
DOGE-Train: Discrete Optimization on GPU with
End-to-end Training

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present a fast, scalable, data-driven approach for solving linear relaxations of1

0-1 integer linear programs using a graph neural network. Our solver is based2

on the Lagrange decomposition based algorithm [1]. We make the algorithm3

differentiable and perform backpropagation through the dual update scheme for4

end-to-end training of its algorithmic parameters. This allows to preserve the5

algorithm’s theoretical properties including feasibility and guaranteed non-decrease6

in the lower bound. Since [1] can get stuck in suboptimal fixed points, we provide7

additional freedom to our graph neural network to predict non-parametric update8

steps for escaping such points while maintaining dual feasibility. For training of9

the graph neural network we use an unsupervised loss and perform experiments on10

large-scale real world datasets. We train on smaller problems and test on larger ones11

showing strong generalization performance with a graph neural network comprising12

only around 10k parameters. Our solver achieves significantly faster performance13

and better dual objectives than its non-learned version [1]. In comparison to14

commercial solvers our learned solver achieves close to optimal objective values of15

LP relaxations and is faster by up to an order of magnitude on very large problems16

from structured prediction and on selected combinatorial optimization problems.17

Our code will be made available upon acceptance.18

1 Introduction19

Integer linear programs (ILP) are a universal tool for solving combinatorial optimization problems.20

While great progress has been made on improving ILP solvers over the past several decades, some21

fundamental questions for future improvements remain open: Can ILP solvers make effective use of22

the massive parallelism afforded by GPUs and can modern machine learning meaningfully help? As23

of now the consensus seems that neither GPUs nor ML have yet helped general purpose ILP solvers24

in a fundamental way. In particular, this holds true for LP solvers which are a key component of most25

commonly used ILP approaches. LP solvers produce lower bounds on the optimal solution objective26

and are integral for many heuristics to decode feasible integral solutions. For many problems the ILP27

solvers spend most of the time on solving multiple LP relaxations, hence any impact GPUs and ML28

can have will directly translate into overall improvement of ILP solvers.29

State of the art LP solvers [23, 13, 17, 4, 18] make little utility of modern machine learning but rather30

use either hand-designed or auto-tuned parameters and update rules. Moreover, with the exception31

of [18] these solvers are not open-source, hence researchers’ ability to assess the potential of neural32

networks for improving LP solvers is limited. From a conceptual point of view traditional solver33

paradigms, e.g. simplex or interior point methods, are not GPU friendly and contain non-differentiable34

steps (such as pivot selection for simplex). Additionally, their high complexity further complicates35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

any effort at making them differentiable. This makes utilization of neural networks and GPUs for36

solver improvement difficult.37

We propose a new way to use the potential of GPU parallelism and modern ML to obtain advances38

in LP relaxation solvers for ILPs. We argue that due to the difficulties in putting GPUs and ML to39

work in traditional solver methodologies, investigation of new paradigms is called for. To this end we40

build upon the recent work of [1] which proposed a massively parallel GPU friendly solver for 0-141

integer linear programming using Lagrange decomposition. The solver exhibits faster performance42

than traditional CPU solvers on large-scale problems making good use of GPU parallelism. Also43

due to its comparatively simple control flow and its usage of simple arithmetic operations for all its44

operations it can be made differentiable. This allows to train its parameters and predict update steps45

that will allow for faster convergence and overcoming fixed points from which the basic version of the46

algorithm suffers. This results in superior performance as compared to the non-learned version [1].47

We obtain small gaps to (I)LP optima on a diverse range of large scale structured prediction problems,48

QAPLib [8] and independent set problems [39]. We are up to an order of magnitude faster than49

traditional ILP solvers.50

Contributions We propose to learn the Lagrange decomposition based algorithm [1] for solving LP51

relaxations of ILP problems and show its benefits. In particular,52

• We make the dual update steps of [1] differentiable. This allows us to predict parameters of the53

update steps so that faster convergence is achieved as compared to using hand-picked values.54

• We train a predictor for arbitrary non-parametric update steps that allow to escape suboptimal55

fixed points into which the parametric update steps of [1] can fall.56

• We propose to train predictors for both the parametric and non-parametric updates in fully unsu-57

pervised manner. Our loss optimizes for parameters/update steps producing large improvements58

in the dual lower bound over a long time horizon.59

• We show the benefits of our learned massively parallel GPU approach on a wide range of60

problems. We have chosen structured prediction tasks including graph matching [29] and cell61

tracking [24]. From theoretical computer science we compare on the QAPLib [8] dataset and62

randomly generated independent set problems [39].63

2 Related Work64

2.1 Learning to solve Combinatorial Optimization65

ML has been used to improve various aspects of solving combinatorial problems. For the standard66

branch-and-cut ILP solvers the works [19, 22, 35] learn variable selection for branching. The67

approaches [14, 35] learn to fix a subset of integer variables in ILPs to their hopefully optimal values68

to improve finding high quality primal solutions. The works [43, 54] learn variable selection for69

the large neighborhood search heuristic for obtaining primal solutions to ILPs. Selecting good cuts70

through scoring them with neural networks was investigated in [26, 46]. While all these approaches71

result in runtime and solution quality improvements, only a few works tackle the important task of72

speeding up ILP relaxations by ML. Specifically, the work [11] used graph neural network (GNN) to73

predict variable orderings of decision diagrams representing combinatorial optimization problems.74

The goal is to obtain an ordering such that a corresponding dual lower bound is maximal. To our75

knowledge it is the only work that addresses computing ILP relaxations with ML. For constraint76

satisfaction problems [40, 9, 47] train GNN while [47] train in an unsupervised manner. For narrow77

subclasses of problems primal heuristics have been augmented through learning some of their78

decisions, e.g. for capacitated vehicle routing [36] and traveling salesman [55]. For a more complete79

overview of ML for combinatorial optimization we refer to the detailed surveys [6, 10].80

2.2 Massively parallel combinatorial optimization81

Massively parallel algorithms running on GPU have been proposed for narrow problem classes,82

including inference in [41, 56] and dense [45] Markov Random Fields, multicut [2] and for max-83

flow [49, 53]. The algorithm [1] on which our work is based is, to our knowledge, the only generic84

ILP solver that can make adequate use of parallelism offered by GPUs.85

2

2.3 Unrolling algorithms for parameter learning86

Algorithms containing differentiable iterative procedures are combined with neural networks for87

improving performance of such algorithms. One of the earliest works in this direction is [21]88

which embedded sparse coding algorithms in a neural network by unrolling. For solving inverse89

problems [57, 12] unroll through ADMM and non-linear diffusion resp. Overall, such approaches90

show more generalization power than pure neural networks based ones as shown in the survey [34].91

Slightly different than from the above works, neural networks were used to predict update directions92

for training other neural networks (e.g. in [3]).93

3 Method94

We first recapitulate the Lagrange decomposition approach to binary ILPs from [31] and the deferred95

min-marginal averaging scheme for its solution proposed in [1]. We highlight possible parameters96

of the update steps which we will predict by training a graph neural network. Proofs are in the97

Appendix.98

3.1 Lagrange Decomposition & Deferred Min-Marginal Averaging99

Definition 1 (Binary Program [31]). Let a linear objective c ∈ Rn and m variable subsets Ij ⊂ [n] of100

constraints with feasible set Xj ⊂ {0, 1}Ij for j ∈ [m] be given. The corresponding binary program101

is102

min
x∈{0,1}n

⟨c, x⟩ s.t. xIj ∈ Xj ∀j ∈ [m] , (BP)

where xIj
is the restriction to variables in Ij .103

Any binary ILP minx∈{0,1}n⟨c, x⟩ s.t. Ax ≤ b where A ∈ Rm×n can be written as (BP) by associat-104

ing each constraint aTj x ≤ bj for j ∈ [m] with its own subproblem Xj .105

In order to obtain a problem formulation amenable for parallel optimization we consider its Lagrange106

dual which decomposes the full problem (BP) into a series of coupled subproblems.107

Definition 2 (Lagrangean dual problem [31]). Define the set of subproblems that constrain variable i108

as Ji = {j ∈ [m] | i ∈ Ij}. Let the energy for subproblem j ∈ [m] w.r.t. Lagrangean dual variables109

λ•j = (λij)i∈Ij
∈ RIj be110

Ej(λ•j) = min
x∈Xj

⟨λ•j , x⟩ . (1)

Then the Lagrangean dual problem is defined as111

max
λ

∑
j∈[m]

Ej(λ•j) s.t.
∑
j∈Ji

λij = ci ∀i ∈ [n]. (D)

The authors in [1] have proposed a parallelization friendly iterative algorithm for updating Lagrange112

multipliers λ for maximizing (D), see Algorithm 1. We write it in a slightly adapted form since it113

will allow us to easily describe its backpropagation. The algorithm assigns the Lagrange variables114

in u-many disjoint blocks B1, . . . , Bu in such a way that each block contains at most one Lagrange115

variable from each subproblem and all variables within a block are updated in parallel. The dual update116

scheme relies on computing min-marginal differences i.e., the difference of subproblem objectives117

when a certain variable is set to 1 minus its objective when the same variable is set to 0, see line 10118

in Algorithm 1. These min-marginal differences are averaged out across subproblems via updates119

to Lagrange variables in line 11 in Algorithm 1. The crucial ingredient allowing parallelization is120

that in the min-marginal averaging step values from the last iteration are used (i.e. Min), making121

synchronization between subproblems unnecessary.122

In [1] the min-marginal averaging parameters of Algorithm 1 were set as ω = 0.5 and αij =123
1/|Ji| leading to uniform averaging. We generalize the min-marginal update step by considering124

more general parametric update steps. We allow ω ∈ (0, 1) and α-values to be arbitrary convex125

combinations. In the next section we will show how to train these values to achieve faster convergence.126

Proposition 1 (Dual Feasibility and Monotonicity of Min-marginal Averaging). For any αij ≥ 0127

with
∑

j∈Ji
αij = 1 and ωij ∈ [0, 1] the min-marginal averaging step in line 11 in Algorithm 1128

retains dual feasibility and is non-decreasing in the dual lower bound.129

3

Algorithm 1: Parallel Deferred Min-Marginal Averaging [1]
Input: Lagrange variables λij ∀i ∈ [n], j ∈ Ji, damping factors ωij ∈ (0, 1)∀i ∈ [n], j ∈ Ji,

anisotropic min-marginal averaging weights αij ∈ (0, 1)∀i ∈ [n], j ∈ Ji, max. number
of iterations T .

1 Initialize deferred min-marginal diff. M = 0
2 for T iterations do
3 for block B ∈ (B1, . . . Bu) do
4 λ,M ← BlockUpdate (B, λ,M,α, ω)
5 for block B ∈ (Bu, . . . B1) do
6 λ,M ← BlockUpdate (B, λ,M,α, ω)
7 return λ, M
8 Procedure BlockUpdate(B, λin,Min, α, ω)
9 for ij ∈ B in parallel do

10 Compute Mout
ij = ωij [minx∈Xj :xi=1⟨λin•j , x⟩ −minx∈Xj :xi=0⟨λin•j , x⟩]

11 Update λoutij = λinij −Mout
ij + αij

∑
k∈Ji

Min
ik

12 return λout, Mout

3.2 Backpropagation through Deferred Min-Marginal Averaging130

We show below how to differentiate through Algorithm 1 with respect to the parameters α and ω.131

This will ultimately allow us to learn these parameters such that faster convergence is achieved. To132

this end we describe backpropagation for a block update (lines 8- 12) of Alg. 1. All other operations133

can be tackled by automatic differentiation. For a block B in {B1, . . . , Bu} we view the Lagrangean134

update as a mappingH : (R|B|)4 → (R|B|)2, (λin,Min, α, ω) 7→ (λout,Mout).135

Given a loss function L : RN → R we denote ∂L/∂x by ẋ. Algorithm 2 shows backpropagation136

throughH to compute the gradients λ̇in, Ṁin, α̇ and ω̇.137

Proposition 2. Algorithm 2 performs backpropagation throughH.138

Efficient Implementation Generally, the naive computation of min-marginal differences and its139

backpropagation are both expensive operations as they require solving two optimization problems140

for each dual variable. In [1, 31] the authors represented each subproblem using binary decision141

diagrams (BDDs) for fast incremental computation of min-marginal differences. Their algorithm142

results in a computation graph involving only elementary arithmetic operations and taking minima143

over several variables. Using this computational graph we can implement the abstract Algorithm 2144

efficiently and parallelize on GPU. For details we refer to the Appendix.145

Algorithm 2: BlockUpdate backpropagation

Input: Forward pass inputs: B, λin,Min, α, ω, gradients of forward pass output: λ̇out, Ṁout,
gradients of parameters α̇, ω̇

1 for ij ∈ B in parallel do
2 Ṁin

ij =
∑

k∈Ji
λ̇outik αik, Ṁout

ij = Ṁout
ij − λ̇outij

3 α̇ij = α̇ij + λ̇ij

∑
k∈Ji

Min
ik , ω̇ij = ω̇ij + Ṁout

ij [Mout
ij /ωij]

4 Compute minimizers sj(i, β) = argminx∈Xj :xi=β⟨λin•j , x⟩, ∀β ∈ {0, 1}
5 λ̇inpj = λ̇outpj + Ṁout

ij ωij [s
j
p(i, 1)− sjp(i, 0)], ∀p ∈ Ij

6 return λ̇in, Ṁin, α̇, ω̇

3.3 Non-Parametric Update Steps146

Although the min-marginal averaging scheme of Alg. 1 guarantees non-decreasing lower bound, it147

can get stuck in suboptimal fixed points, see [50] for a discussion for the special case of MAP-MRF.148

To alleviate this shortcoming we allow arbitrary updates to Lagrange variables through a vector149

4

θ ∈ R|λ| as150

λij ← λij + θij −
1

|Ji|
∑
k∈Ji

θik, ∀i ∈ [n], j ∈ Ji (2)

where the last term ensures feasibility of updated Lagrange variables w.r.t. the dual problem (D).151

3.4 Graph neural network152

We train a graph neural network (GNN) to predict the parameters α, ω of Alg. 1 and also the153

non-parametric update θ for (2). To this end we encode the dual problem (D) on a bipartite graph154

G = (V, E). Its nodes correspond to primal variables I and subproblems J i.e., V = I ∪ J and155

edges E = {ij | i ∈ I, j ∈ Ji} correspond to Lagrange multipliers. We need to predict values of156

αij , ωij and θij for each edge ij in E . We associate features f = (fI , fJ , fE) with each entity of the157

graph which capture the current state of Alg. 1. Additionally, we encode a number of quantities as158

features which can make learning easier. For example, a history of previous dual objectives for each159

subproblem is encoded in the constraint nodes and minimizers of each subproblem (which correspond160

to a subgradient of the dual problem (D)) are encoded in the edge features fE . A complete list of161

features is provided in the Appendix.162

Message passing To perform message passing we use the transformer based graph convolution163

scheme of [42]. We first compute an embedding of all subproblems j in J by receiving messages164

from adjacent nodes and edges as165

CONVJ (fI , fJ , fE , E)j = Wsfj +
∑

i|ij∈E
aij(fj , fI , fE ;Wa) [Wtfi +Wefij] , (3)

where W = (Wa,Ws,Wt,We) are trainable parameters and aij(fj , fI , fE ;Wa) is the softmax166

attention weight between nodes i and j parameterized by Wa. Afterwards we perform message167

passing in the reverse direction to compute embeddings for primal variables I. Similar strategy for168

message passing on a bipartite graph was followed by [19].169

Recurrent connections Our default GNN as mentioned above only uses hand-crafted features170

to maintain a history of previous optimization rounds. To learn a summary of the past updates we171

optionally allow recurrent connections through an LSTM with forget gate [20]. The LSTM is only172

applied on primal variable nodes I and maintains cell states sI which can be updated and used for173

parameter prediction in subsequent optimization rounds.174

Prediction The learned embeddings from GNN, LSTM outputs and solver features from Alg. 1175

are consumed by a multi-layer perceptron Φ to predict the required variables for each edge ij in E .176

Afterwards we transform these outputs so that they satisfy Prop. 1.177

The exact sequence of operations performed by the graph neural network are shown in Alg. 3 where178

[u1, . . . , uk] denotes concatenation of vectors u1, . . . , uk, LN denotes layer normalization [5] and179

LSTMI stands for an LSTM cell which operates on each primal variable node.180

Algorithm 3: Parameter prediction by GNN
Input: Primal variable features fI and cell states sI , Subproblem features fJ , Dual variable

(edge) features fE , Set of edges E .
1 hJ = ReLU (LN (CONVJ (fI , fJ , fE , E))) // Compute subproblems embeddings
2 hI = ReLU (LN (CONVI (fI , [fJ , hJ], fE , E))) // Compute primal variable embeddings
3 zI , sI = LSTMI(hI , sI) // Compute output and cell state
4 (α̂, ω̂, θ) = Φ ([fI , hI , zI], [fJ , hJ], fE , E) // Prediction per edge
5 αi• = Softmax(α̂i•), ∀i ∈ I, ω = Sigmoid(ω̂) // Ensure non-decreasing obj., Prop. 1
6 return α, ω, θ, sI

5

i1

i2

i3

j1

j2

fE fJfI

Graph
NN

Non-param.
update

Def.
MMAθ

α, ω

fI , fJ , fE

Optimization round

Lossλ

sI

Figure 1: Our pipeline for optimizing the Lagrangean dual (D). The problem is encoded on a bipartite
graph containing features fI , fJ and fE for primal variables, subproblems and dual variables resp.
A graph neural network (GNN) predicts the non-parameteric update θ (2) and parameters α and
ω for Alg. 1. In one optimization round current set of Lagrange multipliers λ are first updated
by the non-parametric update using θ. Afterwards deferred min-marginal averaging is performed
parameterized by α and ω. The updated solver features f (which also includes λ) and LSTM cell
states sI are sent to the GNN in next optimization round. These rounds are repeated at most R-times
during training and until convergence during inference.

3.5 Loss181

Given the Lagrange variables λ we directly use the dual objective (D) as an unsupervised loss to train182

the GNN. Thus, we maximize the loss L defined as183

L(λ) =
∑
j∈[m]

Ej(λ•j). (4)

For a mini-batch of instances during training we take the mean of corresponding per-instance losses.184

For backpropagation, gradient of loss L w.r.t. Lagrange variables of a subproblem j is computed by185

finding a minimizing assignment for that subproblem, written as186 (
∂L
∂λ

)
•j

= argminx∈Xj
⟨λ•j , x⟩ ∈ {0, 1}Ij . (5)

The above gradient is then sent as input for backpropagation. For computing the minimizing187

assignment efficiently we use binary decision diagram representation of each subproblem as in [1, 31].188

3.6 Overall pipeline189

Our overall pipeline combining all building blocks from the previous sections is shown in Figure 1.190

We train our pipeline which contains multiple dual optimization rounds in a fashion similar to that191

of recurrent neural networks. One round of our dual optimization consists of message passing192

by GNN, a non-parametric update step and T iterations of deferred min-marginal averaging. For193

computational efficiency we run our pipeline for at most R dual optimization rounds during training.194

On each mini-batch we randomly sample a number of optimization rounds r in [R], run r − 1 rounds195

without tracking gradients and backpropagate through the last round by computing the loss (4). For196

the pipeline with recurrent connections we backpropagate through last 3 rounds and apply the loss197

after each of these rounds. Since the task of dual optimization is relatively easier in early rounds198

as compared to later ones (where [1] can get stuck) we use two neural networks. The early stage199

network is trained if the randomly sampled r is in [0, R/2] and the late stage network is chosen200

otherwise. During testing we switch to the later stage network when the relative improvement in the201

dual objective by the early stage network becomes less than 10−6.202

4 Experiments203

As main evaluation metric we report convergence plots of the relative dual gap g(t) ∈ [0, 1] at time t204

g(t) = min

(
d∗ − d(t)

d∗ − dinit
, 1.0

)
(6)

6

where d(t) is the dual objective at time t, d∗ is the optimal (or best known) objective value of the205

Lagrange relaxation (D) and dinit is the objective value before optimization as computed by [1].206

Additionally we also report per dataset averages of relative dual gap integral gI =
∫
g(t)dt [7], best207

objective value (E) and time taken (t) to obtain best objective. To cater the dominating effect of208

worse initial lower bounds on gI (as g(t) can be close to 1 at t ≈ 0) we start calculating gI after a few209

rounds of our solver are completed. This start time is then also used to evaluate other algorithms for a210

fair comparison. To evaluate CPU solvers we use an AMD EPYC 7702 CPU. For the GPU solvers211

we use either one NVIDIA RTX 8000 (48GB) or A100 (80GB) GPU depending on instance size.212

4.1 Algorithms213

Gurobi: Results of the dual simplex algorithm from the commercial ILP solver [23].214

FastDOG: The non-learned baseline [1] of Alg. 1 with ωij = 0.5 and αij = 1/|Ji|.215

DOGE: Our approach where we learn to predict parametric and non-parametric updates by using two216

graph neural networks for early and late-stage optimization. Size of the learned embeddings217

h computed by the GNN in Alg. 3 is set to 16 for nodes and 8 for edges. For computing218

attention weights in (3) we use only one attention head for efficiency. The predictor Φ in219

Alg. 3 contains 4 linear layers with the ReLU activation. We train the networks using the220

Adam optimizer [30]. To prevent gradient overflow we use gradient clipping on model221

parameters by an l2 norm of 50. The number of trainable parameters is 8k.222

DOGE-M: Variant of our method where we additionally use recurrent connections using LSTM. The223

cell state vector si for each primal variable node i ∈ I has a size of 16. The number of224

trainable parameters is 12k.225

We have not tested against specialized heuristics for our benchmark problems since [1] has shown226

them to be on par or outperformed by FastDOG. For training our approach we use the frameworks [15,227

16, 38] and implement the Algorithms 1,2 in CUDA [37] using [25, 28].228

4.2 Datasets229

Cell tracking (CT): Instances of developing flywing tissue from cell tracking challenge [48] pro-230

cessed by [24] and obtained from [44]. We use the largest and hardest 3 instances, train on231

the 2 smaller instances and test on the largest one.232

Graph matching (GM): Instances of graph matching for matching nuclei in 3D microscopic im-233

ages [32] processed by [29] and made publicly available through [44]. We train on 10234

instances and test on the remaining 20 instances.235

Independent set (IS): Random instances of independent set problem generated using [39]. For236

training we generate 240 instances with 10k vertices each and test on 60 instances with 50k237

vertices. We generating edges between vertices in the graph with a probability of 0.25.238

QAPLib: The benchmark dataset for quadratic assignment problems used in the combinatorial239

optimization community [8]. We train on 61 instances having up to 40 nodes and test on 35240

instances having up to 70 nodes.241

For each dataset we use a separate set of hyperparameters due to varying instance sizes given in242

Table 1. All our test datasets on average contain more than a million edges (i.e., Lagrange variables)243

while training instances are considerably smaller. For efficiency, during evaluation we use a larger244

value of T in Alg. 1 than during training. For the CT dataset containing we learn only the non-245

parametric update steps (2) and fix the parameters in Alg. 1 to their default values from [1]. Learning246

these parameters gave slightly worse training loss at convergence.247

4.3 Ablation study248

We perform an ablation study to test the importance of various components of our approach. Starting249

from [1] as a baseline we first predict all parameters α, ω, θ through the two multi-layer perceptrons Φ250

for early and late stage optimization without using GNN. Next, we report results of using one network251

(instead of two) which is trained and tested for both early and later rounds of dual optimization. Lastly,252

we aim to seek the importance of learning parameters of Alg. 2 and the non-parametric update (2).253

To this end, we learn to predict only the non-parametric update and apply the loss directly on updated254

7

Table 1: Hyperparameters of our approach and dataset statistics. |I| + |J |: Average number of
variables and constraints in each dataset (# vertices in GNN);

∑m
j=1|Ji|: Average number of Lagrange

multipliers (# edges in GNN); T : Number of iterations of Alg. 1 in each optimization round; R: max.
number of training rounds; # itr. train: Number of training iterations.

Dataset |I|+ |J | (×106)
∑n

j=1|Ji| (×106) T
R batch

size
learn.
rate

itr.
train

train time
[hrs]train test train test train test

CT 3.7 12.4 8.5 28 1 100 400 1 1e-3 500 14
GM 1.7 1.7 3.3 3.3 20 200 20 2 1e-3 400 4
IS 0.05 0.4 0.1 1.2 20 50 20 8 1e-3 2500 10
QAPLib 0.1 2.8 0.5 11 5 20 500 4 1e-3 1600 48

Table 2: Ablation study results on the Graph matching dataset. w/o GNN: Use only the two predictors
Φ without GNN for early and late stage optimization; same network: use one network (GNN, Φ) for
both early and late stage; only non-param., param.: predict only the non-parametric update (2) or the
parametric update (Alg. 1); w/o α, ω: does not predict α or ω resp.

w/o learn.
([1])

w/o
GNN

same
network

only
non-param.

only
param. w/o α w/o ω DOGE DOGE-M

gI (↓) 21 0.42 0.95 2.3 0.7 0.36 0.35 0.33 0.19
E (↑) −48912 −48440 −48444 −48476 −48444 −48439 −48439 −48439 −48436
t[s] (↓) 61 29 24 51 74 30 30 17 21

λ without requiring backpropagation through Alg. 1. We also try learning a subset of parameters i.e.,255

not predicting averaging weights α or damping factors ω. Lastly, we report results of DOGE-M which256

uses recurrent connections. The results are in Table 2.257

Firstly, from our ablation study we observe that learning even one of the two types of updates i.e.,258

non-parametric or parametric already gives better results than the non-learned solver [1]. This is259

because non-parametric update can help in escaping fixed-points of [1] when they occur and the260

parametric update can help Alg. 1 in avoiding such fixed-points. Combining both of these strategies261

further improves the results. Secondly, we observe that performing message passing with GNN gives262

improvement over only using the predictor Φ. Thirdly, we find using separate networks for early and263

late stage optimization gives better performance than using the same network for all stages. Lastly,264

using recurrent connections gives the best performance.265

4.4 Results266

Convergence plots of relative dual gaps change w.r.t. wall clock times are given in Figure 2. Rest of267

the evaluation metrics are reported in Table 3. For further details we refer to the Appendix.268

Discussion As compared to the non-learned baseline FastDOG we reach an order of magnitude269

more accurate relaxation solutions, almost closing the gap to optimum as computed by Gurobi. We270

retain high speed afforded by exploiting GPU parallelism. Interestingly, we can often outperform271

FastDOG also in the early stage where optimization is easy. Our LSTM version DOGE-M has shown272

improved performance than the non-LSTM version. Especially it shows much improvement on the273

most difficult QAPLib dataset. On QAPLib Gurobi does not converge on instances with more than274

Table 3: Results comparison on all datasets where the values are averaged within a dataset. Numbers
in bold highlight the best performance.

Cell tracking Graph matching Independent set QAPLib

gI E(×108) t[s] gI E(×104) t[s] gI E(×108) t[s] gI E(×106) t[s]

Gurobi [23] 18 −3.852 809 9 −4.8433 278 14 −2.4457 52 3472 0.9 2618
FastDOG [1] 7 −3.863 1005 21 −4.8912 61 42 −2.4913 9 276 5.7 1680
DOGE 2.4 −3.854 1015 0.3 −4.8439 17 0.3 −2.4460 8 320 12.1 720
DOGE-M 2.1 −3.854 730 0.2 −4.8436 21 0.2 −24459 5 131 14.5 861

8

101 102 103Gurobi FastDOG DOGE DOGE-M

101 102 103
10−3

10−2

10−1

100

R
el
at
iv
e
d
u
al

ga
p

(a) Cell tracking

101 102 103
10−4

10−3

10−2

10−1

100

(b) Graph matching

10−1 100 101 102
10−3

10−2

10−1

100

time [s]

R
el
at
iv
e
d
u
al

ga
p

(c) Independent set

101 102 103
10−2

10−1

100

time [s]

(d) QAPLib

Figure 2: Convergence plots for g(t) defined in (6), the relative dual gap to the optimum (or maximum
suboptimal objective among all methods) of the relaxation (D). Both axes are logarithmic.

40 nodes within the time limit of one hour. We show convergence plots for smaller instances in the275

Appendix. The difference to Gurobi is most pronounced w.r.t. anytime performance measured by gI ,276

since our solver reaches good solutions relatively early.277

Limitations While our approach gives solutions of high accuracy for the presented datasets, we278

have also tried our approach on other datasets (small cell tracking instances, MRFs for protein279

folding [27] and shape matching [51, 52]) where we were not able to obtain significant improvements280

w.r.t. the non-learned baseline [1]. For small cell tracking instances FastDOG already found the281

optimum in a moderate number of iterations, making it hard to beat. On shape matching and protein282

folding the parallelization of FastDOG did not bring enough speed-ups due to few large subproblems283

resulting in sequential bottlenecks. This limited the number of training iterations we could perform284

within a reasonable time.285

We have set some hyperparameters in a dataset-dependent way. This was partly necessitated due286

to problem sizes e.g., training on long time horizons was not possible with very large instances.287

Moreover, these instances only permitted a limited number of parameters in our neural networks.288

5 Conclusion289

We have proposed a learning approach for solving relaxations to combinatorial optimization prob-290

lems by backpropagating through and learning parameters for the non-learned baseline [1]. We291

demonstrated its potential in obtaining close to optimal solutions faster than with traditional methods.292

Our work raises interesting follow-up questions: (i) Contrary to many approaches for backpropagation293

which replace non-smooth operations with smoothed variants (e.g. [33]) we directly compute (sub-)294

gradients for the non-smooth solver updates. Can smoothing of the solver help obtain a better295

backpropagated supervision? (ii) We argue that predicting good update steps for our solver is in itself296

an interesting and challenging problem for GNNs. We hope that our work can become a testbed for297

GNN architectures. (iii) There are a few desiderata for future learned solvers, including training298

universal models that generalize across different problem classes. Possibly more powerful GNNs and299

more involved training regimes are needed for this.300

9

References301

[1] Ahmed Abbas and Paul Swoboda. FastDOG: Fast discrete optimization on GPU. In Proceedings of the302

IEEE Conference on Computer Vision and Pattern Recognition, 2022.303

[2] Ahmed Abbas and Paul Swoboda. RAMA: A Rapid Multicut Algorithm on GPU. In Proceedings of the304

IEEE Conference on Computer Vision and Pattern Recognition, 2022.305

[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,306

Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient descent.307

Advances in neural information processing systems, 29, 2016.308

[4] MOSEK ApS. 9.0.105, 2022.309

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint310

arXiv:1607.06450, 2016.311

[6] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a312

methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.313

[7] Timo Berthold. Measuring the impact of primal heuristics. Oper. Res. Lett., 41(6):611–614, nov 2013.314

[8] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. QAPLIB–a quadratic assignment problem library.315

Journal of Global optimization, 10(4):391–403, 1997.316

[9] Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting Propositional Satisfiability317

via End-to-End Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):3324–3331,318

Apr. 2020.319

[10] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.320

Combinatorial optimization and reasoning with graph neural networks. arXiv preprint arXiv:2102.09544,321

2021.322

[11] Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improving optimiza-323

tion bounds using machine learning: Decision diagrams meet deep reinforcement learning. In Proceedings324

of the AAAI Conference on Artificial Intelligence, volume 33, pages 1443–1451, 2019.325

[12] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and326

effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6):1256–327

1272, 2017.328

[13] Cplex, IBM ILOG. CPLEX Optimization Studio 12.10, 2019.329

[14] Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Accelerating330

primal solution findings for mixed integer programs based on solution prediction. In Proceedings of the331

AAAI Conference on Artificial Intelligence, volume 34, pages 1452–1459, 2020.332

[15] William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019.333

[16] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR334

Workshop on Representation Learning on Graphs and Manifolds, 2019.335

[17] FICO. FICO Xpress Optimization Suite, 2022.336

[18] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse, Patrick337

Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel, Christopher Hojny, Thorsten338

Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter, Matthias Miltenberger, Erik Mühmer, Benjamin339

Müller, Marc Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske,340

Fabian Wegscheider, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical341

Report 20-10, ZIB, Takustr. 7, 14195 Berlin, 2020.342

[19] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial343

optimization with graph convolutional neural networks. arXiv preprint arXiv:1906.01629, 2019.344

[20] F.A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with LSTM. In 1999345

Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), volume 2,346

pages 850–855 vol.2, 1999.347

10

[21] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the 27th348

International Conference on International Conference on Machine Learning, ICML’10, page 399–406,349

Madison, WI, USA, 2010. Omnipress.350

[22] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio. Hybrid351

models for learning to branch. Advances in neural information processing systems, 33:18087–18097, 2020.352

[23] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.353

[24] Stefan Haller, Mangal Prakash, Lisa Hutschenreiter, Tobias Pietzsch, Carsten Rother, Florian Jug, Paul354

Swoboda, and Bogdan Savchynskyy. A primal-dual solver for large-scale tracking-by-assignment. In355

AISTATS, 2020.356

[25] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2010. Version 1.7.0.357

[26] Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye Hao, Yong358

Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming. Pattern Recognition,359

123:108353, 2022.360

[27] Ariel Jaimovich, Gal Elidan, Hanah Margalit, and Nir Friedman. Towards an integrated protein–protein361

interaction network: A relational markov network approach. Journal of Computational Biology, 13(2):145–362

164, 2006.363

[28] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – Seamless operability between C++11364

and Python, 2017. https://github.com/pybind/pybind11.365

[29] Dagmar Kainmueller, Florian Jug, Carsten Rother, and Gene Myers. Active graph matching for automatic366

joint segmentation and annotation of C. elegans. In International Conference on Medical Image Computing367

and Computer-Assisted Intervention, pages 81–88. Springer, 2014.368

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint369

arXiv:1412.6980, 2014.370

[31] Jan-Hendrik Lange and Paul Swoboda. Efficient message passing for 0–1 ILPs with binary decision371

diagrams. In International Conference on Machine Learning, pages 6000–6010. PMLR, 2021.372

[32] Fuhui Long, Hanchuan Peng, Xiao Liu, Stuart K Kim, and Eugene Myers. A 3D digital atlas of C. elegans373

and its application to single-cell analyses. Nature methods, 6(9):667–672, 2009.374

[33] Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured prediction and375

attention. In International Conference on Machine Learning, pages 3462–3471. PMLR, 2018.376

[34] Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm unrolling: Interpretable, efficient deep learning377

for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.378

[35] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan379

O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed integer380

programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.381

[36] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement learning382

for solving the vehicle routing problem. Advances in neural information processing systems, 31, 2018.383

[37] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 11.2, 2021.384

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor385

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,386

Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie387

Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In388

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in389

Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.390

[39] Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and Andrea Lodi.391

Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization Solvers. In Learning392

Meets Combinatorial Algorithms at NeurIPS2020, 2020.393

[40] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L Dill.394

Learning a SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.395

11

[41] Alexander Shekhovtsov, Christian Reinbacher, Gottfried Graber, and Thomas Pock. Solving dense image396

matching in real-time using discrete-continuous optimization. In Proceedings of the 21st Computer Vision397

Winter Workshop (CVWW), page 13, 2016.398

[42] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label399

prediction: Unified message passing model for semi-supervised classification. In Zhi-Hua Zhou, editor,400

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages401

1548–1554. International Joint Conferences on Artificial Intelligence Organization, 8 2021. Main Track.402

[43] Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large403

neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201, 2021.404

[44] Paul Swoboda, Andrea Hornakova, Paul Roetzer, and Ahmed Abbas. Structured prediction problem405

archive. arXiv preprint arXiv:2202.03574, 2022.406

[45] Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother, and Bogdan Savchynskyy. MPLP++: Fast,407

parallel dual block-coordinate ascent for dense graphical models. In Proceedings of the European408

Conference on Computer Vision (ECCV), pages 251–267, 2018.409

[46] Mark Turner, Thorsten Koch, Felipe Serrano, and Michael Winkler. Adaptive cut selection in mixed-integer410

linear programming. arXiv preprint arXiv:2202.10962, 2022.411

[47] Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph Neural Networks for Maximum412

Constraint Satisfaction. Frontiers in Artificial Intelligence, 3, 2021.413

[48] Vladimír Ulman, Martin Maška, Klas EG Magnusson, Olaf Ronneberger, Carsten Haubold, Nathalie414

Harder, Pavel Matula, Petr Matula, David Svoboda, Miroslav Radojevic, et al. An objective comparison of415

cell-tracking algorithms. Nature methods, 14(12):1141–1152, 2017.416

[49] Vibhav Vineet and PJ Narayanan. CUDA cuts: Fast graph cuts on the GPU. In 2008 IEEE Computer417

Society Conference on Computer Vision and Pattern Recognition Workshops, pages 1–8. IEEE, 2008.418

[50] Tomas Werner. A linear programming approach to max-sum problem: A review. IEEE transactions on419

pattern analysis and machine intelligence, 29(7):1165–1179, 2007.420

[51] Thomas Windheuser, Ulrich Schlickewei, Frank R Schmidt, and Daniel Cremers. Geometrically consistent421

elastic matching of 3d shapes: A linear programming solution. In 2011 International Conference on422

Computer Vision, pages 2134–2141. IEEE, 2011.423

[52] Thomas Windheuser, Ulrich Schlickwei, Frank R Schimdt, and Daniel Cremers. Large-scale integer linear424

programming for orientation preserving 3d shape matching. In Computer Graphics Forum, volume 30,425

pages 1471–1480. Wiley Online Library, 2011.426

[53] Jiadong Wu, Zhengyu He, and Bo Hong. Chapter 5 - efficient CUDA algorithms for the maximum network427

flow problem. In Wen mei W. Hwu, editor, GPU Computing Gems Jade Edition, Applications of GPU428

Computing Series, pages 55–66. Morgan Kaufmann, Boston, 2012.429

[54] Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy for430

integer programming. Advances in Neural Information Processing Systems, 34, 2021.431

[55] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining Deep Learning Model with432

Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem. Advances in Neural433

Information Processing Systems, 34, 2021.434

[56] Zhiwei Xu, Thalaiyasingam Ajanthan, and Richard Hartley. Fast and differentiable message passing on435

pairwise markov random fields. In Proceedings of the Asian Conference on Computer Vision, 2020.436

[57] Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. ADMM-CSNet: A Deep Learning Approach for Image437

Compressive Sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(3):521–538,438

2020.439

12

Checklist440

1. For all authors...441

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s442

contributions and scope? [Yes]443

(b) Did you describe the limitations of your work? [Yes]444

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We only445

solve ILP relaxations fast.446

(d) Have you read the ethics review guidelines and ensured that your paper conforms to447

them? [Yes]448

2. If you are including theoretical results...449

(a) Did you state the full set of assumptions of all theoretical results? [Yes]450

(b) Did you include complete proofs of all theoretical results? [Yes] Provided in the451

Appendix.452

3. If you ran experiments...453

(a) Did you include the code, data, and instructions needed to reproduce the main experi-454

mental results (either in the supplemental material or as a URL)? [No] Will be provided455

after acceptance456

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they457

were chosen)? [Yes] Yes458

(c) Did you report error bars (e.g., with respect to the random seed after running experi-459

ments multiple times)? [No] Due to lack of computational resources we do not report460

error bars. However we do report results on different variants of our method in Ablation461

study. The random seed is fixed to same value of 1 for all experiments on all datasets.462

(d) Did you include the total amount of compute and the type of resources used (e.g., type463

of GPUs, internal cluster, or cloud provider)? [Yes]464

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...465

(a) If your work uses existing assets, did you cite the creators? [Yes]466

(b) Did you mention the license of the assets? [No]467

(c) Did you include any new assets either in the supplemental material or as a URL? [No]468

(d) Did you discuss whether and how consent was obtained from people whose data you’re469

using/curating? [N/A]470

(e) Did you discuss whether the data you are using/curating contains personally identifiable471

information or offensive content? [N/A]472

5. If you used crowdsourcing or conducted research with human subjects...473

(a) Did you include the full text of instructions given to participants and screenshots, if474

applicable? [N/A]475

(b) Did you describe any potential participant risks, with links to Institutional Review476

Board (IRB) approvals, if applicable? [N/A]477

(c) Did you include the estimated hourly wage paid to participants and the total amount478

spent on participant compensation? [N/A]479

13

	Introduction
	Related Work
	Learning to solve Combinatorial Optimization
	Massively parallel combinatorial optimization
	Unrolling algorithms for parameter learning

	Method
	Lagrange Decomposition & Deferred Min-Marginal Averaging
	Backpropagation through Deferred Min-Marginal Averaging
	Non-Parametric Update Steps
	Graph neural network
	Loss
	Overall pipeline

	Experiments
	Algorithms
	Datasets
	Ablation study
	Results

	Conclusion

