very fast inference times and low mem-
ory loads, the deployment of large transformer-
based architectures as in LIGHTXML (Jiang et al.,
2021) leads to slower training and inference, mak-
ing them an overkill for the task at hand. We show
that replacing the transformer encoder with our
lightweight CNN-based encoder, combined with
further improvements to dynamic hard-negative
mining technique leads to better prediction perfor-
mance apart from faster training and the ability to
scale to millions of labels. Also, by employing
a much richer architecture in comparison to the
frugal ASTEC model, we show that a single INCEP-
TIONXML model can even outperform an ensem-
ble of three ASTEC learners on publicly available
datasets by as much as 10% on P@k metrics.

2 Related Work

Extreme Classification: The focus of a majority
of initial works in this domain has been on de-
signing one-vs-rest (Babbar and Scholkopf, 2017),
tree-based (Jain et al., 2016; Prabhu et al., 2018;
Chalkidis et al., 2019; Khandagale et al., 2020) or
label embedding based (Bhatia et al., 2015) classi-
fiers with fixed features in the form of bag-of-words
representation.

With advances in deep learning techniques
which jointly learn the suitable feature representa-
tion and the final classifier, recent techniques based
on attention mechanism (You et al., 2019) and pre-
trained transformer models (Chang et al., 2020; Ye
et al., 2020; Jiang et al., 2021; Yu et al., 2020) have
recently shown great promise. Previous advances
in the domain using CNNs have also been made.
While (Wang et al., 2017) extended (Kim, 2014)
for short text classification, (Liu et al., 2017) built
upon the same for extreme classification.
Short-text Extreme Classification: In tasks where
the inputs are short text queries, there has been a
slew of works lately on designing deep extreme
classifiers specialized to solve the problem. These
include ASTEC (Dahiya et al., 2021b), DECAF

(Mittal et al., 2021a), GALAXC, ECLARE (Mittal
et al., 2021b), and STAMESEXML (Dabhiya et al.,
2021a). Based on the availability of label meta-
data, these can be divided into two categories: (i)
ones which make no assumptions regarding label
text, i.e., labels are numeric identifiers, and (ii)
others which assume that the labels are endowed
with clean label text. While ASTEC and INCEP-
TIONXML belong to the first category, the rest of
the above mentioned algorithms identify with the
second. Even though the additional label meta-data
is useful, it is known for only a small subset of all
labels. For instance, on AmazonTitles-3M, label
text is available only for 1.3 million labels. On
the other hand, the former problem setup, which is
the focus of this work, makes no assumption about
label-text, and hence is a harder, more general and
widely applicable problem.

Drawbacks of conventional CNNs in short-text
classification: Traditionally, in the usage of CNNs
over words in text classification, the intent is to
capture the occurrences of n-grams for represen-
tation learning (Kim, 2014; Liu et al., 2017). We
argue that this formulation is unsuitable for short-
text classification problems due to (i) the implicit
but incorrect assumption of proper word-ordering
in short-text queries (Wang and Wang, 2016), and
(i1) as explained next, the much smaller sequence
length that restricts the effectiveness of convolution
in CNNs over the inputs.

In the datasets derived from Wikipedia titles,
98% documents have 8 or less words, while 82%
have 4 words or less (Table: 4 in Appendix). More-
over, 70% of the instances in AmazonTitles-670K
consist of 8 words or less (Figure: 5). This makes
the convolutional filters spanning over 4-8 words
in Kim (2014); Liu et al. (2017); Wang et al. (2017)
behave analogously to a weak fully connected layer
with very few hidden units, and hence leading to
feature maps with very few activations which are
sub-optimal for representation learning.

3 Embedding Convolutions

On looking closely at short-text queries, one can
infer that the presence of a word in a query is more
important than its exact position for extreme classi-
fication tasks. For example, the queries “best wire-
less headphones 2021" and “2021 best headphones
wireless" (both of which are common in real-world
scenarios) should result in similar search results on
an e-commerce website (Tayal et al., 2020).

o
the STOP
coss L]
O e LR () —
Ex) g
Query 5
H H v %
i Key v &
e b ETT > SAacross X Key. SAacross m e
..., words " embeddings Y
Query i A

Spectral-norm

Top-K clusters |

Figure 1: INCEPTIONXML: Model Architecture. The convolution filters on the input data span only a subset of
adjacent dimensions in the word embeddings while covering all the input tokens (‘who let the dogs out’). The
Embedding-enhancement module (‘EM-module’) is shown in detail with its orthogonal self-attention layers followed

by a projection layer.

In the context of the aforementioned problems,
we hypothesize and empirically demonstrate the
suitability of using CNNs to convolve over the em-
bedding dimensions of the inputs instead of the
word dimensions for short-text queries.

Embedding Convolutions, by convolving over em-
beddings in a stacked setting, enable the model to
detect correlations or “coupled semantics” between
different dimensions in the embedding space by
processing a limited subset of semantics at a time.
As compared to traditional convolutional operation,
embedding convolutions create significantly larger
and enriched activation maps for the same inputs,
while requiring significantly lesser parameters by
using smaller filters of size RS*16, where S is the
maximum sequence length of the input. We show
empirically that this modified approach works well
for both short as well as medium queries of up
to 32 words, significantly outperforming conven-
tional CNN-based approaches (Liu et al., 2017;
Kim, 2014) for short-text XML task.

As some readers might rightfully argue, pre-
trained word embeddings are typically not trained
with any incentive for localizing semantic informa-
tion in the embedding dimension. This means that
the coupled semantics that our model tries to detect
may initially occur across spatial distances that are
too large for the convolution kernel to detect. To
solve this problem, we process the stacked word
embeddings with self-attention based embedding
enhancement module before applying embedding
convolutions. This lets information flow across
every pair of semantics irrespective of the spatial
distance between them, increasing our convolu-
tional feature extractor’s effective receptive field
and enabling it to detect the coupled semantics.

4 Proposed Model - InceptionXML

Problem Setup : Given a training set {z;, y; }Y ;.
the input instance x; represents a short-text query,
and the corresponding label set is y; € {0,1}*
where L denotes the total number of labels. It may
be noted that even though L ~ 109, an instance is
annotated only with a few (Table 4 in Appendix)
positive labels. The goal is to learn a classifier
which, for a novel test instance x, predicts the top-k
labels towards better precision @k and propensity-
scored precision@k (Bhatia et al., 2016).

Towards this goal, the main body of our encoder,
shown in Figure 1, consists of three modules that
are applied sequentially on the word embeddings.
These are (i) an embedding enhancement module,
(i) embedding convolution layers and (iii) an ex-
treme linear classifier.

4.1 Embeddings

As inputs to our model, we stack the word embed-
dings sequentially. The word embeddings are ini-
tialized with d-dimensional pre-trained GloVe em-
beddings (Pennington et al., 2014) where d = 300.
Embeddings of words that do not exist in GloVe are
initialized with a random vector sampled from the
uniform distribution ¢/(—0.25,0.25). With NLTK
for tokenization, we use white space separated pre-
processing function and remove the stop words and
punctuation from the raw data (Liu et al., 2017).

4.2 Embedding Enhancement Module

This module enhances the initially stacked word
embeddings lacking structure and contextual in-
formation, and make it word order agnostic. The
module consists of two orthogonal self-attention
layers applied sequentially on the word and the em-

bedding dimensions followed by a projection layer,
effectively encoding global information both, on a
word-level and on a semantic-level (Figure 4).

We use the SimpleSelfAttention (Doria, 2019)
variant of self-attention in our model, which is a
simplification of the corresponding operation de-
scribed in Zhang et al. (2019). For the key and
query matrices X and Y respectively, this is given
by the function G (-, -) as follows :

G(X,Y) =7 (XYT) f(X)+X

The equivalent of the value matrix from Zhang
et al. (2019) is represented by f(X) where f(-)
is a convolution layer and v is a learnable scalar
parameter. The sequential attention formulation in
our embedding enhancement module is given by:

SAwords = G(E($)7 E(x) € RSXd
SAemps = G(SAT_ . E(x)")T e RS>

words

where E(x) denotes the stacked word embeddings
for a sample text input 2 such that E(z) € R5*?,
Finally, each dimension of the intermediate embed-
dings SAemps is then projected to a p-dimensional
space where p = 32 to obtain the final enhanced
embeddings SAyy where SAgy € RP *d The in-
formation flow across the embeddings in this mod-
ule followed by per-dimension projection makes
SAout independent of the word order in short-text
queries and makes our model more robust to their
lack of structure.

4.3 Embedding Convolution Layers

We employ three parallel branches of one-
dimensional convolution layers V;, i € [1,2,3]
with filter sizes of w; where w; € [4,8,16] each
with a stride of 4 along the embedding dimension
and p output channels. Let h,,, be the result of ap-
plying V; over SA,. We concatenate all resultant
hy,; Tow-wise before passing them to the next layer.

hwi = V; * SAout
hf = Vix [Py s Py hws}

A final embedding convolutional layer V with ker-
nel size of 16 and stride 4 is applied on the con-
catenated feature map, which is further flattened to
form the final feature representation / ¢. This for-
mulation allows V to have an effective receptive
field spanning 1/4%" of the enhanced embeddings,
further obviating the locality constraints of CNNs
as highlighted in section 3.

4.4 Extreme Linear Classifier

The first layer R transforms the feature map from
the encoder with a skip-connection while keeping
the dimensions same. The next linear layer W has
one-vs-all classifiers for each label in the dataset
which projects the features to the label space.

relu(R-hy) + hy
a(W-g)

g =
gy =

Loss: We use the binary cross entropy loss to
train our model. Here y € {0, 1}’ represents the
ground-truth multi-hot encoded targets and ¢ are
the model predictions.

BCE(y,) = — Y _(1—y;) log(1—3;)+y; log(i);)
jeL

5 InceptionXML+ Framework

INCEPTIONXML described previously scales to
datasets with hundreds of thousands of labels. How-
ever, scaling up to millions of labels in its existing
form is difficult as the loss computation in equa-
tion above involves calculation of loss over all L
labels, a very large majority of which are negative
labels for a given instance. We, thus, propose a
scalable extension to our encoder, called INCEP-
TIONXMUL+, in which the loss is computed over
only for the hardest negative labels.

Hard Negative-Mining of Labels: While tech-
niques have been studied for efficient hard-negative
label mining under fixed representation of data
points (Jain et al., 2019; Dahiya et al., 2021b),
only recent algorithms (Jiang et al., 2021) have
come up with dynamic hard negative-mining tech-
niques. For this work, we improve upon the more
recent dynamic hard negative-mining strategy to
develop an end-to-end trainable framework INCEP-
TIONXMUL+. Following the approach popularized
by these recent methods, our model makes predic-
tions in two stages: (i) shortlisting K label-clusters
or “meta-labels" using a meta-classifier, and (ii)
employing a computationally feasible number of
one-vs-all classifiers corresponding to the labels
included in the shortlisted clusters to get the final
predicted labels and perform backpropagation.
Label Clustering To perform label clustering, we
construct Probabilistic Label Tree (PLT) using
the labels’ Positive Instance Feature Aggregation
(PIFA) representation over sparse BOW features
of their training samples as done in (Jiang et al.,
2021; Chang et al., 2020). More specifically, we

use balanced 2-means clustering to recursively par-
tition the label set until we have a mapping C' from
L labels to L' clusters where L' < L (Table:4 in
Appendix shows values for L').

Drawbacks of LIGHTXML framework: When
scaling our model using dynamic hard-negative
mining as done in LIGHTXML (Jiang et al., 2021),
we noticed that the performance of our encoder
is bottlenecked by a poorly performing meta-
classifier. From the training metrics (in Fig: 2),
we see a smooth increment in the P@1 values for
the extreme classifier (dashed blue) while the meta-
classifier is unable to catch-up (dashed red). This
indicates that these two sub-tasks are not aligned
well enough for the encoder to learn suitable com-
mon representations that work well simultaneously
for both the sub-tasks. Our observations also indi-
cate the fact that the extreme task is easier to learn
on shortlisted labels than the meta-task on label
clusters, and the model tends to learn representa-
tions that benefit the extreme task at the expense of
the meta-task.

We make key changes to the dynamic hard-negative
mining framework in accordance with these obser-
vations. These changes can be broadly grouped into
two sets. The first set of changes consist of archi-
tectural changes meant to bring the two tasks closer
in order to enable the encoder to learn better com-
mon representations. In the second set of changes,
we make modifications to the training loop in or-
der to force the encoder to learn representations
that improve the performance of the meta-classifier
while not compromising on the performance of the
extreme task.

100 -

80 *
® L |
o 60
on
g
=]

.é 40 | .
F
; - - - LightXML extreme
20 L - - - LightXML meta
—— InceptionXML+ extreme
—— InceptionXML+ meta
0 L |
0 10 20 30 40

Epochs

Figure 2: Progress of training (Precision@1) for the
extreme and meta-classifier of LIGHTXML and INCEP-
TIONXML+ framework for AmazonTitles-670K

5.1 Decoupled Architecture

To bring the two prediction tasks closer, we
give them similar structures by adding a linear
layer with a residual connection before the meta-
classifier.
Ggm = relu(Ry, - hy) + hy
Um = U(Wm : gm)
S =7 (topx (Gm: k))

We create a shortlist S of all the labels in the top
K label clusters as predicted by the meta-classifier
using a label cluster to label mapping C~!. The
extreme classifier then predicts the probability of
the query belonging to only these shortlisted labels,
instead of all L labels.

ge = relu(Re - hy) + hy
Je1=(Wey-ge), V€S

Architectural similarity of branches alone doesn’t
ensure strong common representation learning. To
help the encoder learn suitable common represen-
tations, we further bring the two branches closer
by (i) increasing the fan out of label clustering, and
(i1) adding spectral norm to the penultimate linear
layers in both heads. Increasing the fan out of la-
bel clustering brings the meta-task closer to the
extreme-task by increasing the “extremeness" of
the meta-task. Addition of spectral normalization
prevents the weights of the hidden layers of both
task heads from drifting too far from each other
(Dahiya et al., 2021b). Not only does this heav-
ily improve upon the original implementation of
dynamic negative-hard mining framework as pro-
posed in (Jiang et al., 2021), but also inherently
combines the task of the two stages of the Deep-
XML pipeline into an end-to-end trainable model.
Even though we observe substantial gains from
increasing the fan out, this comes at the cost of
making the meta-classifier heavier. So, in practice
we aim to strike a balance (Table:2) between num-
ber of clusters and model efficiency for non-trivial
gains in accuracy.

5.2 Detached Training

To force the encoder to learn representations ben-
efiting the meta-task, we detach i.e. stop the flow
of gradients from the extreme classifier head to
the encoder (Algorithm 1), for the initial 1/4-th
of the training loop. This results in shortlisting
of harder negative labels for the extreme classifier

to learn during training time and ensuring higher
recall during inference time.

Detaching instead of simply removing the ex-
treme classification head has the advantage of
training the layers in this head. This keeps it in
sync with the changing encoder representations
without allowing it to affect the training of the
meta-classifier. This setting is possible because
of the spectral norm (refer Figure 1) applied to the
weights of the penultimate layers in both the heads
which ensures that the encoder learnt for the meta-
task remains relevant for the extreme task when its
gradients are re-attached.

Loss: As with INCEPTIONXML, we use BCE loss
for training. The losses for the meta-classifier and
the extreme classifier are given by:

Lineta = BCE(Ym , Im),
Eewt = BCE(ye,l s Qel) Vi € S

The final loss for back-propagation is the sum of
the above i.e. £ = Lyeta + Legt- For prediction,
the final ranking is produced by using the logits
of the extreme classifier. The complete training
algorithm for INCEPTIONXML + is given below

Algorithm 1: Training algorithm for INCEPTIONXML+

1 for epoch in (1, epochs):

2 for x, y in data:

3 z = E(x)

4 h = encoder(z)

5 y_meta = meta_classifier (h)

6 y_cluster = label_to_cluster (y)

7 meta_loss = bce(y_meta, y_cluster)

8

9 # shortlisting top K clusters

10 top_k = get_top_K clusters(y_meta, k)
11 candidates = cluster_to_label (top_k)
12 # add missing positive labels

13 candidates = add_missing(candidates,y)
14

15 # detached training

16 if epoch <= epochs/4:

17 h = h.detach()

18 y_ext = ext_classifier(h, candidates)
19 ext_loss = bce(y_ext, y, candidates)
20 loss = meta_loss + ext_loss
21 loss.backward()
22
23 # gradient descent
24 update (E, encoder, meta_classifier,

ext_classifier)

6 Experiments

Datasets: We evaluate the proposed INCEP-
TIONXML(+) frameworks on 4 publicly available

Method ‘P@l P@3 P@5 | PSP@1 PSP@3 PSP@5

| AmazonTitles-670K

INCEPTIONXML+ | 41.48 37.49 34.60 | 26.78 30.15 33.31
INCEPTIONXML | 41.83 37.46 34.10 | 28.17 30.98 33.28
ASTEC 3997 3573 3259 | 27.59 29.79 31.71
ASTEC-3 40.63 36.22 33.00 | 28.07 30.17 32.07
LIGHTXML 41.55 37.31 34.10 | 25.23 28.79 31.92

APLC-XLNET | 34.55 30.58 27.49 | 19.82 2222 24.19
ATTENTIONXML | 37.92 33.73 30.57 | 24.24 26.43 28.39
XML-CNN 35.02 31.37 2845 | 21.99 24.93 26.84

DISMEC 38.12 34.03 31.15| 2226 25.45 28.67
PARABEL 38.00 33.54 30.10 | 23.10 25.57 27.61
BONSAI 38.46 3391 30.53 | 23.62 26.19 28.41
MACH 3492 31.18 28.56 | 20.56 23.14 25.79
WikiSeeAlsoTitles-350K

INCEPTIONXML+ | 20.51 14.85 11.79 | 10.11 12.45 14.44
INCEPTIONXML | 21.50 15.18 11.98 | 10.90 13.04 14.93

ASTEC 2042 1444 1139 9.83 12.05 13.94
ASTEC-3 20.61 14.58 11.49 9.91 12.16 14.04
LIGHTXML 20.18 13.59 10.54 8.52 10.04 11.53

APLC-XLNET 19.80 13.80 10.86 7.29 9.31 11.01
ATTENTIONXML | 15.86 1043 8.01 6.39 7.20 8.15
XML-CNN 1775 1234 9.3 8.24 9.72 11.15

DISMEC 16.61 11.57 9.14 7.48 9.19 10.74
PARABEL 17.24 11.61 892 7.56 8.83 9.96
BONSAI 17.95 1227 9.56 8.16 9.68 11.07
MACH 1479 957 7.3 6.45 7.02 7.54

WikiTitles-500K

INCEPTIONXML+ | 4493 30.85 22.01 | 18.81 20.55 21.07
INCEPTIONXML | 47.28 27.14 19.39 | 20.79 21.01 21.17
ASTEC 46.01 25.62 18.18 | 18.62 18.59 18.95

ASTEC-3 46.60 26.03 18.50 | 18.89 18.90 19.30
LIGHTXML 36.16 17.54 12.03 9.33 7.81 7.60
APLC-XLNET | 41.84 21.87 1553 | 14.59 12.95 13.15
ATTENTIONXML | 42.89 22.71 15.89 | 15.12 14.32 14.22
XML-CNN 4345 2324 1653 | 15.64 14.74 14.98

DISMEC 39.89 21.23 1496 | 15.89 15.15 15.43
PARABEL 4250 23.04 16.21 16.55 16.12 16.16
BONSAI 42.60 23.08 1625 | 17.38 16.85 16.90
MACH 33.74 15.62 1041 11.43 8.98 8.35

AmazonTitles-3M
45.16 43.45 | 16.18 19.19 21.28

INCEPTIONXML+ | 46.65

INCEPTIONXML - - - - - -
ASTEC 47.64 44.66 4236 | 15.88 18.59 20.60
ASTEC-3 48.74 4570 43.31 | 16.10 18.89 20.94
LIGHTXML - - - - - -
APLC-XLNET - - - - - -
XML-CNN - - - - - -
ATTENTIONXML | 46.00 42.81 40.59 | 12.81 15.03 16.71
DISMEC 41.13 38.89 37.07 | 11.98 14.55 16.42
PARABEL 4642 4381 41.71 12.94 15.58 17.55
BONSAI 46.89 4438 4230 | 13.78 16.66 18.75
MACH 37.10 33.57 3133 7.51 8.61 9.46

Table 1: Comparison of InceptionXML to state-of-
the-art extreme classification algorithms on benchmark
datasets. The best-performing approach is in bold and
the second best is underlined. ’-’ infront of a model
implies that the model doesn’t scale for that dataset.

benchmarks from the extreme classification reposi-
tory (Bhatia et al., 2016). The details of the datasets
are given in Table 4 (Appendix), the number of
labels range from 350,000 (WikiSeeAlsoTitles-
350K) to 2.8 Million (AmazonTitles-3M). Evalua-
tion on the Wikipedia datasets involves predicting
tags and related pages from Wikipedia page titles
and Amazon datasets involves predicting items fre-
quently bought together from just product names.

6.1 Main Results

The main results of our experiments are shown in
Table 1. For most of the dataset-metric combina-
tions, the proposed models, INCEPTIONXML and
INCEPTIONXML+, not only outperform the previ-
ous state-of-the-art ASTEC and but also its ensem-
ble version ASTEC-3 with non-trivial gains. No-
tably, INCEPTIONXML gains an average of 4.2%
and 8.18% over ASTEC on all three datasets ex-
cept AmazonTitles-3M as measured by the P@1
and PSP@1 metrics. Furthermore, the following
observations can be made :

* The proposed models achieves at least 10% rel-
ative improvement as compared to XML-CNN
(Liu et al., 2017), which captures n-grams for
representation learning and the RNN-based AT-
TENTIONXML (You et al., 2019).

* Significant gains (upto 20% in some cases) are
obtained compared to transformer-based models
such as LIGHTXML (Jiang et al., 2021), and
APLC-XLNET (Ye et al., 2020). Notably, none
of these architectures scale to AmazonTitles-3M
dataset, demonstrating the efficacy and scalabil-
ity of the proposed light-weight encoder.

* Our models also significantly outperform non-
deep learning approaches using bag-of-words
representations such as the label-tree based al-
gorithms like BONSAT (Khandagale et al., 2020)
and PARABEL (Prabhu et al., 2018), and DI1S-
MEC (Babbar and Scholkopf, 2017).

* We note that INCEPTIONXML generally outper-
forms INCEPTIONXML+ on several benchmarks,
especially for the PSP metrics. We attribute this
to the fact that INCEPTIONXML always gets in-
formation about all negative labels instead of only
hard-negative labels. This allows it to perform
better on tail labels for which the label clusters
in INCEPTIONXML+ may not be optimal.

6.2 Ablation Results

Permuting Embedding Dimension: To show that
INCEPTIONXML is independent of the order of
embedding dimensions, we randomly permute the
dimensions of the input word embeddings before
start of the training, train with this fixed permuted
order and evaluate in the standard manner. This
is repeated 10 times with different permutations
before training. Only slight variation in perfor-
mance metrics can be observed in figure 3 with

0.30 o K

020

1

015

Variation w.rt Base Scores

010

PSP@1: 28.0; PSPE@3: 30.8
Base Scores

P@1: 41.6; P@3: 37.3

Figure 3: Variation in scores after shuffling embed-
ding dimensions randomly before start of training for
AmazonTitles-670K dataset. The boxplot only shows a
variation in the performance metrics from the 10 runs.
Different scores and statistics can be obtained by adding
the values in the y-axis to the base scores on the x-axis.

respect to the median of each boxplot which im-
plies that the order of embedding dimensions has
little or no impact over the results of our model.
InceptionXML+: Table 2 shows a comparison of
the proposed INCEPTIONXML+ pipeline vis-a-vis
L1GHTXML for AmazonTitles-670K dataset. It is
clear that the INCEPTIONXML+ framework signif-
icantly improves upon the dynamic hard-negative
mining technique as proposed in LIGHTXML in
terms of performance in both P@K and PSP@K
metrics. While we notice consistent improvement
for our decoupled architecture (even without de-
tached training) as the fanout is increased for the
label clustering step, the results of our encoder
in the LIGHTXML framework results only show
marginal improvement and a dip later across all

', Tx) | Model | P@1 P@5 | PSP@1 PSP5
Ours 40.37 33.01 | 26.02 31.61

8K, 200 Ours w/o Detaching 4041 33.06 | 2595 31.63
in LightXML Framework | 39.60 32.54 | 25.14 30.78

Ours 4099 33.63 | 2636 3231

16K, 400 Ours w/o Detaching 41.01 33.61 | 2630 3223
in LightXML Framework | 39.87 32.86 | 25.07 31.00

Ours 4142 3423 | 26.64 32.87

32K, 800 Ours w/o Detaching 41.26 34.13 | 2652 32.77
in LightXML Framework | 39.98 33.11 | 24.73 31.01

Ours 4148 34.60 | 26.78 33.31

65K, 1600 Ours w/o Detaching 41.03 3423 | 2649 32.39
in LightXML Framework | 39.67 33.06 | 23.92 30.64

| inDeepXML Pipeline | 38.53 3221 | 27.80 31.62

Table 2: Ablation results on AmazonTitles-670K for the
impact of increasing fan-out of label clustering (L) for
our encoder in different scaling up frameworks where
T'x represents the number of Top K shortlisted clusters.
(Ours - InceptionXML+ Framework)

! WikiSeeAlsoTitles-350K
16

AmazonTitles-670K

5.8 B Ours
Ours w/o SA 14.93

14.5814.73) 14.73 A ;
stec- 14.22
4] e Light XML 1o
13.04
12.42
12 11.08 12.16;
1140 1L6L 1153
10.54
10.04

10

8

PSP@3 PSP@5

37.46
3731 EEE Ours

36.7
o2 Ours w/o SA

36 Astec-3
) LightXML

3.
34

33.37 338

245
ac 31.9232 g
32
30.98
30, 17 30.28]
30
28.79
28
P@3

PSP@3 PSP@5

Figure 4: Performance with and without self-attention layers on WikiSeeAlsoTitles-350K & AmazonTitles-670K

metrics. Note that we keep the shortlisted labels
consistent by doubling the number of shortlisted
meta-labels as the fan-out doubles. It may be also
be noted that as the fan-out increases, our detached
training method improves the results more promi-
nently. This can be attributed to the fact that we
bring the two tasks closer by increasing the fan-out
and the representations learnt by the encoder for
the meta-task become increasingly more relevant to
the extreme-task when the gradients of the extreme
classifier are re-attached during training.

Test data | Pe3 P@5

Original AmazonTitles-670K 37.49 34.60
Permuted Word-order 36.78 £ 0.05 33.92 £0.03

Original WikiSeeAlsoTitles-350K 14.85 11.79
Permuted Word-order 14.50 £ 0.03 11.51 £0.02

Table 3: Comparison of results with original test data
and that obtained by permuting the word order in the
test set for INCEPTIONXML+

Robustness to Lack of Word-order: For testing
the robustness of our method to the order of words
in input data, we train the InceptionXML+ on the
original training data for AmazonTitles-670K, but
randomly permute the words in test set, and eval-
uate the performance. This is repeated 10 times
with different test set permutations (Table 3). We
witness only a minor dip in performance across the
metrics still outperforming ASTEC-3 and demon-
strating the robustness of our encoder to lack of
structure in short-text queries.

Embedding Enhancement Module: The sequen-
tially applied self-attention layers improve INCEP-
TIONXML’s performance by 2-4% on the perfor-
mance metrics as shown in figure 4. However, the
superior representation learning capability of our
encoder for short-text queries are further demon-
strated in Figure 4 as even without the self-attention
layers, our model outperforms the ensemble model
ASTEC-3 and LIGHTXML.

InceptionXML in DeepXML Framework: We
integrate our encoder with the DeepXML (Dahiya
et al., 2021b) pipeline as used by ASTEC and find it
inflexible to improve upon due to the requirement
of fixed representations for their label shortlisting
strategy. Moreover, when using our encoder as a
drop-in replacement, we find our encoder’s perfor-
mance degrades in terms of precision in the Deep-
XML Framework as compared to the performance
in the vanilla LIGHTXML Framework (Table2: last
row). This indicates the overall advantage of using
dynamic hard-negative mining compared to tech-
niques requiring fixed representations.

6.3 Training Time and Model Size

Our model’s training time ranges from 7 hours with
INCEPTIONXML on the WikiSeeAlsoTitles-350K
dataset to 31 hours on AmazonTitles-3M. We ob-
serve ~40% improvement in training time by using
the INCEPTIONXML+ pipeline compared to the
INCEPTIONXML. Furthermore, INCEPTIONXML
is extremely lightweight in terms of model size
containing only 400K parameters while INCEP-
TIONXML+ contains only 630K parameters.

7 Conclusion

In this work, we revisited the architecture of convo-
lution networks for the task of short-text extreme
classification. We recast the conventional convo-
lutional architecture to capture coupled semantics
along the embedding dimensions. Augmented with
a self-attention based order-agnostic Embedding
Enhancement module, we show that the proposed
approach leads to a light-weight encoder which bet-
ters state-of-the-art performance on 4 benchmark
datasets. By addressing the shortcomings of the
training regimen of LIGHTXML, we also develop
an extension to our model - INCEPTIONXML+ that
scales to dataset with 3 millions labels.

References

R. Babbar and B. Scholkopf. 2017. DiSMEC: Dis-
tributed Sparse Machines for Extreme Multi-label
Classification. In WSDM.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal,
Y. Prabhu, and M. Varma. 2016. The extreme classi-
fication repository: Multi-label datasets and code.

K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. 2015.
Sparse Local Embeddings for Extreme Multi-label
Classification. In NIPS.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, and Ion Androutsopoulos. 2019. Large-scale
multi-label text classification on eu legislation. arXiv
preprint arXiv:1906.02192.

W-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and
I. Dhillon. 2020. Taming Pretrained Transformers
for Extreme Multi-label Text Classification. In KDD.

Wei-Cheng Chang, Daniel Jiang, Hsiang-Fu Yu, Choon-
Hui Teo, Jiong Zhang, Kai Zhong, Kedarnath Kol-
luri, Qie Hu, Nikhil Shandilya, Vyacheslav Ievgrafov,
et al. 2021. Extreme multi-label learning for se-
mantic matching in product search. arXiv preprint
arXiv:2106.12657.

K. Dahiya, A. Agarwal, D. Saini, K. Gururaj, J. Jiao,
A. Singh, S. Agarwal, P. Kar, and M. Varma. 2021a.
Siamesexml: Siamese networks meet extreme classi-
fiers with 100m labels. In Proceedings of the Inter-
national Conference on Machine Learning.

K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave,
A. Soni, H. Jain, S. Agarwal, and M. Varma. 2021b.
DeepXML: A Deep Extreme Multi-Label Learning
Framework Applied to Short Text Documents. In
WSDM.

Sebastian Doria. 2019. Simple self-attention
https://github.com/sdoria/simpleselfattention.

H. Jain, V. Balasubramanian, B. Chunduri, and
M. Varma. 2019. Slice: Scalable Linear Extreme
Classifiers trained on 100 Million Labels for Related
Searches. In WSDM.

H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-
label Loss Functions for Recommendation, Tagging,
Ranking and Other Missing Label Applications. In
KDD.

Ting Jiang, Deqing Wang, Leilei Sun, Huayi Yang,
Zhengyang Zhao, and Fuzhen Zhuang. 2021.
Lightxml: Transformer with dynamic negative sam-
pling for high-performance extreme multi-label text
classification. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages
7987-7994.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

S. Khandagale, H. Xiao, and R. Babbar. 2020. Bonsai:
diverse and shallow trees for extreme multi-label clas-
sification. Machine Learning, 109(11):2099-2119.

Y. Kim. 2014. Convolutional Neural Networks for Sen-
tence Classification. In EMNLP.

J. Liu, W. Chang, Y. Wu, and Y. Yang. 2017. Deep
Learning for Extreme Multi-label Text Classification.
In SIGIR.

A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal,
P. Kar, and M. Varma. 2021a. Decaf: Deep extreme
classification with label features. In Proceedings of
the ACM International Conference on Web Search
and Data Mining.

A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar,
and M. Varma. 2021b. Eclare: Extreme classification
with label graph correlations. In Proceedings of The
ACM International World Wide Web Conference.

Jeffrey Pennington, R. Socher, and Christopher D. Man-
ning. 2014. Glove: Global vectors for word represen-
tation. In EMNLP.

Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and
M. Varma. 2018. Parabel: Partitioned label trees for
extreme classification with application to dynamic
search advertising. In WWW.

Kshitij Tayal, Nikhil Rao, Saurabh Agarwal, Xiaowei
Jia, Karthik Subbian, and Vipin Kumar. 2020. Reg-
ularized graph convolutional networks for short text
classification. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics: In-
dustry Track, pages 236-242.

Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun
Yan. 2017. Combining knowledge with deep convo-
lutional neural networks for short text classification.
In IJCAL

Zhongyuan Wang and Haixun Wang. 2016. Understand-
ing short texts. In the Association for Computational
Linguistics (ACL) (Tutorial).

H. Ye, Z. Chen, D.-H. Wang, and Davison B. D. 2020.
Pretrained Generalized Autoregressive Model with
Adaptive Probabilistic Label Clusters for Extreme
Multi-label Text Classification. In ICML.

R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka,
and S. Zhu. 2019. Attentionxml: Label tree-based
attention-aware deep model for high-performance
extreme multi-label text classification. In Neurips.

Hsiang-Fu Yu, Kai Zhong, and Inderjit S Dhillon. 2020.
Pecos: Prediction for enormous and correlated output
spaces. arXiv preprint arXiv:2010.05878.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and
Augustus Odena. 2019. Self-attention generative
adversarial networks. In International conference on
machine learning, pages 7354-7363. PMLR.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/sdoria/SimpleSelfAttention
https://github.com/sdoria/SimpleSelfAttention
https://github.com/sdoria/SimpleSelfAttention
https://www.microsoft.com/en-us/research/publication/understanding-short-texts/
https://www.microsoft.com/en-us/research/publication/understanding-short-texts/
https://www.microsoft.com/en-us/research/publication/understanding-short-texts/

A Appendix

A.1 Dataset Details

AmazonTitles-670K

50000

40000

=1
=
=1
g

Frequency

20000

10000

=3

1 2 3 4 5 6 7 8 9% 1011 12131415 1617 18 19 20
Dacument Length

Figure 5: Sequence lengths of the input instance plot-
ted against corresponding frequency for AmazonTitles-
670K dataset. For this dataset, 70% of training instances
have < 8 words, and 30% have < 4 words.

Figure 5 above details the distribution of sequence
lengths in AmazonTitles-670K dataset. Also,
among the other key features, such as # of train-
ing/test instances and labels, Table 4 (in Appendix
below) confirms the short-text nature of these
datasets. The last three columns give the hyper-
parameter values for the clustering step used in the
INCEPTIONXML+.

A.2 Vocabulary & Word Embedding

As opposed to taking their TF-IDF weighted linear
combination as used in some recent works (Dahiya
etal., 2021b,a; Mittal et al., 2021a) or the more con-
ventional bag-of-words representations approaches
like (Babbar and Scholkopf, 2017; Prabhu et al.,
2018), we use the approach of stacking Glove em-
beddings (Pennington et al., 2014) as done in (Kim,
2014; Liu et al., 2017; Wang et al., 2017).

For a fair comparison, we use exact same size of
vocabulary space as (Dahiya et al., 2021b) for all
benchmark datasets. As state before, we use wide-
space tokenizer and find empirically that our model
works better without using sub-word tokenizers
like word-piece or sub-word based embeddings
like fastText (Joulin et al., 2016).

A.3 Evaluation Metrics

As stated earlier, the main application of short-
text XML framework is in recommendation sys-
tems and web-advertising, where the objective of
an algorithm is to correctly recommend/advertise
among the top-k slots. Thus, for evaluation of
the methods, we use precision at k (denoted by

10

PQk), and its propensity scored variant (denoted
by PSPQk) (Jain et al., 2016). These are standard
and widely used metrics by the XML community
(Bhatia et al., 2016).

For each test sample with observed ground truth
label vector y € {0, 1}* and predicted vector ¢ €
RE, PQF is given by :

1
PQk(y,) =

>

L € topQk(g)

Ye

where top@Fk(y) returns the k largest indices of §.

Since PQF treats all the labels equally, it doesn’t
reveal the performance of the model on tail labels.
However, because of the long-tailed distribution
in extreme classification datasets, one of the main
challenges is to predict tail labels correctly, which
are more valuable and informative compared to
head classes, and it is essential to measure the per-
formance of the model specifically on tail labels.
By alluding to the phenomenon of missing labels
in the extreme classification setting and its rela-
tion to tail-labels, P.S PQk was introduced in Jain
et al. (2016) as an unbiased variant of original pre-
cision at k£ under no missing labels. This is widely
used by the community to compare the relative per-
formance of algorithms on tail-labels, and is also
another metric used in our relative comparisons
among various extreme classification algorithms in
Tables 1 and 2 for main results and ablation tests
respectively.

B Responsible NLP Research Checklist

B.1 Limitations

* Given that the convolution operation spans
over the entire document length, the proposed
method is suited for short and medium length
text sequences.

Our method is agnostic to the presence of
label texts, which despite constraining the
problem to a much smaller subset, have been
shown to help in achieving better prediction
performance.

B.2 Potential Risks

We do not forsee any potential risks of our meth-
ods. Rather, it should be seen to be as energy-
efficient alternatives to large-transformer models
for the core textual and language problems encoun-
tered in search and recommendation.

Datasets | #Features | #Labels | # Training | #Test | APpL | ALpP | #W<4 | #W<8 | L' | Top K | ALpC

WikiSeeAlsoTitles-350K 91,414 352,072 629,418 162,491 5.24 2.33 82% 98% 32K 800 10
WikiTitles-500K 185,479 501,070 1,699,722 | 722,678 | 23.62 4.89 83% 98% 65K 1200 8
AmazonTitles-670K 66,666 670,091 485,176 150,875 | 5.11 5.39 40% 70% 65K 1600 11
AmazonTitles-3M 165,431 2,812,281 1,712,536 | 739,665 | 31.55 | 36.18 15% 52% 131K 1000 22

Table 4: Dataset Statistics. APpL denotes the average data points per label, ALpP the average number of labels
per point. #W is the number of words in the training samples. For our scaled up model, L’ and Top K denote the
number of label-clusters and the value of K for top K clusters chosen per dataset while ALpC denotes the average
labels per cluster.

11

