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Abstract

Humans (e.g., crowdworkers) have a remark-001
able ability in solving different tasks, by sim-002
ply reading textual instructions that define003
them and looking at a few examples. Despite004
the success of the conventional supervised005
learning on individual datasets, such mod-006
els often struggle with generalization across007
tasks (e.g., a question-answering system can-008
not solve classification tasks). A long-standing009
challenge in AI is to build a model that010
learns a new task by understanding the human-011
readable instructions that define it. To study012
this, we introduce NATURAL-INSTRUCTIONS,013
a dataset of 61 distinct tasks, their human-014
authored instructions, and 193k task instances015
(input-output pairs). The instructions are ob-016
tained from crowdsourcing instructions used017
to create existing NLP datasets and mapped018
to a unified schema. Using this meta-dataset,019
we measure cross-task generalization by train-020
ing models on seen tasks and measuring gen-021
eralization to the remaining unseen ones. We022
adopt generative pre-trained language models023
to encode task-specific instructions along with024
input and generate task output. Our results025
indicate that models benefit from instructions026
when evaluated in terms of generalization to027
unseen tasks (19% better for models utilizing028
instructions). These models, however, are far029
behind an estimated performance upperbound,030
indicating significant room for more progress031
in this direction.1032

1 Introduction033

We have witnessed great progress in solving many034

NLP datasets through fine-tuning pre-trained lan-035

guage models (LMs) (Peters et al., 2018; Brown036

et al., 2020). More recent studies show tremendous037

promise in generalization within the set of observed038

tasks through multi-task training and unified en-039

coding (Khashabi et al., 2020; Aghajanyan et al.,040

1Dataset is available at https://git.io/JXg9Z
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Input: She chose to make a salad for lunch on Sunday.
Question: how long did it take for her to make a salad?

Crowdsourcing Instruction: List all 
the words that that are essential for 
answering it correctly. [...] 

Crowdsourcing Instruction: Label 
the type of the temporal phenomena 
in the question. Example are  [...]

Output: 
30mins 

Output: 
making 
salad 

Output: 
no

? supervision with seen  tasks

Output: 
Event 

duration

? evaluation on unseen  tasks

Crowdsourcing Instruction: Label 
"yes" if the sentence contains any 
grammatical issues. Otherwise, [...]

Crowdsourcing Instruction: 
Answer the provided question based 
on a given [...]

Figure 1: We construct the NATURAL-INSTRUCTIONS
dataset from crowdsourcing instructions and instances
of different NLP datasets. We study if models can learn
from seen tasks and generalize to unseen tasks given
their natural crowdsourcing instructions.

2021). However, cross-task generalization – gener- 041

alization to unseen tasks – has generally remained 042

under-explored. For example, can we supervise 043

a model with instances of grammar checking or 044

question answering tasks, yet expect it to solve 045

a different task like question typing (Fig.1). Evi- 046

dently, humans are capable of such generalizations; 047

an average human can follow natural language in- 048

structions to solve a variety of problems, as evident 049

by the success of crowdsourcing platforms (also 050

argued in Efrat and Levy (2020)). In this paper, 051

we study if models can generalize to unseen tasks 052

given their crowdsourcing instructions (Fig.1). 053

We build NATURAL-INSTRUCTIONS, a dataset 054

consisting of natural crowdsourcing instructions 055

for various tasks and their instances. Training on 056

seen tasks Tseen in our dataset, we build a model 057

that learns to follow natural instructions that define 058

a task and perform tasks (i.e., mapping input to out- 059

put). Testing on unseen tasks Tunseen, we evaluate 060

if the model can perform unseen tasks solely from 061

1

https://git.io/JXg9Z


Task Instance-Level
Generalization

Task-Level
Generalization

Training
data X train, Y train pIt, X

train
t , Y train

t q

t P Tseen

Evaluation

xÑ y

where:
px, yq P pX test, Y test

q

px, Itq Ñ y

where:
px, yq P pX test

t , Y test
t q

t P Tunseen

(a) A comparison of task vs instance-level generalization It,
Xt and Yt indicate natural language instructions, input, and
output sets respectively for task t. In the conventional setup,
training and evaluation are done on the instances of the same
task. However, in task-level generalization, a model is expected
to generalize to unseen tasks, where Tunseen X Tseen“ H.
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(b) BART evaluation on unseen tasks (y-axis is perf. on Tunseen)
when supervised with seen tasks (x-axis is |Tseen|). A model us-
ing instructions (It) consistently improves with more observed
tasks. In contrast, models with no access to the instructions
show no sign of improved generalization. Details in §6.3.

Figure 2: The formal definition of generalization to unseen tasks (a) and a summary of its empirical outcome (b).

their instructions and without any task-specific la-062

beled data (Table 2a; right). In contrast to the063

instance-level generalization (Table 2a; left), our064

model uses instruction as additional input, and eval-065

uations are done on tasks that were not observed in066

the training stage.067

We compile NATURAL-INSTRUCTIONS from068

task instructions written by researchers for crowd-069

sourcing existing NLP datasets. Such crowdsourc-070

ing instructions often elaborate a variety of details071

about how a task should (and should not) be done.072

To provide a systematic study of various elements073

of crowdsourcing instructions, we map them to074

a unified schema to cover the most important el-075

ements of task descriptions — such as definition,076

constraints, positive and negative examples. We077

collect tasks in NATURAL-INSTRUCTIONS as min-078

imal stand-alone steps provided to crowdworkers079

to complete a downstream NLP task. For exam-080

ple, tasks collected from QASC (Khot et al., 2020)081

include sub-tasks about generating topic words or082

combining facts, as well as answering multi-hop083

questions. Therefore our dataset not only contains084

typical downstream tasks in NLP, but also the inter-085

mediate subtasks that are not well-represented in086

the common benchmarks. The unified schema and087

the collection of minimal subtasks enable training088

LMs that can generalize across different tasks by089

learning from instructions. In total, our dataset con-090

sists of 61 distinct NLP tasks and 193k instances.091

Our experimental results indicate that LMs learn092

to leverage natural language instructions as they093

show improved generalization to new tasks. For094

example, a BART (Lewis et al., 2019) achieves095

a 19% gain in terms of cross-task generalization096

compared to a model not using instructions (§6).097

Importantly, LMs can generalize better to unseen 098

tasks if they observe more tasks in training (Fig.2b). 099

This upward trajectory suggests the potential for 100

stronger cross-task generalizable models upon scal- 101

ing up the diversity of tasks represented in a meta- 102

dataset of task instructions. Despite the benefits 103

of instructions, we observe a sizable gap between 104

models’ generalization and their estimated upper- 105

bounds (6.4), encouraging the community to work 106

on this challenging problem. 107

Contributions: In summary, the contributions 108

of this work are as follows: (a) we introduce 109

NATURAL-INSTRUCTIONS, a dataset of human- 110

authored instructions curated from existing well- 111

known datasets mapped to a unified schema, provid- 112

ing training and evaluation data for learning from 113

instructions; (b) we build models that can encode 114

instructions and show: (b.1) the benefit of cross- 115

task generalization by leveraging instructions; (b.2) 116

the importance of different elements of instructions 117

in the performance; (b.3) noteworthy headroom for 118

improvement on our benchmark, which hopefully 119

will motivate further work in this direction. 120

2 Related Works 121

Learning from instructions. There is recent lit- 122

erature on the extent to which models follow lan- 123

guage instructions (Hase and Bansal, 2021; Ye and 124

Ren, 2021; Gupta et al., 2021; Zhong et al., 2021). 125

For example, Efrat and Levy (2020) examine if 126

language models can follow crowdsourcing instruc- 127

tions with no further training. On the contrary, our 128

work is pursuing a fundamentally different goal: 129

creating a dataset of crowdsourcing instructions 130

and task instances and formulating cross-task gen- 131

eralization by training models on seen tasks and 132

2



measuring generalization to the remaining unseen133

ones. Weller et al. (2020) construct a crowdsourced134

dataset with short question-like task descriptions.135

Compared to this work, our instructions are longer,136

more complex and natural since they were used to137

collect datasets through crowdsourcing.138

PromptSource and FLAN (Wei et al., 2021; Sanh139

et al., 2021) are two concurrent works that pursue a140

similar goal as ours. A key difference between our141

work to these works is in terms of data collection142

strategy. Our work uses natural instructions created143

by NLP researchers before the dataset instances144

were created by crowd workers, and hence it con-145

tains the complete definition of each task (defini-146

tion, things to avoid, negative examples, etc.). On147

the other hand, instructions in the concurrent work148

are collected retroactively based on the already-149

available task instances. Our natural instructions150

enable evaluating models on how they learn tasks151

given different elements of task descriptions. (See152

§A.5 for further comparisons.) Nevertheless, we153

believe that all these approaches to constructing154

instructions and task categories are complementary155

and the community will benefit from considering156

both towards solving the challenging problem of157

cross-task generalization.158

Prompt engineering. Constructing effective dis-159

crete prompts for language models to perform NLP160

tasks is an active area of research (Schick and161

Schütze, 2020; Reynolds and McDonell, 2021; Liu162

et al., 2021). Such prompts are often extremely163

short and may not include a complete definition of164

complex tasks. In contrast, our instructions encode165

detailed instructions as they were used to collect the166

datasets. Moreover, the goals are different: Most167

prompt-engineering approaches seek prompts with168

higher performance on a particular task, typically169

through assumptions about their target task which170

make them non-trivial to generalize to any other171

task. However, our introduced meta dataset enables172

the measurement of generalization to unseen tasks.173

Beyond standard multi-task learning. Multi-174

task learning is a long-standing goal for AI (Caru-175

ana, 1997) and has led to successful models that176

can support a wider range of tasks (McCann et al.,177

2018; Khashabi et al., 2020; Aghajanyan et al.,178

2021; Ye et al., 2021; Raffel et al., 2020). Most of179

the conventional setups in the multi-tasking litera-180

ture evaluate on instances that belong to the tasks181

that are seen, i.e., their labeled instances were ob-182

served during training (1st column of Table 2a). We183

augment this setup by introducing natural language 184

instructions which enable our models to bridge to 185

tasks that were not seen during training. 186

3 Defining Cross-Task Generalization 187

Here we formally define the problem setup for gen- 188

eralization across tasks. Each task t consists of 189

input/output instances pXt, Ytq and is described in 190

terms of its natural language instructions It. 191

Task-specific models. Standard supervised 192

learning algorithms use task-specific labeled 193

instances to learn a mapping from input x to output 194

y: Mpxq “ y for px, yq P pX train
t , Y train

t q and is 195

evaluated on the test instances of the same (or 196

similar) task pX test
t , Y test

t q. We refer to this as the 197

instance-level generalization (Table 2a; left). 198

Cross-task models. In this setup, the goal is to 199

learn a model M that at inference obtains the out- 200

put y given the input x and the task instruction It: 201

MpIt, xq “ y, for px, yq P pXt, Ytq. In contrast to 202

the task-specific models, no task-specific training 203

data is used to learn the mapping M . We collect 204

NATURAL-INSTRUCTIONS (§4) to study this ques- 205

tion: can a model be trained to follow instructions 206

via training tasks Tseen and be generalized to follow 207

instructions for a task t1 P Tunseen. We refer to this 208

as a task-level generalization (Table 2a; right). 209

4 NATURAL-INSTRUCTIONS 210

NATURAL-INSTRUCTIONS consists of instructions 211

that describe a task (e.g., question answering) and 212

instances of that task (e.g., answers extracted for a 213

given question). Fig.3 shows an example instruc- 214

tion for the task of ‘generating questions that re- 215

quire an understanding of event duration’ accom- 216

panied with positive and negative examples that 217

contextualize the task. Here we introduce a schema 218

for representing instructions (§4.1) and then de- 219

scribe how existing datasets (their crowdsourcing 220

templates) are mapped into our schema (§4.2). 221

4.1 Instruction Schema 222

Instructions used in crowdsourcing various 223

datasets, are written by distinct authors for differ- 224

ent purposes, and they are different in a variety 225

of ways (see Appendix A.2 for their differences.) 226

We introduce a unified schema (Fig.4) to consis- 227

tently represent these diverse forms of instructions. 228

Our instruction schema is the result of our pilot 229

study conducted on a subset of datasets. Below we 230

describe the ingredients of this schema: 231
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Instructions for MC-TACO question generation task 

- Title: Writing questions that involve commonsense understanding of "event 
duration".
- Definition: In this task, we ask you to write a question that involves ?event 
duration", based on a given sentence. Here, event duration is defined as the 
understanding of how long events typically last. For example, ?brushing teeth?, 
usually takes few minutes.
- Emphasis & Caution: The written questions are not required to have a single 
correct answer.
- Things to avoid: Don't create questions which have explicit mentions of 
answers in text. Instead, it has to be implied from what is given. In other words, 
we want you to use "instinct" or "common sense".

- Input: Sentence: Jack played basketball after school, after which he was 
very tired.

-Output: How long did Jack play basketball?
-Reason: the question asks about the duration of an event; therefore it's a 
temporal event duration question.

Positive Example

-Input: Sentence: He spent two hours on his homework.
-Output: How long did he do his homework?
-Reason: We DO NOT want this question as the answer is directly mentioned 
in the text.

-Suggestion: -

Negative Example

- Prompt: Ask a question on "event duration" based on the provided sentence.

Example task instances

- Input: Sentence: It's hail crackled across the comm, and Tara spun to 
retake her seat at the helm.

-Expected Output: How long was the storm?

Instance

- Input: Sentence: During breakfast one morning, he seemed lost in thought 
and ignored his food.

-Expected Output: How long was he lost in thoughts?

Instance

...

Figure 3: An example from our dataset. Note that it
follows the schema provided in Fig.4. See Fig .13 for
more examples.

• TITLE provides a high-level description of a task232

and its associated skill (such as question genera-233

tion, answer generation).234

• PROMPT is a single sentence command that often235

appears before the input instance and connects it236

to the instructions.237

• DEFINITION provides the core detailed instruc-238

tions for a task.239

• THINGS TO AVOID contain instructions regard-240

ing undesirable annotations that must be avoided.241

These help to define the scope of a task and the242

space of acceptable responses.243

• EMPHASIS AND CAUTION are short, but impor-244

tant statements highlighted in the crowdsourcing245

templates which were intended to be emphasized246

or warned against.247

• POSITIVE EXAMPLES contain inputs/outputs248

similar to the input given to a worker/system and249

its expected output, helping crowdworkers better250

understand a task (Ali, 1981).251

• NEGATIVE EXAMPLES contain inputs/outputs252

to emphasize THINGS TO AVOID by providing253

examples that must not be produced.254

Instructions

Title Definition Things to avoid Emphasis/caution Prompt

# of positive examples

Input Output

Reason

# of negative examples

Input Output

Reason Suggestion

Positive Example Negative Example

Instances

# of instances

Input Output

Task Instance

Figure 4: The schema used for representing instruction
in NATURAL-INSTRUCTIONS (§4.1), shown in plate
notation.

• REASON provides explanations behind why an 255

example is positive or negative. 256

• SUGGESTION contains suggestions on how a 257

negative example could be modified to turn it 258

into a positive example. 259

The next section describes the process of map- 260

ping the raw instructions (designed for crowdwork- 261

ers) to our instruction schema. 262

4.2 Constructing NATURAL-INSTRUCTIONS 263

4.2.1 Collecting Data 264

Collecting raw instructions and instances. We 265

use existing, widely adopted NLP benchmarks 266

that are collected via crowdsourcing platforms 267

and hence, come with crowdsourcing templates. 268

In the first step, we identified several datasets 269

and engaged with their authors to get their 270

crowdsourcing templates and raw data. This 271

yields the following datasets: CosmosQA (Huang 272

et al., 2019), DROP (Dua et al., 2019), Essential- 273

Terms (Khashabi et al., 2017), MCTACO (Zhou 274

et al., 2019), MultiRC (Khashabi et al., 2018), 275

QASC (Khot et al., 2020), Quoref (Dasigi et al., 276

2019), ROPES (Lin et al., 2019) and Wino- 277

grande (Sakaguchi et al., 2020).2 278

Splitting crowdsourcing instructions into mini- 279

mal tasks. Almost all the crowdworking instruc- 280

tions include sequences of steps to guide crowd- 281

workers in creating task instances. For example, 282

QASC and MCTACO include 7 and 19 steps in 283

the data creation process, respectively. We divide 284

crowdsourcing instructions into their underlying 285

2We only focus on textual instructions and avoid datasets
that involve visual or auditory steps, mostly focusing on QA
datasets that were available to the authors.
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source dataset task

Quoref
(Dasigi et al., 2019)

question generation
answer generation

QASC
(Khot et al., 2020)

topic word generation
fact generation
combining facts
question generation
answer generation
incorrect answer generation

Table 1: Examples of the datasets and the tasks formed
from them. The extracted tasks are independent annota-
tion assignments in the crowdsourcing templates of the
datasets. The complete list is in Table 8 in Appendix.

category # of tasks # of instances

question generation 13 38k
answer generation 16 53k
classification 12 36k
incorrect answer generation 8 18k
minimal modification 10 39k
verification 2 9k

Total 61 193k

Table 2: Task categories and their statistics.

steps and generate multiple subtasks that are min-286

imal and standalone.3 Table 1 shows subtasks ex-287

tracted for Quoref and QASC. For example, the288

main task in Quoref is to answer a question given a289

context paragraph, but the crowdsourcing template290

consists of two sub-tasks of question generation291

and answer generation with their separate instruc-292

tions. This process results in a more consistent293

definition of tasks, enabling a successful mapping294

of instructions into our schema, in contrast to the295

work of Efrat and Levy (2020) that uses crowd-296

sourcing instructions as-is.297

In total, there are 61 tasks, which are categorized298

into 6 semantic categories (Table 2). We assigned299

these broad categories to the tasks to understand300

their collective behavior in the experiments. It is301

noteworthy that, despite the apparent resemblance302

of the tasks included in the same category, any303

pair of tasks are distinct. For example, while ques-304

tion generation is part of Quoref, CosmosQA, and305

QASC, each has its own separate variant of the306

question generation task (see Fig.12 in Appendix).307

4.2.2 Mapping Raw Instructions to Schema308

We manually fill in the fields of our instruction309

schema with the content from the crowdsourcing310

instructions. For instance, parts of the raw instruc-311

3We eliminate tasks that involve model-in-the-loop.

tions that are highlighted for emphasis are incor- 312

porated as part of our emphasis/caution field. The 313

modifications suggested in this step were applied 314

by one author and were verified by another author.4 315

Improving description quality and consistency. 316

We edit raw instructions to ensure their quality. 317

Particularly, we fix writing issues (typos, ambigui- 318

ties, etc.) and redact repetitions. While repetition 319

often helps in augmenting human understanding, 320

short and concise instructions are often more ef- 321

fective for computers due to their limited attention 322

span (Beltagy et al., 2020). 323

Augmenting examples and reasons. There is a 324

large variance in the number of examples provided 325

in the raw instructions. Instructions often include 326

more positive examples, or some instructions do 327

not include any negative examples (e.g., QASC). 328

Whenever possible, we add negative examples such 329

that each task has at least two negative examples. 330

Furthermore, not all raw instructions contain REA- 331

SONS or SUGGESTIONS for each of their examples. 332

For example, positive examples are usually not ac- 333

companied by explanations, and most datasets do 334

not include suggestions. We add them, wherever 335

such information is missing in the instructions. 336

Collecting input/output instances for subtasks. 337

Most of our tasks are the intermediate steps in 338

the crowdsourcing process. Therefore, to extract 339

input/output instances for each task, we need to 340

parse the raw annotations of crowdworkers for ev- 341

ery step. Since each dataset stores its annotations in 342

a slightly different format, extracting and unifying 343

such intermediate annotations can be non-trivial. 344

Verification. An annotator verified the quality of 345

the resulting data in consultation with dataset au- 346

thors. The annotator iterated on the authors’ feed- 347

back (avg of 3 iters) until they were satisfied. 348

Quality assessment. We ask independent human 349

annotators to answer 240 random instances (20 in- 350

stances from 12 random tasks, used later for our 351

evaluation §5.1). The subsequent evaluation of the 352

human-generated responses results in more than 353

96% accuracy, which indicates that humans can ef- 354

fortlessly understand and execute our instructions. 355

4.2.3 NATURAL-INSTRUCTIONS Statistics 356

In summary, NATURAL-INSTRUCTIONS consists 357

of subtasks each with a set of instructions and in- 358

put/output instances (Fig.3 and 4). The complete 359

4On average, the process of data curation for each task
takes around 5 hrs-34 hrs (details in Appendix; Table 6).
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list of instructions is included in the appendix. In360

total, the dataset includes 61 tasks and 193k in-361

stances. Table 2 shows data statistics for each task362

category.5 On average, instructions contain 4.9363

positive examples and 2.2 negative examples. The364

longest element of instructions is usually DEFINI-365

TIONS with 65.5 tokens and the shortest is TITLE366

with 8.3 tokens (more statistics in Table 7).367

5 Problem Setup and Models368

Here we define different cross-task generalization369

settings (§5.1) and the models (§5.2).370

5.1 Task Splits and Generalizations Types371

Random split. This setup follows the common372

practice in benchmarking NLP models with ran-373

dom data splits. Here, two tasks from each task374

category (Table 2) in NATURAL-INSTRUCTIONS375

are randomly selected for evaluation, and the rest376

of the tasks are used for training. This leads to 12377

tasks in Tunseen and 49 tasks in Tseen.6378

Leave-one-out generalization. To better under-379

stand the nature of cross-task generalization, we380

study more restrictive settings of dividing training381

and evaluation tasks.382

leave-one-category: evaluates how well a model383

generalizes to a task category if it is trained on384

others – no task of that category is in Tseen.385

leave-one-dataset: evaluates how well a model can386

generalize to all tasks in a particular dataset if it is387

trained on all other tasks – no task of that dataset388

is in Tseen. This split prevents any leakage across389

tasks that belong to the same source datasets.390

leave-one-task: evaluates how well a model can391

learn a single task by training on all other tasks.392

5.2 Models393

We build models using pre-trained LMs with394

encoder-decoder architectures BART (Lewis et al.,395

2019) for fine-tuning and GPT3 (Brown et al.,396

2020) for few-shot experiments.397

Encoding instructions and instances. For ev-398

ery problem setup, we map a given instruction It399

and an input instance x into a textual format and400

decode an output y and obtain encpIt, xq. This en-401

coding function is then fed to an encoder-decoder402

model to predict y: M : encpIt, xq Ñ y.403

5We limit the number of instances in each task to 6.5k to
avoid massive instance imbalance.

6Those tasks that do not accept a relatively reliable auto-
matic evaluation are excluded from Tunseen.

Prompt : Iprompt
t

Definition : IDefinition
t

Things to Avoid : Iavoid.
t

Emphasis&Caution : Iemph.
t

NegativeExample1´

input : Ipos. ex.
t , output : Ipos. ex.

t , reason : Ipos. ex.
t

PositiveExample1´

input : Ipos. ex.
t , output : Ipos. ex.

t reason : Ipos. ex.
t

input : x, output :”

Figure 5: Encoding instruction It, where Ict refers to
the text of a component c in the instruction schema.

Encoding instances follows a standard NLP 404

paradigm of mapping an input instance to text. 405

Each instruction It consists of multiple elements as 406

described in our instruction schema (§4.1). Here, 407

we map each element of the instruction to a tex- 408

tual format and append it before the input instance. 409

Fig.5 shows how we encode the full instruction. 410

To study the impact of each instruction element 411

for cross-task generalization, we compare these 412

encodings: (1) PROMPT (2) POS. EXAMPLES, (3) 413

PROMPT + DEFINITION, (4) PROMPT + THINGS 414

TO AVOID, (5) POSITIVE EXAMPLES, and (6) FULL 415

INSTRUCTION. Each of these (e.g., PROMPT and 416

POS. EXAMPLES) correspond to prompting setups 417

in the recent literature (Le Scao and Rush, 2021; 418

Lu et al., 2021). Refer to Appendix C for our 419

study on the impact of other instruction elements. 420

BART. We use BART (base) (Lewis et al., 2019) 421

which allows us to fine-tune its model parameters. 422

This is an encoder-decoder architecture with 140m 423

parameters. For each setup, the input is encoded 424

using different instruction elements, trained on all 425

Tseen tasks, and evaluated on Tunseen (§5.1). 426

GPT3. As a comparison, we evaluate 427

GPT3 (Brown et al., 2020) which is a 175B 428

parameter autoregressive LM (ˆ1.2k larger 429

than BART) and has shown promising results in 430

mimicking demonstrations provided in its prompt. 431

We cannot fine-tune the parameters of this massive 432

model and use it as-is under its default setting 433

on the evaluation tasks in Tunseen (§5.1) using the 434

encoding introduced earlier. 435

6 Experiments 436

Evaluation metrics. We treat all of our tasks as 437

text generation problems and evaluate them with 438

automated evaluation metrics for text generation. 439

6



model ↓ task category → QG AG CF IAG MM VF avg

BART

NO INSTRUCTION 26 6 0 21 33 7 13

PROMPT 27 22 7 22 34 9 20 (+7)
+DEFINITION 35 24 50 25 36 7 30 (+17)
+THINGS TO AVOID 33 24 4 24 58 9 25 (+12)
+POS. EXAMP. 53 22 14 25 17 7 23 (+10)

POS. EXAMP. 55 6 18 25 8 6 20 (+7)
FULL INSTRUCTION 46 25 52 25 35 7 32 (+19)

GPT3 FULL INSTRUCTION 33 18 8 12 60 11 24 (+11)

Table 3: Cross-task generalization with various input encodings under random split (§5.1). Models show improved
results when provided with instructions. The numbers in parenthesis indicate absolute gains compared to ‘NO
INSTRUCTIONS’ baseline. BART archives better performance than GPT3, despite being over 1k times smaller.
Category names: QG: Question Generation, AG: Answer Generation, CF: Classification, IAG: Incorrect Answer
Generation, MM: Minimal Text Modification, VF: Verification. All numbers are ROUGE-L (in percentage).

leave-one-x split → x “ category x “ dataset x “ task

evaluation set Tunseen → AG QG QASC Quoref Winogrande AG QASC QG

NO INSTRUCTIONS 11 6 37 10 11 20
PROMPT+DEFINITION 18 10 43 39 11 22
PROMPT+POS. EXAMP. 18 20 47 33 16 55
FULL INSTRUCTIONS 19 17 51 37 19 56

Table 4: BART generalization under various leave-one-out splits (§5.1). Encoding instructions improve cross-task
generalization across all settings. All numbers are ROUGE-L.

In particular, we use ROUGE-L (Lin, 2004) to au-440

tomatically evaluate the generated outputs.7441

Implementation details. For BART, our models442

are trained for 3 epochs with a learning rate of 5e-5443

for a given training split and input encoding. For444

GPT3, we use the davinci-instruct engine445

and produce outputs with greedy decoding, gener-446

ating up to a maximum number of tokens of 16 (the447

default value). We use the default stop condition448

which is 2 newline tokens.449

6.1 Generalization Under Random Split450

Table 3 reports the results of the BART model451

trained on seen tasks and evaluated on a random452

split of the tasks (§5.1) with a variety of encodings453

that incorporate different elements of the instruc-454

tions (§5.2).8 For comparison, we evaluate GPT3455

which uses no fine-tuning, unlike BART that is456

fine-tuned with the Tseen tasks.457

Instructions benefit cross-task generalization.458

Table 3 (avg column) shows that instructions im-459

prove the generalization of BART. It additionally460

shows that encoding more elements of the instruc-461

tions achieves better results than just using PROMPT462

7Our experiments show that other metrics, e.g.
BLEURT (Sellam et al., 2020) are also correlated with
ROUGE-L, which has also been used in generative QA tasks.

8See Appendix C for an ablation.

or POSITIVE EXAMPLE. Specifically, FULL IN- 463

STRUCTIONS results in +19% gains over a model 464

that is not using instructions for BART and +11% 465

for GPT3. In comparison to GPT3, the BART 466

model trained on seen tasks achieves stronger per- 467

formance despite being ˆ1k smaller than GPT3. 468

Results on task categories. Table 3 shows the 469

performance of our models on different task cat- 470

egories. The benefit of the instruction ele- 471

ments seems to depend on the target task cate- 472

gory. We observe that the question-generation 473

(QG) tasks benefit the most from POSITIVE EX- 474

AMPLES, whereas in classification (CF), POSITIVE 475

EXAMPLES are of little help. We hypothesis this is 476

because it is easier to mimic question-generation 477

based on a few examples, whereas it is difficult to 478

define classes via a few examples, where DEFINI- 479

TION can be more helpful. The models show little 480

improvement in verification (VF). We hypothesize 481

these tasks are inherently more difficult, partially 482

because of their distinctness from the rest of the 483

tasks in the dataset. We hope future work on this 484

line will study a wider variety of tasks and will 485

improve our understanding of such failure cases. 486

6.2 Generalization in Leave-one-out Splits 487

Table 4 reports cross-task generalization results of 488

the BART model under leave-one-x splits (§5.1). 489
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For x “ category, we evaluate two categories490

(answer-generation, question-generation) which491

are not observed during training. For x “ dataset,492

we evaluate on all tasks of the two datasets (QASC,493

Quoref) where no task from these datasets are ob-494

served in training. For x “ task, we evaluate two495

tasks (Winogrande answer generation, QASC ques-496

tion generation). We report results with several497

main encodings. The results indicate that BART498

benefits from instructions in generalizing to new499

tasks, regardless of task splits – confirming our500

earlier findings for the random split setting (§6.1).501

This is particularly interesting for x “ category502

since the trained model can generalize to the tasks503

of a particular semantic category, without being504

exposed to it. Note that the absolute values, across505

different encodings, are lower than the numbers in506

Table 3 which is likely due to the difficulty of this507

setup compared to the random split.508

6.3 Generalization vs. Number of Seen Tasks509

Fig.2b compares the impact of the number of seen510

tasks for cross-task generalization. For supervi-511

sion, we randomly sample a few tasks as Tseen512

and evaluate on 6 tasks (one from each category).513

(each point in the figure is averaged over 5 ran-514

dom subsamples.) The results show that with NO-515

INSTRUCTION encoding there is no tangible value516

in observing more tasks. In contrast, the gener-517

alization of the models that encode instructions518

improves with observing more tasks. This is an519

exciting observation since it suggests that scaling520

up our dataset to more tasks may lead to stronger521

instruction-following systems.522

6.4 Analyses523

Upperbound: Task-specific Models For each524

task, we obtain a task-specific model (§ 3) by525

training BART separately on each task’s annotated526

training data. We evaluate these task-specific mod-527

els to obtain a loose estimate of upperbounds for528

each task. On average, task-specific models score529

66% which is considerably higher than our mod-530

els’ best generalization (32%; Table 3). This indi-531

cates that there is considerable room for improving532

generalization-based models that use instructions.533

Case Study: Impact of Negative Examples534

Crowdsourcing instructions often include negative535

examples to exemplify undesirable responses. We536

study how negative examples in instructions af-537

fect cross-task generalization. In a cases study via538

Model ↓ Split ↓ w/ neg.
examples

w/o neg.
examples

BART

random 32 35
leave-one-x
ë x “ category (AG) 19 21
ë x “ dataset (Quoref) 37 37
ë x “ task (QASC QG) 56 57

GPT3 - 24 44

Table 5: Effect of excluding negative examples from
FULL INSTRUCTION encoding. Negative instructions
are surprisingly difficult for the models to learn from.

several models (Table 5) we observe that they all 539

works better without (w/o) negative examples, con- 540

trary to the previously-observed benefits of other 541

instructional elements (e.g., definition, pos. exam- 542

ples). This is aligned with the previous studies 543

(Xuan et al., 2020; Lin et al., 2003) that discuss 544

the challenges of learning from negative examples. 545

Interestingly, GPT3’s drop (44 vs 24) is more sig- 546

nificant than BART (35 vs 32), showing that BART 547

can partly recover through the training step. 548

Perceived Impact of Instruction Elements We 549

conduct a survey among human annotators to find 550

out the value of instruction elements to humans. Ex- 551

cept for the negative examples which were shown 552

to be difficult for models, we observe similar trends 553

between humans’ perceived value of those ele- 554

ments (Appendix C.4; Table 15) and their contribu- 555

tions to the model performance (Table 3). For ex- 556

ample, humans viewed DEFINITION and THINGS 557

TO AVOID as necessary fields for classification and 558

minimal text modification categories, respectively, 559

which is compatible with our empirical observa- 560

tions (e.g., on both models PROMPT + DEFINITION 561

has the highest score on CF category in Table 14). 562

7 Conclusion 563

In this paper, we studied the goal of building mod- 564

els that generalize to new tasks by encoding and un- 565

derstanding crowdsourcing instructions. We intro- 566

duced NATURAL-INSTRUCTIONS, which is built 567

based on existing crowdsourced datasets, that en- 568

ables building such models and systematically eval- 569

uate them. To the best of our knowledge, this is 570

the first work to show the benefit of instructions 571

towards improved cross-task generalization. Addi- 572

tionally, we observe that our proposed task has a 573

large room for improvement, which we believe will 574

bring more attention to building stronger models 575

that can generalize to a wider range of tasks. 576
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Supplemental Material737

A Datasets and their Templates738

A.1 Division of Crowdsourcing Instructions739

into Minimal Tasks740

Fig. 9 shows an example of how a task is divided741

into multiple subtasks for the MC-TACO dataset.742

MC-TACO has five categories (Event Duration,743

Event Frequency etc.). Each category contributes744

to 2 subtasks one for question generation and one745

for answer generation.746

Number of tasks in each dataset. Fig. 6 illus-747

trates how the number of steps in the data creation748

process varies across the 6 datasets. QASC and749

MC-TACO contain a relatively higher number of750

steps in the data creation process in comparison to751

DROP, Quoref, CosmosQA, and Winogrande.752

Figure 6: Variations in the number of subtasks

A.2 Analysis of Crowdsourcing Templates753

We analyzed crowdsourcing templates of 6 datasets:754

CosmosQA (Huang et al., 2019), DROP (Dua et al.,755

2019), MC-TACO (Zhou et al., 2019), QASC (Khot756

et al., 2020), Quoref (Dasigi et al., 2019), and Wino-757

grande (Sakaguchi et al., 2020). Our intention be-758

hind the analysis is to identify similarities and dif-759

ferences across templates and subsequently decide760

regarding the collection of more templates.761

Size of the instructions. We observe significant762

variation in size across the 6 datasets (Fig. 8). In763

the case of QASC, the instruction size associated764

with each step of the data creation process is very765

high, whereas for Winogrande, it is exactly the766

opposite– instruction size associated with each step767

of the data creation process is very low. Instead,768

the size of the common instruction (i.e., the in-769

struction preceding the first step of the data cre-770

ation process) is high in Winogrande; this is also771

seen for DROP. The major mode of instruction772

varies across datasets. Examples and instructions 773

associated with each step of data creation respec- 774

tively take up the majority of space in Quoref and 775

CosmosQA. MC-TACO relies on examples to ex- 776

plain the crowdsourcing task, while Winogrande 777

and QASC depend mostly on common instructions 778

and instructions associated with each step of the 779

data creation process respectively, to explain the 780

task to the crowdworker. 781

The number of positive/negative examples. 782

Variation in the occurrence of POSITIVE and NEG- 783

ATIVE Examples across datasets has been illus- 784

trated in Fig. 7. Only Winogrande provides an 785

equal number of POSITIVE and NEGATIVE Ex- 786

amples. QASC instructions do not contain any 787

NEGATIVE Examples. Overall, DROP instructions 788

consist of a relatively higher number of examples 789

than other datasets. 790

Figure 7: Variation in the number of positive and nega-
tive examples

Figure 8: Variation in the number of sentences in the
crowdsourcing instructions across datasets

Presence of reasons/suggestions in examples. 791

All datasets except QASC contain both POSITIVE 792

and NEGATIVE Examples. However, Quoref is 793

the only dataset to provide REASONS for all the 794

POSITIVE and NEGATIVE Examples. There are 795

explanations associated with each of the NEGA- 796

TIVE Examples, but the presence of explanations 797

11



associated with POSITIVE Examples varies across798

datasets. Finally, Quoref is the only dataset to799

provide SUGGESTIONS along with the REASONS800

associated with the NEGATIVE Examples.801

A.3 Qualitative Analysis802

Writing Style. There exists significant variation803

in writing style across Instructions of the 6 datasets.804

For instance, though DROP, Quoref and QASC805

have the common objective of fooling an AI model,806

the instructions are stated differently across them.807

DROP Instructions say "There is an AI running in808

the background which will also try to answer the809

question. You won’t be able to submit the ques-810

tion if the AI gives the same response." The writing811

style in Quoref however is different: "We also want812

you to avoid questions that can be answered cor-813

rectly by someone without actually understanding814

the paragraph. To help you do so, we provided an815

AI system running in the background that will try to816

answer the questions you write. You can consider817

any question it can answer to be too easy. However,818

please note that the AI system incorrectly answer-819

ing a question does not necessarily mean that it is820

good." In QASC, variations are as follows: "Two821

AI systems will try to answer your question. Make822

sure you fool at least on AI with an incorrect an-823

swer. If you fool both AIs, you will receive a bonus824

of $0.25."825

Information. We observe that sometimes in-826

structions of a dataset contain information that is827

relevant to several other datasets, which do not con-828

tain similar instruction information. For example,829

Quoref, DROP and CosmosQA are datasets that830

are all based on reading comprehension tasks. Cos-831

mosQA contains a step in the data creation process832

asking users to skip passages containing inappro-833

priate or offensive content. This information is also834

relevant to Quoref and DROP, but is not mentioned835

in their respective instructions.836

Topic. Fig. 10 illustrates some examples where837

the reasoning skill associated with the datasets is838

the same, but the topic varies. The experience839

gained creating data for one topic may help with840

understanding instructions and creating data for841

another dataset with the same underlying reasoning842

skill.843

Hardness. In a typical crowdsourcing task, cer-844

tain tasks may be harder than the others, often these845

are the core tasks, e.g.: question generation, adver-846

sarial data creation, etc. Additional information, 847

especially in the form of tips is always helpful in 848

solving these hard tasks. Figure 12 illustrates that 849

the task of question generation is stated differently 850

in Quoref, CosmosQA, and QASC. QASC men- 851

tions an easy and detailed way to create questions, 852

whereas CosmosQA mentions several different at- 853

tributes of a good quality question. Knowing about 854

the CosmosQA and QASC question generation pro- 855

cesses may help with data creation for Quoref and 856

other such question generation tasks, where less ad- 857

ditional information is provided regarding question 858

creation. 859

Associated reasoning skill. Finally, there are 860

similarities among datasets in terms of their under- 861

lying skill requirements. Fig. 11 illustrates datasets 862

clustered based on similarity in their associated 863

reasoning class. 864

A.4 Data Curation Effort 865

Table 6 shows the effort distribution in the data cu- 866

ration process of NATURAL-INSTRUCTIONS. Step- 867

8 which involves parsing instances is the main 868

bottleneck in the data curation process. Table 8 869

shows the detailed structure of tasks in NATURAL- 870

INSTRUCTIONS. Fig. 13 shows examples of four 871

different tasks in NATURAL-INSTRUCTIONS. 872

step task time per
task

1 Identify crowdsourced dataset and
engage with their authors.

20-30 mins

2 Go through the template and under-
stand the task.

10-15 mins

3 Manually fill fields in the schema
with content from the template.

30-45 mins

4 Iterate over the instructions to en-
sure their clarity while eliminating
the repeated content. Fix writing is-
sue in examples, also typos etc.

2-3 hrs

5 Create negative examples if not
present. Add the missing explana-
tions to the examples.

1-2 hrs

6 Extract the input/output instances
from raw crowdsourcing annota-
tions.

0.5-24 hrs

7 Final inspections of the data to ver-
ify the data quality

0.25- 2hrs

Overall 6-34 hrs

Table 6: Steps taken to curate each task in NATURAL-
INSTRUCTIONS and their estimated times.

12



Figure 9: Dividing a data creation task into multiple subtasks for the MC-TACO dataset.

Figure 10: Variation in topics

Figure 11: Variation in reasoning skills

statistic value

“title” length 8.3 tokens
“prompt” length 12.6 tokens
“definition” length 65.5 tokens
“things to avoid” length 24.1 tokens
“emphasis/caution” length 45.0 tokens
“reason” length 24.9 tokens
“suggestion” length 19.6 tokens
num of positive examples 4.9
num of negative examples 2.2

Table 7: Statistics of NATURAL-INSTRUCTIONS

Figure 12: Variation in Task Specification: Quoref con-
tains a single line instruction whereas the CosomosQA
contains a detailed instruction. QASC on the other
hand, contains examples along with instruction.
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task id title source dataset task category

1 task001_quoref_question_generation Quoref Question Generation
2 task002_quoref_answer_generation Quoref Answer Generation

3 task003_mctaco_question_generation_event_duration MC-TACO Question Generation
4 task004_mctaco_answer_generation_event_duration MC-TACO Answer Generation
5 task005_mctaco_wrong_answer_generation_event_duration MC-TACO Incorrect Answer Generation
6 task006_mctaco_question_generation_transient_stationary MC-TACO Question Generation
7 task007_mctaco_answer_generation_transient_stationary MC-TACO Answer Generation
8 task008_mctaco_wrong_answer_generation_transient_stationary MC-TACO Incorrect Answer Generation
9 task009_mctaco_question_generation_event_ordering MC-TACO Question Generation
10 task010_mctaco_answer_generation_event_ordering MC-TACO Answer Generation
11 task011_mctaco_wrong_answer_generation_event_ordering MC-TACO Incorrect Answer Generation
12 task012_mctaco_question_generation_absolute_timepoint MC-TACO Question Generation
13 task013_mctaco_answer_generation_absolute_timepoint MC-TACO Answer Generation
14 task014_mctaco_wrong_answer_generation_absolute_timepoint MC-TACO Incorrect Answer Generation
15 task015_mctaco_question_generation_frequency MC-TACO Question Generation
16 task016_mctaco_answer_generation_frequency MC-TACO Answer Generation
17 task017_mctaco_wrong_answer_generation_frequency MC-TACO Incorrect Answer Generation
18 task018_mctaco_temporal_reasoning_presence MC-TACO Classification
19 task019_mctaco_temporal_reasoning_category MC-TACO Classification
20 task020_mctaco_span_based_question MC-TACO Classification
21 task021_mctaco_grammatical_logical MC-TACO Classification

22 task022_cosmosqa_passage_inappropriate_binary Cosmosqa Classification
23 task023_cosmosqa_question_generation Cosmosqa Question Generation
24 task024_cosmosqa_answer_generation Cosmosqa Answer Generation
25 task025_cosmosqa_incorrect_answer_generation Cosmosqa Incorrect Answer Generation

26 task026_drop_question_generation DROP Question Generation
27 task027_drop_answer_type_generation DROP Classification
28 task028_drop_answer_generation DROP Answer Generation

29 task029_winogrande_full_object Winogrande Minimal Text Modification
30 task030_winogrande_full_person Winogrande Minimal Text Modification
31 task031_winogrande_question_generation_object Winogrande Question Generation
32 task032_winogrande_question_generation_person Winogrande Question Generation
33 task033_winogrande_answer_generation Winogrande Answer Generation
34 task034_winogrande_question_modification_object Winogrande Minimal Text Modification
35 task035_winogrande_question_modification_person Winogrande Minimal Text Modification

36 task036_qasc_topic_word_to_generate_related_fact QASC Minimal Text Modification
37 task037_qasc_generate_related_fact QASC Minimal Text Modification
38 task038_qasc_combined_fact QASC Minimal Text Modification
39 task039_qasc_find_overlapping_words QASC Verification
40 task040_qasc_question_generation QASC Question Generation
41 task041_qasc_answer_generation QASC Answer Generation
42 task042_qasc_incorrect_option_generation QASC Incorrect Answer Generation

43 task043_essential_terms_answering_incomplete_questions Essential Terms Answer Generation
44 task044_essential_terms_identifying_essential_words Essential Terms Verification

45 task045_miscellaneous_sentence_paraphrasing Miscellaneous Minimal Text Modification
46 task046_miscellaenous_question_typing Miscellaenous Classification
47 task047_miscellaenous_answering_science_questions Miscellaenous Answer Generation

48 task048_multirc_question_generation MultiRC Question Generation
49 task049_multirc_questions_needed_to_answer MultiRC Classification
50 task050_multirc_answerability MultiRC Classification
51 task051_multirc_correct_answer_single_sentence MultiRC Answer Generation
52 task052_multirc_identify_bad_question MultiRC Classification
53 task053_multirc_correct_bad_question MultiRC Minimal Text Modification
54 task054_multirc_write_correct_answer MultiRC Answer Generation
55 task055_multirc_write_incorrect_answer MultiRC Incorrect Answer Generation
56 task056_multirc_classify_correct_answer MultiRC Classification
57 task057_multirc_classify_incorrect_answer MultiRC Classification
58 task058_multirc_question_answering MultiRC Answer Generation

59 task059_ropes_story_generation ROPES Minimal Text Modification
60 task060_ropes_question_generation ROPES Question Generation
61 task061_ropes_answer_generation ROPES Answer Generation

Table 8: Detailed set of tasks included in NATURAL-INSTRUCTIONS
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question generation (from MC-TACO) 

- Title: Writing questions that involve commonsense understanding of "event 
duration".
- Definition: In this task, we ask you to write a question that involves ?event 
duration", based on a given sentence. Here, event duration is defined as the 
understanding of how long events typically last. For example, ?brushing teeth?, 
usually takes few minutes.
- Emphasis & Caution: The written questions are not required to have a single 
correct answer.
- Things to avoid: Don't create questions which have explicit mentions of 
answers in text. Instead, it has to be implied from what is given. In other words, 
we want you to use "instinct" or "common sense".

- Input: Sentence: Jack played basketball after school, after which he was 
very tired.

-Output: How long did Jack play basketball?
-Reason: the question asks about the duration of an event; therefore it's a 
temporal event duration question.

Positive Example

- Input: Sentence: He spent two hours on his homework.
-Output: How long did he do his homework?
-Reason: We DO NOT want this question as the answer is directly mentioned 
in the text.

-Suggestion: -

Negative Example

- Prompt: Ask a question on "event duration" based on the provided sentence.

- Input: Sentence: Still, Preetam vows to marry Nandini if she meets him 
again.

-Expected Output: How long had they known each other?

Task Instance

answer generation (from Winogrande)    

- Title: Answering a fill in the blank question on objects
- Definition: You need to answer a given question containing a blank (_). Your 
answer must be one of the two objects mentioned in the question for example 
"trophy" and "suitcase".
- Emphasis & Caution: -
- Things to avoid: Your answer must not contain a word that is not present in 
the question.

- Input: Context word: fit. Question: The trophy doesn't fit into the brown 
suitcase because _ is too large.

-Output: trophy
-Reason: Answer is one of the objects ("trophy" and "suitcase") in the 
question. Since the blank is a "large" object that didn't fit the 
"suitcase", the answer must be "trophy".

Positive Example

- Input: Context word: fit. Question: The trophy doesn't fit into the brown 
suitcase because _ is too large.

-Output: bottle
-Reason: The issue is that the answer is not one of the objects present 
in the question which are "trophy" and "suitcase". Note that, a valid 
answer must be one of the objects present in the question.

-Suggestion: -

Negative Example

- Prompt: Answer a fill in the blank question that is based on a provided 
context word.

- Input: Context Word: Story. Question: After watching the movie Kelly 
began to work on her own story. The _ was for her research.

-Expected Output: movie

Task Instance

classification (from DROP) 

- Title: Finding the answer type of a reasoning question
- Definition: This task involves annotating the answer type to a given 
question that involve some kind of complex reasoning (including numerical 
reasoning). Note that the questions require looking at more than one part 
of the passage to answer. There are 3 possible answer types (i) spans, (ii) 
numbers and (iii) dates. If the answer can be found in the passage, label it 
as "span". If the answer is a number, label as "number". Similarly, label 
"date" if you think the answer to the given question is a date.
- Emphasis & Caution: -
- Things to avoid: -

- Input: Passage: The outbreak of the Seven Years' War in Europe in 1756 
resulted in renewed conflict between French and British forces in India. The 
Third Carnatic War spread beyond southern India and into Bengal where 
British forces captured the French settlement of Chandernagore in 1757. 
However, the war was decided in the south, where the British successfully 
defended Madras, and Sir Eyre Coote decisively defeated the French, 
commanded by Comte de Lally at the Battle of Wandiwash in 1760. After 
Wandiwash, the French capital of Pondicherry fell to the British in 1761. The 
war concluded with the signing of the Treaty of Paris in 1763, which 
returned Chandernagore [...] Question: Which french settlement did the 
British capture first, Chandernagore or Pondicherry?

-Output: Span
-Reason: The answer "Chandernagore" is a word from the passage. So, the 
answer type is "span".

Positive Example

-

Negative Example

- Prompt: What is the type of the answer corresponding to the given question? 
Number, Date, or Span?

- Input: Passage: Hoping to rebound from their loss to the Patriots, the 
Raiders stayed at home for a Week 16 duel with the Houston Texans. 
Oakland would get the early lead in the first quarter as quarterback 
JaMarcus Russell completed a 20-yard touchdown pass to rookie wide 
receiver Chaz Schilens. The Texans would respond with fullback Vonta 
Leach getting a 1-yard touchdown run, yet the Raiders would answer with 
kicker Sebastian Janikowski getting a 33-yard and a 30-yard field goal. 
Houston would tie the game in the second quarter with kicker Kris Brown 
getting a 53-yard and a 24-yard field goal. Oakland would take the lead in 
the third quarter [...] Question: How many field goals did Kris Brown kick?

-Expected Output: Number 

Task Instance

minimal text modification (from Winogrande) 

- Title: Modifying a fill in the blank question on persons
- Definition: You're given a fill-in-the-blank question where the answer is 
PersonX. You need to minimally change the given question so that the 
answer flips to PersonY. This task typically involves replacing one word i.e. 
the 'trigger word' by its antonym (e.g. changing from "sympathetic" to 
"stern").
- Emphasis & Caution: 1. Your question must contain at least 15 and at 
most 30 words. 2. Your question must have atleast 70% overlapping words 
with the given question 3. Your question must contain only one blank. 4. 
Make sure that PersonX and PersonY have the same gender. 6. In your 
question, PersonX and PersonY should be used only ONCE and PersonX 
should appear earlier than PersonY. [...]
- Things to avoid: 1. You should not change any content in the given 
question beyond a word or two i.e. the trigger word/phrase. [...] 

- Input: Context word: upset. Question: PersonX yelled at PersonY 
because _ was so upset about the news. Answer: PersonX.

-Output: PersonX comforted at PersonY because _ was so upset 
about the news.

-Reason: On replacing the trigger word "yelled" by its antonym 
"comforted", the answer flips to PersonY which is as per the given 
instruction. So, this is a valid question.

Positive Example

- Prompt: What is the type of the answer corresponding to the given 
question? Number, Date, or Span?

-Input: Context Word: day. Question: PersonX learned new 
organizational skills from PersonY because _ 's day schedule 
was very chaotic. Answer: PersonX

-Expected Output: PersonX learned new organizational skills 
from PersonY because _ 's day schedule was very efficient.

task instance

- Input: Context word: step. Question: PersonX was always ahead of 
PersonY, as _ walked with a quick step. Answer: PersonX.

-Output: PersonY was always ahead of PersonY, as _ walked with a 
quick step.

-Reason: Here, the issue is that the usage order of PersonX and 
PersonY has been changed in the generated question. Remember 
that, for a question to be valid, PersonX should appear earlier than 
PersonY.

-Suggestion: -

Negative Example

Figure 13: Examples from NATURAL-INSTRUCTIONS. Each task follows the schema provided in Fig. 4.
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A.5 Qualitative Comparison to PromptSource873

We provide a comparison between our proposed dataset and PromptSource (Sanh et al., 2021). Prompt-874

Source tasks are mainly focused on the common NLP downstream tasks (such as question-answering,875

coreference, NLI, etc). However, since we create tasks from various steps (including the intermediate876

steps) in a data creation process, our instructions contain a broader variety of tasks. For example, tasks for877

chaining facts (task 38; Table 8), question typing (task 27; Table 8) or detecting inappropriate content878

(task 22; Table 8) are unique additions in NATURAL-INSTRUCTIONS. Additionally, since our instructions879

were originally written by various researchers targeted for crowdworkers, they are elaborate and contain880

the complete definition of each task. This is somewhat evident from observation that GPT3 leads to higher881

performance on our instructions (Table 9). Last but not least, since we represent the instructions in a882

structured format, we are able to ablate various elements of the instructions (definition, negative/positive883

examples, etc.) and empirically quantify their contributions (§6).884

Task Model PromptSource NATURAL-INSTRUCTIONS

Quoref QA (002) GPT3-Instruct 43 47
GPT3 2 13

DROP QA (028) GPT3-Instruct 6 10
GPT3 2 3

Table 9: Comparing zero-shot performance of GPT3 on our instructions vs. PromptSource. The instructions
curated in this work, despite being lengthier, lead to higher performance.

task Natural Instructions PromptSource (Sanh et al. 2021)

MC-TACO 
(question 

answering) 

* Definition: In this task we ask you to write answer to a question that involves 
“absolute timepoint" of events, which is defined as understanding of when events usually 
happen. For example, "going to school" usually happens during the day (not at 2 A.M).
* Emphasis: Note that a lot of the questions could have more than one correct answers. We 
only need a single most-likely answer. Please try to keep your "answer" as simple as 
possible. Concise and simple "answer" is preferred over those complex and verbose ones.
* Prompt: Answer the given question on "absolute timepoint" of events.
    Sentence: {{ sentence }}
    Question: {{ question }}

Given the context, 
   {{sentence}} 
observe the following QA pair 
and check if the answer is 
plausible: 
   Question: {{question}} 
   Answer: {{answer}} 

Quoref 
(question 

answering) 

* Definition: In this task, you're expected to write answers to questions involving 
multiple refences to the same entity.  
Emphasis: The answer to the question should be unambiguous and a phrase in the paragraph. 
Most questions can have only one correct answer. 
* Prompt: Answer the given question. Your answer must be a single span in the passage.
    Passage: {{ passage }}
    Question: {{ question }}

Given the following context:
  {{context}}
answer the following question:
  {{question}}

CosmosQA 
(question 

answering) 

* Definition: Craft one correct answer to the question given in input. To make it more 
interesting, try to use non-stereotypical language if possible. Make sure your correct 
answer is reasonably long, consistent with the context, and requires common sense (instead 
of explicit extraction from the context.)
* Emphasis: 1. In your answer, use as few words as possible from the given context. 2. Use 
a response that is uncommon/non-stereotypical, so that it is less predictable. 3. To be 
less repetitive, please vary your language for each question.
* Prompt: Craft one correct answer to the question given in input.
    Context: {{ context }}
    Question: {{ question }}

{{ context }}
According to the above context, 
choose the best option to 
answer the following question.
  Question: {{ question }}
  Options: {{answer_choices}}

DROP 
(question 
answering)

* Definition: This task involves creating answers to complex questions, from a given 
passage. Answering these questions, typically involve understanding multiple sentences. 
Make sure that your answer has the same type as the "answer type" mentioned in input. The 
provided "answer type" can be of any of the following types: "span", "date", "number". A 
"span" answer is a continuous phrase taken directly from the passage or question. You can 
directly copy-paste the text from the passage or the question for span type answers. If 
you find multiple spans, please add them all as a comma separated list. Please restrict 
each span to five words. A "number" type answer can include a digit specifying an actual 
value. For "date" type answers, use DD MM YYYY format e.g. 11 Jan 1992. If full date is 
not available in the passage you can write partial date such as 1992 or Jan 1992. 
* Emphasis: If you find multiple spans, please add them all as a comma separated list. 
Please restrict each span to five words.
* Prompt: Write an answer to the given question, such that the answer matches the "anwer 
type" in the input.
    Passage: {{ passage }}
    Question: {{ question }}

Context: {{passage}}
I am trying to figure out the 
answer to the question from the 
above context. Can you tell me 
the answer?
  Question: {{question}}
  Answer:

Winogrande 
(pronoun 
resolution)

Definition: You need to answer a given question containing a blank (_). Your answer must 
be one of the two objects mentioned in the question for example "trophy" and "suitcase".
Things to avoid: Your answer must not contain a word that is not present in the question. 
Prompt: Answer a fill in the blank question that is based on a provided context word.
    Sentence: {{ sentence }}

The _ in the sentence below 
refers to {{option1}}. True or 
False?
    {{sentence}}

Table 10: Qualitative comparison of the task instructions for several shared tasks among NATURAL-
INSTRUCTIONS and PromptSource (Sanh et al., 2021).

16



B Building Baselines for885

NATURAL-INSTRUCTIONS886

In this section, we provide several details on the887

baselines included in our work.888

B.1 Encoding of the instructions889

According to our schema (§4.1), each instruction It
for the t-th task is a set that contains the following
fields:

It “
 

I title
t , Idef.

t , I avoid
t , I emph.

t , Iprompt
t , Ipos. ex.

t , Ineg. ex.
t

(

To feed the instances to LMs, we first encoder890

them into plain text. Let encpI, xq define a function891

that maps a given instruction I and input instance892

x to plain text. Evidently, there are many choices893

for this function. In our study, we consider the894

following encodings:895

NO-INSTRUCTIONS encoding. This encoding896

is the conventional paradigm where no instructions897

exist:898

encpIt, xq :“input : x

output :”
(1)899

PROMPT encoding. In this encoding, we append900

the prompt message before the input:901

encpIt, xq :“Prompt : Iprompt
t

input : x

output :”
(2)902

PROMPT + DEFINITION encoding. In this en-903

coding, the prompt message and the task definition904

appear before the input:905

encpIt, xq :““Definition : Idef.
t

Prompt : Iprompt
t

input : x

output :”

(3)906

Intuitively, this encoding is more informative and907

more complex than “prompt” encoding.908

FULL INSTRUCTIONS encoding. This encod- 909

ing contains all the instruction content: 910

encpIt, xq :““Definition : Idef.
t

Prompt : Iprompt
t

Things to Avoid : Iavoid.
t

Emphasis&Caution : Iemph.
t

“NegativeExample1´

input : Ipos. ex.
t pinputq

output : Ipos. ex.
t poutputq

reason : Ipos. ex.
t preasonq

NegativeExample2´

. . .

“PositiveExample1´

input : Ipos. ex.
t pinputq

output : Ipos. ex.
t poutputq

reason : Ipos. ex.
t preasonq

PositiveExample2´

. . .

input : x

output :”

(4) 911

where encexpItq is an alternating encoding pos- 912

itive and negative examples. We include as many 913

examples as possible, before exceeding the input 914

limit. 915

POSITIVE EXAMPLES encoding. This encod- 916

ing contains only positive examples of the subtask 917

(no task description, etc). 918

encpIt, xq :“ input : Ipos. ex.
t pinputq

output : Ipos. ex.
t poutputq

. . .

input : x

output :”

(5) 919

Such example-only have been used in several re- 920

cent studies in the field (Zhao et al., 2021). 921
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C Analysis on Baseline Results922

C.1 Comparison to Raw Instructions923

We seek to understand the value of breaking the tasks into sub-tasks and mapping them into our proposed924

schema (§4.2). We compute performance of raw instructions (first sub-task of four datasets), in the same925

vein as (Efrat and Levy, 2020)’s setup. We compare this to our FULL INSTRUCTION - NEG EXAMPLES926

encoding. The results in Table 11 indicate that GPT3 leads to higher performance with our encoding (2nd927

row) compared to raw instructions (first row). Weak performance of LMs on raw instructions aligns with928

(Efrat and Levy, 2020)’s finding that “language model performs poorly”.929

Quoref
MCTaco

CosmosQA

QASC

raw instructions 12.5 5.00 6.9 3.7
our schema 25.8 42.6 17.7 51.3

Table 11: Comparing GPT3 performance on raw instructions vs. our encoding. All numbers are ROUGE-L.

This might be partly due to the verbose language of the raw instructions: the average length of the raw930

instructions is 2.5k tokens, in comparison to 950 tokens for our encoding. While repetition often helps931

human understanding, concise instructions seem to be more effective for computers.932
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C.2 An Ablation Study of Instructional933

Elements934

We conduct an ablation study with GPT3 on 3 dis-935

tinct tasks (answer generation from Winogrande;936

question generation from QASC; verifying tempo-937

ral reasoning category of a given question from938

MC-TACO). Table 12 (top) shows the effect of939

eliminating various fields in the encoding while940

Table 12 (bottom) indicates the gains from adding941

each field. The overall observation is that GPT3942

benefits the most from positive examples, mildly943

from definition, and deteriorates with negative ex-944

amples. We hypothesize it is easier for GPT3 to945

mimic the patterns in positive examples while utiliz-946

ing negative examples requires deeper understand-947

ing.948

encoding ↓ avg score 
(R-L)

relative 
change (%) 

all instructions 0.18 -
   - definition 0.18 1.9%
   - emphasis 0.20 15.1%
   - things to avoid 0.19 9.4%
   - things to avoid and emphasis 0.19 5.7%
   - things to avoid, emphasis, definition 0.19 9.4%
   - things to avoid, emphasis, def., prompt 0.18 1.9%
   - examples' explanations 0.20 11.3%
   - negative examples 0.23 28.3%
   - positive examples 0.13 -24.5%
   - positive examples, negative examples 0.14 -22.6%

encoding ↓ avg score 
(R-L)

relative 
change (%) 

prompt 0.13 - 
   + definition 0.16 23.1%
   + emphasis 0.14 10.3%
   + things to avoid 0.15 15.4%
   + things to avoid and emphasis 0.15 15.4%
   + negative examples (no explanation) 0.11 -12.8%
   + positive examples (no explanation) 0.21 59.0%
   + positive or negative ex. (no explanation) 0.20 53.8%
   + definition, positive ex. (no explanation) 0.20 56.4%
   + definition, negative ex. (no explanation) 0.13 0.0%

Table 12: An ablation study of the different fields in-
cluded in NATURAL-INSTRUCTIONS based on GPT3.
This model benefits the most from POSITIVE examples
and the least from NEGATIVE examples.

C.3 Error Analysis 949

We conduct error analysis on 3 distinct tasks (an- 950

swer generation from Winogrande; question gen- 951

eration from QASC; incorrect answer generation 952

for MC-TACO event-duration questions). We ran- 953

domly select 30 samples from each of these tasks 954

and categorize the associated errors. Table 13 sum- 955

marizes our analysis. We observe that GPT3 mainly 956

suffers from generating redundant content and ig- 957

noring the instructions provided. On the other hand, 958

our BART model provides more control, however, 959

it fails to generate proper output. 960

Here are example generations from each cate- 961

gory of errors: 962

Does not follow instruction and generate an invalid question
GPT3 input:[...]input: Fact: Populations of viruses do not grow
through division because they are parasites. output:
GPT3 output: Populations of viruses do not grow through divi-
sion?

963

Generates a nonsensical/vague question
BART input:[...]input: Fact: graduations are used for measuring
the volume of substances. output: ?
BART output: How many substances are there in volume?

964

Copies the given fact or a subset of it
BART input:[...] input: Fact: If someone is not breathing, begin
with ventilation. output: ?
BART output: If someone is breathing, begin with ventilation.

965

Explains the question after generating it
GPT3 input:[...] input: Fact: Marmots in underground burrows
will be protected from wild fire. output:
GPT3 output: What will be protected? reason: It’s a good ques-
tion because it is...

966

Generates a yes/no question
BART input:[...] input: Fact: Lack of saliva hinders the break
down of food into components the body can absorb. output: ?
BART output: Does saliva hinders the break down of food into
components the body can absorb?

967

Generates candidate answers as output
GPT3 input:[...] input: Fact: Marmots in underground burrows
will be protected from wild fire. Output:"
GPT3 output: a) Burrows will protect marmots from a wild fire?

968

Generates questions whose answer does not exist
GPT3 input:[...]input: Fact: electrical energy is converted to heat
energy to cook bread. output:
GPT3 output: How is electrical energy converted to heat energy
to cook bread?

969

Generates a Generic Question Independent of Context
GPT3 input:[...] input: Fact: Populations of viruses do not grow
through division because they are parasites. output:
GPT3 output: What does the given fact mean?

970
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error type GPT3 BART

does not follow instruction and generate an invalid question 14 8
generates a nonsensical/vague question 4 47
copies the given fact or a subset of it 8 3
explains the question after generating it 6 0
generates a yes/no question 12 4
generates candidate answers as output 4 0
generates questions whose answer does not exist 4 3
generates generic questions independent
of the given context 6 0

Table 13: Percentage of errors on QASC QG task (§C.3). The numbers do not sum to 100 since the error types are
not mutually exclusive.

BART GPT3

task category → QG AG CF IAG MM VF avg QG AG CF IAG MM VF avg

NO INSTRUCTION 26 6 0 21 33 7 13 - - - - - - -

PROMPT 27 22 7 22 34 9 20 33 32 14 13 73 16 30
+DEFINITION 35 24 50 25 36 7 30Ò (+50) 36 35 40 14 70 16 35Ò (+17)
+THINGS TO AVOID 33 24 4 24 58 9 25Ò (+25) 28 33 11 16 68 14 28Ó (-7)

+EMPHASIS 38 23 16 26 49 3 26Ò (+30) 29 28 18 16 72 16 30
+POS. EXAMP. 53 22 14 25 17 7 23Ò (+15) 43 49 29 21 70 36 41Ò (+37)
+DEFINITION+POS. EXAMP. 51 23 56 25 37 6 33Ò (+65) 43 50 45 23 70 32 44Ò(+47)
+POS, NEG EX+ EXPLAN. 50 21 27 25 50 7 30 Ò (+50) 32 19 8 12 61 13 24Ó(-20)

POS. EXAMP. 55 6 18 25 8 6 20 30 32 15 16 68 23 31Ò(+3)

FULL INSTRUCTION 46 25 52 25 35 7 32Ò (+60) 33 18 8 12 60 11 24Ó(-20)
- EXAMPLES 40 24 36 25 55 8 31Ò (+55) 31 34 39 14 69 13 33Ò(+10)
- NEG. EXAMP. 52 30 50 25 47 8 35Ò (+75) 43 54 44 21 70 32 44Ò(+47)

Table 14: Full BART and GPT3 results with various input encodings for different task categories, under random
split (§5.1). Both models show improved results when encoded with instructions, comparing relative gains in-
dicated in the ‘avg’ columns (in percentage compared to PROMPT encoding.) Category names: QG: Question
Generation, AG: Answer Generation, CF: Classification, IAG: Incorrect Answer Generation, MM: Minimal Text
Modification, VF: Verification.
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C.4 User Study to Find Important Task-Specific Instruction Fields 971

We ask our quality assessment annotators to also specify which instruction fields help them understand the 972

task and answer prompts. For each of the 12 tasks in our evaluation set, we ask: Which instruction field 973

helps you the most to understand the task and answer questions and why? Remember, on removing this 974

field significant major information should get lost. We compile these results category-wise, and present 975

them in Table 15. In particular, there are two tasks Classification (CF) and Minimal Text Modification 976

(MM) for which humans find only a single instruction field to be important. We find that models also 977

find the same fields to be most important, as evinced in Table §3), where the performance of models 978

with these fields is higher than the rest. Interestingly, this is similar to the patterns observed in the model 979

performance (Table §3). 980

Category Helpful Fields Explanation

Question Generation (QG) 1. DEFINITION - Provides a holistic picture of the task.
2. EMPHASIS & CAUTION - Provides key information for solving the task.
3. POSITIVE EXAMPLES - This gives an idea of what is expected in the output.
4. NEGATIVE EXAMPLES - Good to know the common mistakes people do.

Answer Generation (AG) 1. PROMPT - It limits the exploration space to question spans.
2. DEFINITION - Provides a general understanding of the task.
3. POSITIVE EXAMPLES - Reason field is very helpful.

Classification (CF) 1. DEFINITION - The task is unclear without this field.

Incorrect Answer Generation (IAG) 1. DEFINITION - Helps understand the utility of such a task.
2. EMPHASIS & CAUTION - Source of some useful shortcuts.
3. POSITIVE EXAMPLES - Helps in understanding the type of questions asked.

Minimal Text Modification (MM) 1. THINGS TO AVOID - Provides critical information.

Verification (VF) 1. DEFINITION - Makes the task easy to understand.
2. THINGS TO AVOID - Contains useful tips required for this task.
3. POSITIVE EXAMPLES - Exemplifies task understanding.
4. NEGATIVE EXAMPLES - Helps avoid potential mistakes.

Table 15: User study to find out importance of various fields in our instruction schema (§C.4). Human annotators
(similar to model predictions in (Table 3) find DEFINITION and THING TO AVOID helpful for Classification and
Minimal Text Modification task, respectively.
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