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Abstract
With the launch of ChatGPT, large language001
models (LLMs) have attracted global attention.002
In the realm of article writing, LLMs have wit-003
nessed extensive utilization, giving rise to con-004
cerns related to intellectual property protection,005
personal privacy, and academic integrity. In re-006
sponse, AI-text detection has emerged to distin-007
guish between human and machine-generated008
content. However, recent research indicates009
that these detection systems often lack robust-010
ness and struggle to effectively differentiate011
perturbed texts. Currently, there is a lack of012
systematic evaluations regarding detection per-013
formance in real-world applications, and a com-014
prehensive examination of perturbation tech-015
niques and detector robustness is also absent.016
To bridge this gap, our work simulates real-017
world scenarios in both informal and profes-018
sional writing, exploring the out-of-the-box per-019
formance of current detectors. Additionally, we020
have constructed 12 black-box text perturba-021
tion methods to assess the robustness of current022
detection models across various perturbation023
granularities. Furthermore, through adversarial024
learning experiments, we investigate the im-025
pact of perturbation data augmentation on the026
robustness of AI-text detectors. After the re-027
view process, we will publicly release all our028
code and data.029

1 Introduction030

With the rise of LLMs (OpenAI, 2023; Anil et al.,031

2023; Touvron et al., 2023), concerns about the032

misuse of generated content have been grow-033

ing (McKenna et al., 2023; Bian et al., 2023; Fer-034

rara, 2023), making AI-Text detection a topic of035

significant attention from the research commu-036

nity. Several methods for detecting AI-generated037

text have recently been proposed, including fine-038

tuned classifiers (Uchendu et al., 2020; Liu et al.,039

2023b), statistical approaches (Lavergne et al.,040

2008; Mitchell et al., 2023), watermarking (Atal-041

lah et al., 2001; Kirchenbauer et al., 2023a), and042
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Figure 1: Performance of state-of-the-art AI-text detec-
tors significantly decreases after introducing perturba-
tion attacks. The green dashed threshold line represents
the adversarially trained RoBERTa classifier detector,
achieving a detection accuracy of 0.912 on the mixed
test data of original and perturbed text.

retrieval techniques (Krishna et al., 2023). Addi- 043

tionally, online education service providers such 044

as Copyleak1 and GPTZero (Tian and Cui, 2023) 045

have introduced AI text detection services. How- 046

ever, criticisms regarding misclassification results 047

from various users have surfaced. Simultaneously, 048

in domains like essay writing, there is a demand 049

from users to bypass AI text detection using pertur- 050

bation methods. Numerous open-source tools like 051

GPTzzz2 and GPTZero-Bypasser3 have emerged 052

to address this need. 053

Recent efforts have begun to explore the vul- 054

nerabilities of current detection models (Sadasivan 055

et al., 2023; Liang et al., 2023; Tripto et al., 2023), 056

utilizing methods such as rewrite and substitution 057

to modify AI-generated content, rendering it indis- 058

tinguishable from human-authored text. This under- 059

scores the importance of investigating and identify- 060

ing potential weaknesses in current detectors before 061

their deployment, ensuring their robustness and 062

1https://copyleaks.com/ai-content-detector
2https://github.com/Declipsonator/GPTZzzs
3https://github.com/o2161405/GPTZero-Bypasser
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mitigating potential risks. Simultaneously, more063

comprehensive work has started to summarize the064

issues with current detection methods and propose065

corresponding robustness enhancement techniques,066

such as RADAR (Hu et al., 2023) and retrieval (Kr-067

ishna et al., 2023). Despite enhancing the models’068

defense against specific types of text perturbations069

to some extent, these works still face two major070

limitations. Firstly, these efforts primarily focus071

on AI text detection in specific writing scenarios.072

Secondly, they typically involve only one type of073

perturbation, i.e., paraphrasing. In practical appli-074

cations, detectors are likely to encounter a more075

complex and diverse set of scenarios, involving076

various application contexts and potential text per-077

turbations.078

To this end, our work aims to investigate and079

analyze the accuracy and robustness of various AI080

text detection algorithms in simulating real writing081

scenarios. Specifically, within three categories of082

AI text detection methods, we evaluate six repre-083

sentative off-the-shelf models on data generated084

by ChatGPT. To simulate users’ writing demands,085

we categorize AI-generated text into professional086

and informal writing scenarios and test detection087

accuracy accordingly. As expected, current text088

detection models exhibit lower accuracy in profes-089

sional writing scenarios. Furthermore, following090

an exploration of current text perturbation methods,091

we devise 12 types of text perturbations across four092

granularities. We apply these perturbations to the093

test data, generating 120,000 adversarial samples094

to investigate the robustness of current detection095

systems. The results reveal that, apart from the ex-096

tensively studied paraphrase methods, word-level097

perturbations also significantly reduce AI text de-098

tection rates. Building on earlier work, we further099

delve into exploring the minimum budget for ad-100

versarial learning to train robust text detectors. Ad-101

ditionally, we conduct preliminary investigations102

into transfer learning in the context of adversarial103

text detection.104

Our work can be summarized into three parts: 1)105

We validate the detection accuracy of three types of106

current detection models in both professional and107

informal writing scenarios. This analysis identi-108

fied a lack of generalization performance in current109

detection systems. 2) We systematically and hierar-110

chically design AI-Text perturbation methods. The111

results demonstrated that perturbations at various112

granularities significantly reduced detection per-113

formance. Additionally, we observed inconsistent114

performances of different detection models when 115

faced with perturbations. 3) Budget and transfer 116

experiments provide references and suggestions for 117

future efforts to enhance the robustness of AI-Text 118

detectors. 119

2 Related Works 120

AI-Text Detection. The current methods for AI- 121

text detection can be categorized into four classes: 122

1) Statistical approaches leverage statistical tools, 123

using metrics such as information entropy, perplex- 124

ity, and n-gram frequencies to differentiate between 125

human and machine-generated text in a zero-shot 126

manner (Lavergne et al., 2008; Gehrmann et al., 127

2019; Solaiman et al., 2019; Mitchell et al., 2023; 128

Su et al., 2023). Notable commercial applications 129

include GPTZero (Tian and Cui, 2023), and re- 130

cent open-source efforts are exemplified by De- 131

tectGPT (Mitchell et al., 2023), which defines a 132

curvature-based criterion using a log probability 133

function for AI detection. 2) Watermark-based 134

methods (Atallah et al., 2001, 2002; Kirchenbauer 135

et al., 2023a; Liu et al., 2023a) is also evolv- 136

ing with the emergence of LLMs, where Kirchen- 137

bauer et al. (2023a) randomly partition the vocab- 138

ulary into a greenlist and a redlist during gener- 139

ation, based on the hash of previously generated 140

tokens. 3) Classifier-based detectors (Uchendu 141

et al., 2020; Deng et al., 2023; Mireshghallah et al., 142

2023; Guo et al., 2023; Liu et al., 2023b) based 143

on supervised data typically utilize RoBERTa (Liu 144

et al., 2019) to train binary classifiers for text detec- 145

tion. Recent efforts includes the OpenAI’s release 146

of detection tools (Solaiman et al., 2019), and the 147

RADAR (Hu et al., 2023), which specifically ad- 148

dress the importance of perturbation attacks, and 149

enhance detection robustness through adversarial 150

learning using paraphrasers. 4) Retrieval-based 151

method proposed by Krishna et al. (2023) involves 152

collecting historical output data from language 153

models and assessing the AI generation likelihood 154

of the text through semantic matching. 155

Adversarial Attacks. In addition, some stud- 156

ies (Ren et al., 2023; Tripto et al., 2023; Lu et al., 157

2023; Liang et al., 2023; Cai and Cui, 2023) have 158

addressed the impact of text perturbations on AI 159

text detection. For instance, both Sadasivan et al. 160

(2023); Krishna et al. (2023) proposed to use 161

paraphraser as the attacker to rewrite AI content, 162

demonstrating effective attacks on many detectors. 163

Kirchenbauer et al. (2023b) validated the detection 164
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capabilities of watermarking detectors in scenarios165

involving a mix of human and machine-generated166

text. Furthermore, Shi et al. (2023) examined the167

significant impact of synonym perturbations on text168

detection performance. Kumarage et al. (2023) de-169

signed prompts to generate outputs more similar170

to human text, evading detection by existing de-171

tectors. Notably, a very recent work, Macko et al.172

(2024) focused on designing perturbations such as173

paraphrasing, back translation, and substitution in174

a multilingual environment. They demonstrated175

the vulnerability of current multilingual AI text176

detectors and the effectiveness of adversarial train-177

ing. In comparison to their work, our study con-178

centrates on the detectability of AI-generated text179

in real-world scenarios. We employ AI-generated180

text outputs that closely resemble human output,181

design a more comprehensive set of perturbation182

attacks, and importantly, extend our focus beyond183

simple classifier methods. We evaluate the detec-184

tion performance not only for classifiers but also185

for retrieval and other detection tools.186

3 Experimental Setup187

In this section, we initially surveyed the current188

state-of-the-art AI-text detection frameworks. Sub-189

sequently, considering the presence of intentional190

or unintentional perturbation attacks in real-world191

applications that can impact the performance of de-192

tection models, we synthesized and implemented193

12 black-box perturbation methods. Here, “black-194

box” refers to perturbation algorithms lacking ac-195

cess to accurate internal information, such as gradi-196

ents or hidden states, of the detection model. Mean-197

while, building upon the scoring-based configura-198

tion of existing detectors, we further explored the199

challenges associated with metric selection and200

threshold determination in the evaluation.201

3.1 Off-the-Shelf Detectors202

As described in Section 2, the current research in203

AI detection primarily focuses on four directions.204

However, watermarking has not been extensively205

applied to commercial or open-source LLMs, lack-206

ing practical application scenarios. Therefore, we207

consider three readily deployable detection mod-208

els: 1) statistical models, i.e., DetectGPT (Mitchell209

et al., 2023) and GPTZero (Tian and Cui, 2023);210

2) retrieval-based models (Krishna et al., 2023)211

including BM25 (Robertson et al., 1995) and P-212

SP (Wieting et al., 2022); 3) classifier models like213

OpenAI’s text classifier (Solaiman et al., 2019) and 214

RADAR (Hu et al., 2023). Additionally, to accu- 215

rately assess the impact of training data on classifier 216

detectors, we followed OpenAI’s approach to train 217

a RoBERTa-base as a comparative baseline on two 218

datasets we employed. 219

Furthermore, considering the dependence of re- 220

trieval models on corpus data, we also evaluated the 221

influence of documents from four different sources 222

on detection performance. The specific details will 223

be elaborated in Section 4.1. In summary, we as- 224

sessed a total of 6 off-the-shelf detection models 225

and expanded our evaluation to cover 13 experi- 226

mental settings. 227

3.2 Adversarial Attacks 228

To simulate real-world scenarios where users may 229

modify AI-generated text for cheating purposes and 230

also to account for noise in information transmis- 231

sion, we devised 12 perturbation attack methods 232

across four granularities, i.e., document, sentence, 233

word, and character. Some attack strategies have 234

been validated in prior research (Cai and Cui, 2023; 235

Krishna et al., 2023; Shi et al., 2023), while others 236

were the first time to be proposed and explored by 237

our work. 238

3.2.1 Document-level Perturbations 239

Paraphrase. We employ the highly effective DIP- 240

PER (Krishna et al., 2023) rewriter with the lex=40, 241

order=40, which is the most intensive settings in 242

their paper. 243

Back-Translation. Leveraging Neural Machine 244

Translation (NMT) models, we chose French as 245

intermediary language, and utilized the translation 246

models from Helsinki-NLP (Tiedemann and Thot- 247

tingal, 2020). 248

3.2.2 Sentence-level Perturbations 249

Sentence Back-Translation. Similar to full-text 250

Back Translation, but randomly selecting sentences 251

as translation windows. Up to 3 pieces were per- 252

turbed within a maximum window of 5 sentences. 253

MLM Prediction. Randomly masking sentences 254

in the original text and replacing them using the 255

BART-large (Lewis et al., 2020) model. Each doc- 256

ument underwent random perturbation of 2-5 sen- 257

tences. 258

3.2.3 Word-level Perturbations 259

MLM Prediction for Words. Similar to the sen- 260

tence MLM prediction, using the BERT-base (De- 261
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vlin et al., 2019) model to replace random tokens262

with synonyms. To control text quality, the max-263

imum word perturbation ratio per article did not264

exceed 20%. This setting is also applied for all our265

word perturbations.266

Adverb Insertion. Randomly inserting a relevant267

adverb before verbs in the original text.268

Spelling Errors. Simulating situations where users269

misspell words due to ignorance, implemented270

through a predefined spelling error dict.271

Keyboard Typos. Simulating typos during key-272

board input, including substitution of nearby char-273

acters, swapping adjacent characters, inserting irrel-274

evant characters, and deleting specific characters.275

3.2.4 Character-level perturbations.276

Word Merging. Simulating scenarios in informa-277

tion transmission contexts where spaces between278

words are missing. Introducing 3-10 randomly cho-279

sen word merging errors per article.280

Case of the First Character of a Word. Simulat-281

ing scenarios where the first character of a word is282

incorrectly capitalized.283

Punctuation Removal. Simulating scenarios284

where punctuation is lost, removing up to 30% of285

punctuation marks from the original text.286

Space Insertion. Building upon prior work (Cai287

and Cui, 2023), we control the insertion of spaces288

to between 5-10 spaces per article.289

3.3 Evaluation Metrics290

Detection. The prevailing practice in current re-291

search is to use the AUC-ROC to comprehensively292

evaluate the discriminative capability of detec-293

tors for AI-generated text (Mitchell et al., 2023;294

Kirchenbauer et al., 2023a). However, in the real-295

world deployment of AI text detection, it is essen-296

tial to select a fixed threshold based on training297

strategies and internal test data to support subse-298

quent calls. A threshold-independent AUC-ROC299

metric may no longer accurately reflect the de-300

tection performance in practical testings. There-301

fore, we opted for F1 and Accuracy metrics to302

assess how accurately input texts are detected as303

AI-generated content. However, detection rates are304

heavily influenced by the chosen detection thresh-305

old. To address this, we employed the method306

of maximizing Youden’s J statistic to select the307

optimal threshold for each detection method on a308

reserved set of 5000 samples. This threshold was309

CheckGPT HC3

Train data 720,000* 58,508
Test data 90,000* 25,049
Avg #words 136.68 145.89
Domain News, Essay, Research QA

Table 1: Data statistics, where * denotes the data are
randomly split with seed 42, and #words denotes the
number of words in one sample.

then fixed to validate model robustness under per- 310

turbations. 311

Robustness. In perturbation attack experiments, 312

we considered the Attack Success Rate (ASR) 313

as the metric, i.e., the change in AI text detection 314

accuracy after perturbation. 315

3.4 Benchmarkings 316

As mentioned earlier, this paper aims to validate the 317

detectability of AI-generated text in real-world sce- 318

narios, focusing specifically on the most successful 319

commercial LLMs, the GPT series (Radford et al., 320

2019; Brown et al., 2020; Ouyang et al., 2022). In 321

contrast to previous work, our attention is solely 322

on data generated by the ChatGPT4, which was 323

readily accessible to the end users. To simulate 324

two mainstream application scenarios, we selected 325

two datasets: 1) CheckGPT (Liu et al., 2023b) data, 326

which centers around professional writing. The 327

authors generated a dataset of 900k samples en- 328

compassing news articles, essays, and scientific 329

research using various prompts. 2) HC3 (Guo et al., 330

2023), where the authors focused on internet QA 331

scenarios, employing the continuation method to 332

generate ChatGPT response data in fields such as 333

encyclopedia, community, finance, medicine, and 334

open-ended questions. Through these two datasets, 335

we simulate the text detection needs of both profes- 336

sional and ordinary users, with detailed information 337

on the two datasets provided in Table 1. 338

3.5 Research Questions 339

Based on off-the-shelf detectors, publicly available 340

data, and black-box perturbations, we propose three 341

research questions to investigate whether current 342

AI-text detectors’ development can meet the de- 343

mands of various real-world application scenarios: 344

• RQ1. What is the detection accuracy when apply- 345

ing current detectors directly to the SoTA LLM- 346

4https://chat.openai.com
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Detectors ↓ Professional Writing (CheckGPT) Informal Writing (HC3)

F1 GPT Acc Human Acc F1 GPT Acc Human Acc

DetectGPT 73.30 71.23 76.81 90.95 92.64 89.16
GPTZero 90.12 86.90 93.95 99.17 98.35 100.0

BM25Train 55.39 45.94 80.02 85.65 86.41 84.97
BM25Train+ 97.78 98.32 97.20 98.49 98.91 98.10
BM25ShareGPT 40.44 29.64 82.98 78.60 77.95 80.06
BM25ShareGPT+ 98.21 98.36 98.04 98.49 98.83 98.18

OpenAI 64.46 55.33 83.62 93.90 91.91 96.24
RADAR 72.23 69.28 77.41 69.36 93.20 26.11
RoBERTa 98.96 98.56 99.36 99.80 99.96 99.64

Table 2: Detection performance of off-the-shelf models on CheckGPT and HC3 datasets. The threshold is
determined by maximizing the Youden’s J statistic, hence, this detection performance can be considered as the
optimal performance of the detector on the current test data.

OpenAI RoBERTa

GPT-2-Small 97.29 57.85 ↓
GPT-2-Medium 96.96 63.07 ↓
GPT-2-Large 96.74 65.59 ↓
GPT-2-XL 95.35 65.62 ↓
HC3 93.90 99.80
CheckGPT 64.46 ↓ 98.96

Table 3: F1 scores for OpenAI detector trained on GPT-
2 data and our RoBERTa detector trained on ChatGPT
data on both test sets. Lower F1 scores are indicated
with a down arrow ↓

generated texts?347

• RQ2. How does the performance of current de-348

tection systems change when facing different per-349

turbations? What are the most effective attack350

methods?351

• RQ3. When facing perturbation attacks, can the352

training strategy or settings of the detection sys-353

tem be adjusted to achieve robust detection?354

In the following sections, we will address RQ1 and355

RQ2 in Section 4 by evaluating the detectors in356

real-world scenarios. In Section 5, we will explore357

methods of utilizing perturbation data to provide358

feasible research directions for future work.359

4 Evaluating Detectors in the Wild360

4.1 Detectability of the Cutting-Edge AI-Text361

We initially validated the performance of three362

types of AI text detection algorithms on cutting-363

edge AI text datasets. In our experiments, we364

considered the HC3 dataset, derived from internet- 365

based QA data, as representative of informal writ- 366

ing scenarios, and the CheckGPT dataset, based 367

on academic paper writing, as representative of 368

professional writing scenarios. 369

AI-texts are more easily detected in informal 370

writing scenarios. As shown in Table 2, almost all 371

detectors exhibit a higher false positives in profes- 372

sional writing contexts compared to informal writ- 373

ing contexts. Taking the proprietary commercial 374

detection tool GPTZero as an example, it demon- 375

strates minimal false positives in informal writ- 376

ing scenarios, showcasing strong practical utility. 377

However, in CheckGPT, the performance has sig- 378

nificantly declined, where the F1 score of GPTZero 379

dropped from 99.2 to 90.1, markedly lower than 380

the finetuned RoBERTa model’s 98.9. Surprisingly, 381

the adversarially trained RADAR model exhibited 382

severe false positives in informal writing scenarios, 383

possibly stemming from partial overlap in train- 384

ing data between RADAR and HC3 datasets. This 385

overlap may lead to overfitting to the paraphraser 386

on which the model relies, making it challenging to 387

distinguish human-generated text in that particular 388

domain. 389

The retrieval method heavily relies on the test 390

samples within the document corpus. As for 391

the retrieval method proposed by Krishna et al. 392

(2023), we conducted ablation experiments on its 393

corpus data. As seen in Table 2, taking the Check- 394

GPT dataset as an example, when utilizing only the 395

training data of the RoBERTa detector or publicly 396

available ShareGPT data, namely BM25Train and 397
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Perturbations ↓ Statistic Retrieval Classifier

DetectGPT GPTZero BM25Train+ OpenAI RADAR RoBERTa

Origin F1 73.30 90.12 97.78 64.46 72.23 98.96

Doc
Paraphrase 29.09 41.67 67.16 4.79 3.24 66.24
BackTrans 38.11 19.05 43.67 8.23 0.76 25.93

Sent
BackTrans 30.04 14.29 12.98 8.23 1.48 12.62
MLM 14.70 39.29 22.29 2.36 2.48 12.66

Word

MLM 68.88 83.73 4.39 19.30 2.12 75.59
AdvInsert 64.20 71.43 0.00 31.56 25.93 47.26
Spelling 70.48 62.70 0.00 52.62 29.92 87.10
Typos 70.95 36.51 0.00 54.25 38.31 64.68

Char

Merge 17.82 23.81 0.00 45.83 2.60 27.85
Case 44.39 80.16 0.00 52.22 14.38 39.63
Punctuation 23.13 25.00 0.00 29.76 0.28 10.11
SpaceInsert 35.36 11.51 0.00 52.86 1.60 21.45

Average ASR 42.26 42.43 12.54 30.17 10.26 40.93

Table 4: Attack Success Rates (ASR) of perturbations on the CheckGPT test set. The Retrieval method utilizes
training and test data as retrieval documents, and the threshold for all detection algorithms is set to the optimal
result on the original test data to simulate real-world model deployment scenarios. A higher ASR indicates a higher
proportion of AI-generated text misclassified as human text after perturbation. All data with ASR exceeding 20%
are highlighted in bold.

BM25ShareGPT , the retrieval method exhibits the398

poorest performance, struggling to distinguish AI-399

text. However, upon incorporating the test data400

into the retrieval corpus, i.e., BM25Train+ and401

BM25ShareGPT+ , the accuracy rapidly improves402

to over 98%, as every machine-generated text now403

shares identical retrieval results. This performance404

poses a significant challenge in practical applica-405

tions, as providers of retrieval detection services406

must be capable of acquiring and storing all gen-407

erated results of target LLMs. Efficiency, security,408

privacy, and other related concerns may limit the409

widespread adoption of such retrieval detection.410

Classifiers-based detectors exhibit poor gener-411

alization performance. OpenAI, RADAR, and412

our fine-tuned RoBERTa model can be considered413

as three models with the same architecture, with414

training data quality continually improving. Specif-415

ically, each model is trained on data generated by416

GPT-2, Vicuna, and ChatGPT, respectively. Ex-417

cluding RADAR’s human accuracy on HC3 data,418

based on GPT detection performance, it is evident419

that the quality of training data for classifier-based420

detectors positively correlates with AI text detec-421

tion performance on cutting-edge AI-generated422

content. Furthermore, as shown in Table 3, the Ope- 423

nAI detector performs poorly on ChatGPT data, 424

and the RoBERTa trained on ChatGPT data ex- 425

hibits suboptimal detection performance on GPT-2 426

text. These results indicate that neural network- 427

based AI text detectors have limited generalization 428

performance. When the testing data differs in gen- 429

eration methods, model scale, and other aspects 430

from the training data, the model’s detection per- 431

formance sharply declines. 432

4.2 Effectiveness of Perturbations 433

We further delve into perturbation scenarios, ex- 434

amining the impact of intentional or unintentional 435

text perturbations generated by users using AI tools 436

on the performance of detectors. Specifically, we 437

investigate the extent of the decline in detection 438

accuracy for AI-generated text across four levels of 439

perturbation granularity. 440

All detectors exhibit vulnerability to perturba- 441

tions, even after defense training. From Table 4, 442

it is evident that all detectors show significant mis- 443

judgments in the presence of text perturbations, 444

with an average ASR exceeding 10%. Among them, 445

the retrieval and the RADAR methods, which were 446
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Sim ↑ Flesch GPT ↑ PPL ↓

Origin 100.0 26.55 8.85 6.18

Paraphrase 80.51 35.91 7.38 9.75
BackTrans 86.23 16.62 6.93 20.18

BackTrans 92.13 25.87 7.91 9.98
MLM 81.90 36.23 4.73 8.71

MLM 67.16 37.34 3.00 29.81
AdvInsert 97.98 20.38 4.29 12.71
Spelling 87.32 29.08 3.49 24.55
Typos 80.38 29.97 3.95 23.14

Merge 98.77 20.43 8.81 8.04
Case 99.81 26.61 7.10 10.06
Punctuation 99.49 19.31 8.24 7.49
SpaceInsert 97.03 30.55 8.18 8.99

Table 5: Comparative results of the quality between
original and perturbed text. An upper arrow indicates
that higher values are desirable, and vice versa. A higher
Flesch value signifies more easily understandable text.

proposed for robustness issues, demonstrate a cer-447

tain degree of defensive performance. However,448

when facing specific perturbation attacks, they still449

exhibit weaker detection capabilities. For instance,450

the retrieval method, due to its ability to access the451

original AI-generated text on the test set, shows452

high defense capabilities against minor text per-453

turbations such as typos and spaces. Meanwhile,454

its defense capability sharply declines in scenarios455

involving substantial deviations from the original456

text, such as rewriting and back translation. More-457

over, RADAR, based on paraphraser for adversar-458

ial training, exhibits strong defense against larger459

granularity perturbations. Nevertheless, it inher-460

its the vulnerability of neural network models and461

performs poorly on perturbations at the word level.462

Statistical and classifier-based methods exhibit463

similar performance when facing perturbations.464

From the table 4, we observe that, whether it is the465

commercial GPTZero or other open-source detec-466

tors, introducing word-level perturbations to AI-467

generated articles yields more significant attack re-468

sults compared to full-text rewriting for these two469

methods. Simultaneously, the attack performance470

of word-level perturbation methods seems to be471

consistent across both groups. For instance, MLM472

synonym replacements and spelling errors lead to473

higher perturbation results in both categories of474

detection methods. This may imply a greater re-475

liance on statistical metrics such as perplexity in 476

the current classifier training. Subsequent work 477

could focus on improving these aspects. 478

Perturbed texts show significant changes in text 479

quality, readability, or semantic similarity. To 480

assess the changes in semantic similarity and read- 481

ability introduced by perturbed text, we report four 482

text quality metrics. 1) the semantic similarity be- 483

tween the original and perturbed text, calculated 484

using the P-SP (Wieting et al., 2022) model. 2) 485

the Flesch Reading Ease score, quantifying text 486

readability, with 0 indicating a highly specialized 487

text and 100 representing a fifth-grade level. 3) 488

text quality scores judged by the GPT-3.5-Turbo, 489

ranging from 0 to 10, with 10 being the highest 490

score. The specific prompt will be provided in the 491

Appendix A. 4) perplexity, assessed using the 7B 492

LLaMA-2-base (Touvron et al., 2023) model to 493

evaluate text fluency. From Table 5, it is evident 494

that the success rate of text perturbation is inversely 495

correlated with text quality to a certain extent. Per- 496

turbation methods such as Typos can even decrease 497

the GPT score from 8.85 to 3.95. 498

4.3 Discussions 499

In summary, for RQ1 and RQ2, we can learn from 500

the results that detection methods based on sta- 501

tistical metrics are generally applicable in infor- 502

mal scenarios. Their zero-shot characteristics en- 503

dow them with a certain degree of generalization 504

ability. When targeting a certain LLM, training a 505

classifier-based detector, given sufficient training 506

data, proves to be a viable option. However, its 507

generalization capability to other LLMs may be 508

limited. In scenarios with substantial perturbations, 509

retrieval methods exhibit the strongest defense ca- 510

pabilities. Nevertheless, their reliance on the origi- 511

nal generated text may constrain their applicability. 512

In future research, proposing more robust detection 513

models or strategies that blend current detection 514

system outcomes would be worthwhile directions. 515

5 Robustness Enhancement 516

5.1 Defence Budgets 517

To further investigate the role of perturbed sample 518

augmentation in enhancing the robustness of AI 519

text detectors, we conducted experiments to evalu- 520

ate the performance variation of the adversarially 521

trained RoBERTa detector under different pertur- 522

bation budgets. We define the perturbation budget 523

in two aspects: firstly, the number of augmented 524
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Figure 2: Gradual reduction in average ASR with an
increase in the number of perturbed data samples. X-
axis represents numbers of each perturbation, while the
Y-axis denotes the average ASR on the test set.

In-domain ASR OOD ∆ASR

Paraphrase 4.82 -29.92
MLM-Sent 8.52 -65.80
MLM-Word 7.98 -3.80
Space-Insert 7.90 -11.71

Table 6: Transfer learning results for perturbation at-
tacks. ∆ASR represents the reduction in ASR on that
target perturbation after training.

samples for each perturbation during adversarial525

training; secondly, the transferability of different526

perturbation methods under the same granularity.527

In this study, we employed the RoBERTa model528

trained on the CheckGPT dataset as our testing529

scenario. The results of these two aspects are illus-530

trated in Figure 2 and Table 6.531

3,000 Perturbed Samples is All You Need. From532

Figure 2, we observed the impact of the number of533

perturbed samples used as augmentation data dur-534

ing the fine-tuning of the RoBERTa model on the535

average ASR. Our results demonstrate that incor-536

porating a small number of perturbed samples ef-537

fectively enhances the model’s defensive capability538

against these perturbations. This increasing trend539

plateaus when the number of perturbed samples540

reaches around 3000, showing a gradual decline.541

Ultimately, with the addition of 10,000 perturbed542

samples (12 perturbation methods, totaling 120,000543

augmented data), the average attack success rate544

decreases from 40.93 to 8.01.545

Defense capabilities obtained through transfer546

learning are not stable. As for transferability, we547

selected Paraphrase, MLM-Sentence, MLM-Word,548

and Space Inserting as target perturbations for each549

of the four granularities. For each experiment, one550

perturbation was reserved as the target, while the re- 551

maining 11 perturbations were used as adversarial 552

training data. We evaluated the detector’s defen- 553

sive capability against the target perturbation post- 554

adversarial training, and the experimental results 555

are presented in Table 6. After fine-tuning, there 556

was a significant decrease in in-domain ASR across 557

the 11 perturbation data, all falling below 9%. How- 558

ever, for out-of-distribution (OOD) target pertur- 559

bations, notable differences were observed. The 560

MLM-Sentence method, which is more amenable 561

to transfer learning, exhibited a substantial 65.8 562

decrease in ASR without specific training, with 563

an ASR of only 9.79. In contrast, the more chal- 564

lenging MLM-Word achieved only 3.8 in transfer 565

performance and maintained a high ASR of 43.47 566

post-training. These results suggest that relying on 567

transfer learning alone to address the robustness of 568

AI text detection is not realistic. Subsequent work 569

should consider a more comprehensive coverage of 570

perturbation attacks. 571

5.2 Discussions 572

In summary, for RQ3, concerning text perturba- 573

tions, augmenting the training data with perturbed 574

samples can enhance the robustness of the detector 575

to some extent. However, there is an upper limit 576

to this enhancement, and the trend levels off af- 577

ter 3,000 perturbed samples. Meanwhile, vanilla 578

transfer learning for defense brings about unstable 579

improvements, contingent on whether the perturba- 580

tion patterns can be learned from in-domain data. 581

6 Conclusions 582

In this paper, we propose two real-world applica- 583

tion scenarios for AI text detection: professional 584

writing and informal writing. We evaluate the cur- 585

rent SoTA detection performance on these scenar- 586

ios using three categories of detection methods and 587

six representative models. Furthermore, we intro- 588

duce and design a novel set of 12 text perturbation 589

methods, demonstrating the vulnerability of current 590

detection models at different granularities. Finally, 591

we apply adversarial learning in the context of per- 592

turbed data augmentation, validating the minimum 593

budget and transferability of enhancing classifier 594

models. In future work, we plan to extend our eval- 595

uations to include more LLM-generated data, such 596

as Vicuna (Chiang et al., 2023) and Mistral (Jiang 597

et al., 2023). 598
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Limitations599

This paper aspires to provide a comprehensive eval-600

uation and analysis of the overall performance of601

state-of-the-art AI detectors. However, given the602

challenges posed by multilingual and multimodal603

applications, our study may not fully cover all as-604

pects. Additionally, it is acknowledged that we605

cannot encompass all existing text perturbation606

methods, and the 4 granularities and 12 perturba-607

tion tools we constructed might not entirely cover608

real-world scenarios. Thus, the definition and eval-609

uation of real-world application scenarios in this610

paper may lack more comprehensive coverage and611

consideration. Furthermore, this work focuses on612

adversarial learning for improving the robustness613

of classifier-based detectors and does not delve into614

designing more complex and effective defense al-615

gorithms. Considering the rapid development of by-616

pass methods for AI-text detectors in reality, more617

in-depth research on the robustness of AI detection618

may be a direction for future work.619

Ethics Statement620

In this paper, we explore the detectability of AI-621

text in professional and informal writing scenarios622

and validate the vulnerabilities in current detection623

systems through perturbation experiments. Our624

aim is to provide insights and recommendations625

for the design and training of robust AI detection626

frameworks in subsequent research. Additionally,627

we offer robustness validation methods to facilitate628

the reliable deployment of detection systems for629

commercial use.630
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A GPT Judgement Prompt 862

Following the GPT judgement method proposed 863

by Hu et al. (2023), we conducted scoring experi- 864

ments on 2,503 AI-generated texts from the Check- 865

GPT dataset using the GPT-3.5-Turbo API. The 866

prompts for both original and perturbed texts were 867

as follows: You are given an array of 13 sentences. 868

Please rate these sentences and reply with an array 869

of scores assigned to these sentences. Each score 870

is on a scale from 1 to 10, the higher the score, the 871

sentence is written more like a human. Your reply 872

example: [2,2,2,2,2,2,2,2,2,2,2,2,2]. 873

B Perturbation Samples 874

In this section, we show the original AI-generated 875

sample and all perturbed texts for a random sample. 876

Origin. In this paper, we explore grand uni- 877

fied theories that utilize an SU(5)xSU(5) gauge 878

group. Our focus is on preventing fast proton decay 879

through a combination of small triplet couplings 880

and a large triplet mass, achieved through discrete 881

symmetries. We demonstrate that in many of our 882

models, the GUT scale (MGUT ) occurs naturally 883

due to a balance of higher dimension terms and 884

soft supersymmetry breaking masses. Our findings 885

include intriguing patterns in quark and lepton 886

masses, and we examine the differences between 887

grand unified theories and string unification. 888

Paraphrase. Here we look at Grand Unified The- 889

ories which make use of the SU(5)xSU(5) gauge 890

group, concentrating on avoiding fast proton de- 891

cay by the use of small triplet couplings and large 892

triplet masses, obtained through discrete symme- 893

tries. We show that in many of our models, the 894

GUT scale (MGUT ) arises naturally from a bal- 895

ance between higher dimension terms and the soft 896

breaking of supersymmetry. We find some unusual 897

patterns in the quark and leptoon masses, and we 898

also discuss the differences between the GUT ap- 899

proach and the string approach to unified theories. 900

Back Translation. In this paper, we examine the 901

main unified theories that use a SU(5)xSU(5) gauge 902

group. We focus on preventing the rapid decompo- 903

sition of protons by a combination of small triplet 904

couplings and large triplet mass obtained by dis- 905

crete symmetries. We show that in many of our 906

models, the GUT (MGUT ) scale occurs naturally 907

due to a balance of upper dimensional terms and 908

soft supersymmetry break masses. 909
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Back Translation Sentence. In this paper, we910

examine the main unified theories that use a911

SU(5)xSU(5) gauge group. We focus on preventing912

the rapid decomposition of protons by a combi-913

nation of small triplet couplings and large triplet914

mass obtained by discrete symmetries. We show915

that in many of our models, the GUT scale (MGUT )916

occurs naturally due to a balance of the upper di-917

mension terms and the soft supersymmetry break918

masses.919

MLM Prediction for Sentence. Abstract We920

demonstrate that in many of our models, the GUT921

scale (MGUT ) occurs naturally due to a balance922

of higher dimension terms and soft supersymmetry923

breaking masses. In this paper, we discuss the role924

of string unification in the Evolution of the Proton.925

Abstract Our focus is on string unification and its926

role in proton evolution. Our findings include the927

following: String Unification in Proton Evolution928

and its Role in the Universe929

MLM Prediction for Word. In this paper, we read930

most unified theories that utilize an SU(5)xSU(5)931

conclusion conclusion. Our focus is on read fast932

proton decay as a combination of small triplet cou-933

plings and a most triplet mass, achieved as discrete934

symmetries. their demonstrate that in many of our935

models, the GUT scale (conclusion }) occurs natu-936

rally due to a conclusion of higher dimension terms937

and soft conclusion breaking conclusion. their con-938

clusion include intriguing patterns in conclusion939

and lepton conclusion, and we examine the conclu-940

sion between grand unified theories and conclusion941

unification.942

Adverb Insertion. In this paper, we rarely ex-943

plore grand emily unified theories that utilize an944

SU(5)xSU(5) gauge group. Our focus overseas is945

on preventing fast proton decay through a combi-946

nation of small triplet couplings and a large triplet947

mass, less achieved through discrete symmetries.948

We gradually demonstrate that in many of our mod-949

els, the GUT scale (MGUT ) occurs naturally due to950

a balance of higher dimension terms and soft super-951

symmetry breaking masses. Our findings probably952

include intriguing patterns in quark and lepton953

masses, and we examine the differences between954

grand unified theories and string unification.955

Spelling Errors. In this paperl, we explove grand956

unified theories that utilize an SU(5)xSU(5) gauge957

groop. Our foccus is on preventing fast proton de-958

cay through a combination of sall triplet couplings959

and a larg triplet mess, achieved through discrete960

symmetries. Why demonstatrate thate in mary of 961

ours models, the GUT scale (MGUT ) occurs natu- 962

rally dur take a balance of hight dimension terms 963

and soft supersymmetry breking masses. Our find- 964

inds include intriguing patterns in quark and lep- 965

ton masses, and wie examine the differeces between 966

grand unified theories and string unification. 967

Keyboard Typos. In this papetr, we explore grand 968

unifeid theroies that utlilize an SU(5xSU(5) gage 969

group. Our focus is on prventing fast proton deacy 970

through a combination of small triplet couplings 971

and a laege triplet mass, achieved through discrete 972

sybmetries. We demonstrate thaft in many of our 973

models, the GUT scale (MGUT ) occurs naturally 974

due to a balance of higehr dimension tearms and 975

sot supersymmetry breakinvg masses. Our findings 976

include intriguing patterns in quark and lepton 977

masses, and we eamine the differences between 978

grand unified theories and string unification. 979

Word Merging. In this paper, we exploregrand 980

unified theories that utilize an SU(5)xSU(5) gauge 981

group.Our focus is on preventing fast proton decay 982

through a combination of small triplet couplings 983

and a large triplet mass, achieved throughdiscrete 984

symmetries. We demonstrate that in many of our 985

models, the GUT scale (MGUT ) occurs naturally 986

due to a balance of higher dimension terms and 987

soft supersymmetry breaking masses. Our findings 988

include intriguing patterns in quark and lepton 989

masses, and we examine the differences between 990

grand unified theories and string unification. 991

Case of the First Character of a Word. In this 992

paper, we explore grand Unified theories That Uti- 993

lize an SU(5)xSU(5) gauge group. Our focus is on 994

Preventing fast proton decay Through a combina- 995

tion of small Triplet couplings and a large triplet 996

mass, achieved through discrete symmetries. we 997

demonstrate That in Many of our Models, the gUT 998

scale (mGUT ) occurs naturally Due To a balance 999

of higher dimension Terms and Soft supersymmetry 1000

breaking masses. Our Findings include intriguing 1001

patterns in quark and lepton masses, and we exam- 1002

ine the differences between grand unified theories 1003

and String Unification. 1004

Punctuation Removal. In this paper, we explore 1005

grand unified theories that utilize an SU(5)xSU(5 1006

gauge group. Our focus is on preventing fast proton 1007

decay through a combination of small triplet cou- 1008

plings and a large triplet mass, achieved through 1009

discrete symmetries. We demonstrate that in many 1010

of our models, the GUT scale (MGUT occurs natu- 1011
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rally due to a balance of higher dimension terms1012

and soft supersymmetry breaking masses. Our find-1013

ings include intriguing patterns in quark and lepton1014

masses, and we examine the differences between1015

grand unified theories and string unification1016

Space Insertion. In this paper, we explore grand1017

unified theories that utilize an SU(5)xSU(5) gauge1018

group. Our focus is on preventing fast proton decay1019

through a combination of small triplet couplings1020

and a large triplet mass, achieved through discrete1021

symmetries. We demonstrate that in many of our1022

models, the GUT scale (MGUT ) occurs naturally1023

due to a balance of higher dimension terms and1024

soft supersymmetry breaking masses. Our findings1025

in clude intriguing patterns in q uark and lepton1026

masses, and we examine the differences between1027

grand unified theories and string un ification.1028
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