
Guiding Multi-Step Rearrangement Tasks with
Natural Language Instructions

Elias Stengel-Eskin1∗ Andrew Hundt1∗ Zhuohong He1 Adit Murali1

Nakul Gopalan2 Matthew Gombolay2 Gregory Hager1

1Johns Hopkins University 2 Georgia Institute of Technology

Abstract: Enabling human operators to interact with robotic agents using natural
language would allow non-experts to intuitively instruct these agents. Towards
this goal, we propose a novel Transformer-based model which enables a user to
guide a robot arm through a 3D multi-step manipulation task with natural lan-
guage commands. Our system maps images and commands to masks over grasp
or place locations, grounding the language directly in perceptual space. In a suite
of block rearrangement tasks, we show that these masks can be combined with an
existing manipulation framework without re-training, greatly improving learning
efficiency. Our masking model is several orders of magnitude more sample effi-
cient than typical Transformer models, operating with hundreds, not millions, of
examples. Our modular design allows us to leverage supervised and reinforcement
learning, providing an easy interface for experimentation with different architec-
tures2. Our model completes block manipulation tasks with synthetic commands
530% more often than a UNet-based baseline, and learns to localize actions cor-
rectly while creating a mapping of symbols to perceptual input that supports com-
positional reasoning. We provide a valuable resource for 3D manipulation instruc-
tion following research by porting an existing 3D block dataset with crowdsourced
language to a simulated environment. Our method’s 25.3% absolute improvement
in identifying the correct block on the ported dataset demonstrates its ability to
handle syntactic and lexical variation.

Keywords: Instruction following, object grasping and manipulation, multimodal
fusion, computer vision for robotic applications

1 Introduction

Reinforcement Learning (RL) is a powerful tool for developing perception-driven robotic systems.
Most RL algorithms train an agent to perform a single task based on an given reward function.
However, what if we would like to adapt or extend the learned policy of a robot to novel or more
specialized tasks by providing instructions? Could we exploit previously learned RL policies for a
robot to solve novel tasks now specified using natural language? The ability to adapt learned policies
through natural language to perform novel tasks would open the door to a modular integration of
perception, language, and action, avoiding the complexities of joint training over all modalities si-
multaneously. For example, in our experiments, we constrain a general-purpose block manipulation
policy using natural language, without needing any language data to train the policy itself.

This kind of modular learning requires injecting guidance from language into the RL-driven action
policy while simultaneously addressing the challenges of natural language understanding. Natural
language semantics is often underspecified, especially with respect to a physical environment; cor-
rectly choosing one out of many potentially valid actions for a command such as “Move the green
block to the left of the right block” involves pragmatic and common-sense reasoning. Furthermore,
in order to map from language to action, we need to address the symbol grounding problem [1], i.e.

∗Equal contribution; {elias,ahundt}@jhu.edu
2Code and data: https://github.com/esteng/guiding-multi-step

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://github.com/esteng/guiding-multi-step

“Stack the red
block on the
blue block”

SPOT-Q
Network

Transformer

Patch-wise mask Pixel-wise mask

Pixel-wise Q values
Masked Q valuesInput Image

Figure 1: Schematic of our model. From an input image, pixel-wise Q-values are generated using
a pre-trained network. Simultaneously, a Transformer-based model produces language-conditioned
masks, which are heuristically turned into pixel-wise masks over the image. These masks are com-
bined with the Q-values to find the highest Q-value that respects the language constraints.

how does one map symbols (e.g. “left”, “right”, “block”, “red”) to the physical world? We leverage
Transformer encoders to learn a strategy from data, in place of the manually defined data fusion
strategies found in prior work [2, 3, 4, 5, 6, 7, 8].

In our work, we factorize language-driven action into learning how to act and learning where to act,
following Misra et al. [4]. Learning how to act is accomplished by the SPOT-Q algorithm [9] which
teaches an agent to re-arrange colored blocks into stacks and rows by grasping and placing them.
We use SPOT-Q models pre-trained without any language data for our manipulation experiments,
demonstrating that our method lets us leverage existing manipulation models without additional
training. SPOT-Q identifies regions worth exploring, i.e. containing an object, to encode a set
of valid action regions for grasping and placing. We produce segmentation masks that are jointly
conditioned on both the language input and an image of the state and apply them with to set of
pixel-wise Q-values from the SPOT-Q RL framework. This process ideally provides us with the best
action for a given state and command, as Figure 1 illustrates.

Factorizing the learning process this way provides several advantages. Firstly, it offers a more
efficient path to learning. Separating the language grounding model from the reinforcement learning
model leads to a less complex RL model that receives more direct feedback for tasks. Moreover,
the separation of action and language understanding allows us to learn the language component via
supervised learning, which is typically more sample efficient. Secondly, the modular nature of the
model allows us to swap components easily: we can train a masking model on simulated images
or real images (cf. Section 5.1), allowing us to use the same action model for both simulated and
real tasks without re-training. In an end-to-end model, a change to the input space would likely
require re-training from scratch. Finally, the factorized model output is more interpretable; when
an action is unsuccessful, we can inspect our model to localize the point of failure, be it a lack of
comprehension or a mistake while acting. This may not be evident from the agent’s action alone.
Note that our implementation of this factorization is not without disadvantages: if the language
contains information on how to act this data could be lost.

In summary, our contributions are:

1. We introduce a novel Transformer-based model for mapping language commands to masks
over an action space. Our approach’s modular nature enables us to seamlessly integrate an
existing Q-learning framework proposed by Hundt et al. [9] for block manipulation tasks.

2. We show our model succeeds in a variety of simulated and real data settings with orders of
magnitude less data than typically available to Transformers, furthering the potential use of
Transformers in the low-data regimes commonly found in robotics.

3. We demonstrate this model’s utility on an existing dataset (introduced by Bisk et al. [10])
involving a challenging block re-arrangement task with crowdsourced natural language
commands containing syntactic diversity as well as complex natural language phenomena.

4. We release our real and simulated datasets, plus a filtered version of the Bisk et al. [10]
dataset containing the subset of examples feasible under a realistic model of physics.

2 Related Work
We describe related work in the areas of natural language instruction following on robots, Q-
Learning for multistep manipulation tasks, and Transformer models for Computer Vision.

2

Robots and Natural Language Commands – We follow the Problem-Solution Sequences (PSS)
paradigm [11], where a multi-step manipulation task (e.g. “build a stack”) is framed as a sequence
of incremental images or state representations. These may be paired with per-step instructions on
how to accomplish the intermediate goal (e.g., “stack the red block on the blue block”). Several
PSS datasets have been proposed [11, 10] and modeled in 2D [4, 12] and 3D [10]. We translate the
3D dataset proposed by Bisk et al. [10] to a simulated environment in Section 5.2. The sequential
nature of PSS relates to the hierarchical RL setting explored by Andreas et al. [13], who learn task-
specific sub-policies indexed by linguistic sub-goals. Similar approaches are applied to zero-shot
sub-goal sequence generalization[14], non-linearly-ordered sub-goal execution[15], and choosing
interpretable linguistic sub-goals [16]. While we also assume access to step-wise annotated instruc-
tions, we focus on guiding a low-level robotic manipulation policy with a supervised masking model
rather than a task-level policy. Gangopadhyay et al. [17] and Sun et al. [18] learn policies guided
by symbolic programs, while Perera et al. [19] first parse language into a symbolic representations.
Our masking-based method ties the language directly to the perceptual space, eschewing intermedi-
ate symbol ontologies. Language has been used for reward-shaping [20, 21, 22], and reward model
learning [23]; we instead use the language-agnostic reward shaping in SPOT-Q. Stepputtis et al. [24]
and Lynch and Sermanet [25] use language-conditioned imitation learning for manipulation policies;
we instead use Q-learning. TransporterNets [26] learn to perform multi-step tasks from demonstra-
tion, but lacks language input. Like our work, Concept2Robot [27] completes language-described
tasks by combining learning from demonstration and RL. However, it differs from our system along
multiple axes: we examine challenging multi-step tasks with progress reversal[9]; we succeed on
much smaller datasets; we consider crowdsourced commands; and we evaluate on real robot data.
Nguyen et al. [28] guide object retrieval with language, but do not model placement.

Visual Goal Prediction (VGP), introduced by Misra et al. [4] for language-conditioned navigation
[29, 30, 4, 8, 7, 5], frames the problem of choosing an action region as a semantic segmentation task
in which each pixel as a separate binary decision: act or do not act. VGP has directed a simulated
[5] and real quadcopter [8, 7]. We implement VGP with UNet[31, 4, 5, 7, 8], as a baseline.

Q-learning for Multi-Step Tasks – Mohammed et al. [32] reviews RL for robot grasping. Zeng
et al. [33] shows Q-Learning outperforms supervised action segmentation for table decluttering[34,
35, 36], instead, “Good Robot!” [9] segments actions worth exploring to accelerate Q-Learning of
single-task, multi-step robot learning, all without language input. “Good Robot!” [9] was also the
first to complete multi-step tasks with consideration of progress reversal, a failure case where actions
undo previous progress such that Ω(n) additional actions are required to recover, e.g. toppling the
tower in a partially completed stacking task. We segment actions worth exploring via linguistic input
for multi-step, multi-task execution considering progress reversal and low-data[3, 34] conditions.

Transformer Encoders for Vision – Though Transformer encoders, which build representations
using self-attention, have become standard in NLP, computer vision tasks are still dominated by con-
volutional models, of which UNet [31] is a paradigmatic instance. The use of Transformers in vision
tasks has been held back by the quadratic complexity of the Transformer’s self-attention layer; an
image input treated as a sequence of pixels would quickly become computationally intractable [37].
Dosovitskiy et al. [37] introduce a minimal modification to perform image recognition using Trans-
formers, tiling the image into square patches, which they concatenate into a sequence and augment
with learned linear positional embeddings. Though the model presented by Dosovitskiy et al. per-
forms image-level recognition well, it cannot perform pixel-level tasks (e.g., semantic segmentation)
as-is. Ranftl et al. [38] present an extension to this model for pixel-level prediction.

3 Models
We propose a Transformer-based model to convert image and natural language inputs into separate
masks for grasping and placing, thereby allowing users to guide multi-step manipulation tasks.

We begin by tiling the n×n birds-eye image of the scene with C colored blocks into k× k patches,
whose RGB pixel values are concatenated into one vector, resulting in patch vectors I = i1, . . . , iL.
The resulting vectors are augmented with a fixed sinusoidal positional encoding [39]. Similarly,
each token in the command string W = w1, . . . wm is embedded into a continuous space resulting
in vectors e1, . . . , em, and those vectors are augmented with positional encodings as well.

The goal is to train a model that produces a pair of language-defined spatial masks M̂ place ∈ Rn×n

and M̂ grasp ∈ Rn×n, and an optional pair of state reconstructions Ŝgrasp, Ŝplace ∈ RC×n×n given by:

3

M̂ t = R

(
σ
(
HT

mft
(
fshared([I;W]

)
0:k

))
, Ŝt = R

(
σ
(
HT

s ft
(
fshared([I;W]

)
0:k

))
(1)

where f. are parameterized by Transformer encoders with output size k, Hm ∈ Rk×2, Hs ∈ Rk×C ,
σ is the softmax function, and t ∈ {grasp, place}. The reconstruction function R up-samples k
patches by copying the patch value across each of its constituent pixels, resulting in an n×n image.
Note that structurally, the “shared,” “grasp,” and “place” Transformers are identical, but while the
“shared” Transformer is used both for grasp and place prediction, the others are task-specific.

We train the masking model separately from the manipulation model. For the latter model, we
use a pre-trained SPOT-Q model from Hundt et al. [9], which produces pixel-wise Q-values for
picking and placing, making it easy to integrate with our approach. Furthermore, pixel-wise Q-
values facilitate potential future work on extending our method to non-cubic shapes. All masking
models are trained with a multi-task loss, composed of a pixel-wise binary cross-entropy loss for the
masks, and an optional auxiliary reconstruction loss:

Lt = − 1

N2

(∑
i,j

M t
i,j log(M̂ t

i,j) + λ
∑
i,j

St
i,j log(Ŝt

i,j)

)
, L = Lgrasp + Lplace (2)

The reconstruction loss here forces the model to semantically segment the image by identifying pixel
with its block ID, or labeling it as background. As in Nguyen and Salazar [40], we use a pre-norm
Transformer layer with scaled initialization. Our learning rate schedule is based on Vaswani et al.
[39], with a varied number of warmup steps as in Nguyen and Salazar. A comprehensive report of
all hyperparameters and a figure of our architecture is given in Appendix A.

Q-Learning – Our model relies on a learned function from states and actions to expected rewards,
Q(st, a), which we learn via the SPOT-Q algorithm [9], which introduces novel reward shaping
processes for improving efficiency. More details are given in Appendix A.3. Given a pixel-wise
n × n state space of an image and two actions, grasp and place, the output of this function can be
expressed as a tensor Q ∈ Rn×n×2.

4 Datasets and Resources
4.1 Simulation Experiments with Synthetic Commands
We create a dataset of commands and grasp/place masks to train our masking model and demon-
strate its performance in simulated environment on a robot arm. Using trajectories from Hundt et al.
[9], we annotate successful grasp-and-place action pairs with synthetic commands generated from a
template, and use simulation state information to construct the reference masks M t and state infor-
mation St. While synthetic language makes simplifying assumptions about the syntactic and lexical
diversity of natural language, it provides a controllable test-bed for symbolic reasoning, and is often
used to study compositionality [41, 42, 43], as we do in Section 5.1. For row-making, the template is
“move the color a block next to the color b block”, and for stacking the template is “stack the
color a block on the color b block”. We train supervised VGP models (cf. Section 3) on these
commands, and combine the produced masks with the Q-values from the SPOT-Q framework in a
simulated environment to execute the actions in order. The visual input to our models is the concate-
nation of a birds-eye color image and depth image. The training data is augmented by flipping each
image across 4 axes, manipulating the command accordingly, as well as by the addition of pixel-
wise Gaussian noise drawn fromN (0, 0.05). This results in train/dev/test splits of 5520 /46 /46 and
8970 /74 /76 for row-making and stacking, respectively, where each sample is an input image and
command paired with a reference place and grasp mask. Experiments and results on VGP metrics
and in the simulation for this data are given in Section 5.1.

4.2 Transfer to Real Images
In order to be useful in real-life settings, our method must also be applicable to real data. However,
unlike simulated data, data from a real robot is expensive and time-consuming to collect. Therefore,
it is natural to ask: how much real data is needed to train an adequate VGP model?

The Hundt et al. [9] real robot trial logs include 1496 actions each for row-making and stacking.
We split these into an 80/10/10 train/dev/test split and augment the examples by flipping, producing
5980, 747, 748 datapoints. Image collection details are given in Appendix B.2. Given the small size
of the real dataset, we pre-train a model on simulated images and fine-tune it with the real images.

4

4.3 Compositionality

In linguistics, compositionality is typically taken to mean that the meaning of a whole utterance is
composed of the meanings of its parts; the meaning of “stack the red block on the blue block” is
in part made up of the independent meanings of “red” and “blue”. Compositionality lets speakers
re-combine known symbols in new ways, underpinning human language use. In our task, a compo-
sitional reasoner should correctly execute “stack the red block on the blue block” (referred to here
as stack(r, b)) without having seen that combination; it should be able to localize red and blue
blocks from other color contexts (e.g. stack(r, g), stack(y, b), etc.). However, there is
no explicit constraint during training to enforce this; the model could learn to interpret each of the
23 possible color pairs atomically. We test our model’s compositional reasoning via its ability to
generalize to unseen color combinations. We hold out 6 color pairs during training (26% of the 23
order-invariant pairs) and test exclusively on those pairs. For example, we train a masking model
with all color combinations except those made only of red, blue, yellow, and green blocks and then
test only on stack({r,b,g,y},{r,b,g,y}) examples. We hold-out each subset, training and
evaluating a model as described above, average the metrics across all subsets, and compare against
a random train and test split baseline, where all color pairs are seen at train time. For efficiency, we
train on each task separately and do not augment with Gaussian noise.

4.4 Naturalistic Language Commands with Complex Scenes

Language sourced from human speakers is syntactically and lexically diverse, with mistakes, mis-
spellings, and other idiosyncrasies that make far more challenging to model than template data. An-
alyzing synthetic language showcases our model’s ability to integrate discrete symbolic commands
with visual perception and action, as well as our model’s ability to generalize in a compositional
fashion, but this does not imply that our model generalizes to the complexities of real language.

We examine a 3D block manipulation dataset with human natural language instructions that was
introduced by Bisk et al. [10] (cf. Fig. 2). This dataset is set apart from other block-world data by
its focus on complex instructions. Rather than using synthetic utterances, instructions were sourced
from crowdworkers (9 per example), who were shown a pair of images and asked to provide instruc-
tions to a robot, with the goal of manipulating the blocks in the first image such that they result in the
second image. This collection method result in more syntactically diverse utterances with complex
linguistic concepts, such as “mirroring” and “balancing”.

“Mercedes Benz will move right until it is above twitter”

Figure 2: Bisk et al. [10] blocks data sample.

The dataset is comprised of a sequence of state rep-
resentations paired with natural language instruc-
tions on how to transition between states. While the
blocks dataset is designed for robot manipulation,
several assumptions were made to simplify annota-
tion by crowdworkers. Crucially, physics in the en-
vironment were turned off while the structures were
being constructed and annotated, resulting in some
physically infeasible structures. To facilitate research in the blocks domain, and make the dataset
more useful for training and evaluating embodied agents, we create a filtered version of the dataset,
where physically infeasible examples are removed. Our filtering process removes 49.34%, 43.93%
and 38.23% of train, dev, and test, respectively. Appendix C.1 contains more details on the trans-
lation process and data preprocessing. To model the dataset’s world state sequences in the VGP
framework, we translate the 3D Cartesian coordinates of each block given by the dataset’s state rep-
resentation into a top-down grid view, where each pixel corresponds to the ID of the block located
at that position. We refer to this image as the scene’s “state representation.”

While the blocks dataset contains all the state information required to produce image-like state
representations, this cannot generally be assumed to be the case. A more likely scenario mimicks
Section 4.1, where the model’s input is a combined color and depth image. After translating the
dataset into the simulated environment used in Section 4.1, we collect color and depth images for
the whole blocks dataset. In the original dataset, each block type is identified by a company logo.
Since the logos were downsampled by the simulator, we also assign a color to each type. The
demographics and labor practices underlying its original creation are unknown [10, 44]. We filtered
their dataset without crowdworkers; and it is intended for robotics research, not product deployment.
Experiments and results for this dataset are in Sec. 5.2.

5

5 Experiments

5.1 Simulation Experiments with Synthetic Commands

An operator guiding a robot through a manipulation task may have a particular outcome in mind: for
example, a stack with a particular order of blocks. Language can naturally express such constraints;
i.e. “stack the red block on the yellow block.” Following the template generation and data annotation
in Section 4.1, we train baseline and Transformer VGP models to produce output masks M̂ grasp and
M̂ place and combine them with a SPOT-Q model to manipulate blocks in a simulated environment.
These masks are filtered and thresholded using 0-1 block masks, following Hundt et al. [9]. To
evaluate the VGP system in isolation, we report the following metrics:

• Block Accuracy is the percentage predictions for which the grasp mask overlaps with the correct
block, i.e. the model chooses the correct block to pick up. Higher is better.

• Idealized Error Score (IES) captures the performance of an idealized robot on the manipulation
task, choosing a block to move using the grasp mask, and a location using the place mask. After
the chosen block is teleported to the predicted location, we measure the Euclidean distance
between the block’s new location and its reference location in block lengths. Lower is better.

Our baseline is a UNet-based VGP model; specifically, we extend the LINGUNET model presented
by Misra et al. [4] with an attentional fusion mechanism. While the original LINGUNET used the
final state of an LSTM for the language representation, we use a weighted average of BiLSTM
states produced by an attention mechanism. We also ran a end-to-end Q-Learning experiment that
backpropagates through both the FCN and Transformer, but the model did not converge.

Table 1: Visual goal prediction (VGP) met-
rics for models trained on one or both tasks.
Higher accuracy and lower Idealized Error
Score (IES, measured in blocks), is better.
TFMR is Transformer.
Model Train Test Block Acc. IES
UNet Rows Rows 57.1% 2.4
TFMR Rows Rows 84.8% 0.9
UNet Both Rows 66.5% 1.2
TFMR Both Rows 91.3% 0.6
UNet Stacks Stacks 27.9% 1.0
TFMR Stacks Stacks 81.5% 0.4
UNet Both Stacks 75.2% 0.6
TFMR Both Stacks 90.4% 0.4

Further details on the masking, as well as the simu-
lation environment, can be found in Appendix B.1.
The filtered/thresholded masks M̂ grasp and M̂ place

are stacked into a single mask M̂ ∈ Rn×n×2. A final
matrix ofQ′ of Q values constrained by the language
is given by Q′ = M̂ �Q, where � is the Hadamard
product; Q′ is then used to choose an action and a
location at which to grasp/place in the simulation.

We count stacks and rows as successful only with
the specified color order, also tallying the number of
actions this required and the percentage of times the
gripper picked up the correct block. We contrast our
model with the SPOT-Q framework alone, which has
no access to the order constraints, and with our UNet
baseline. Each model was evaluated with the same SPOT-Q model and tested on 100 trials. Hundt
et al. [9] set a 30 action limit for failed trials; we added several evaluation heuristics to terminate
failed trials when an irrecoverable state was reached, measuring color ordering errors. Stacking
tasks use 8 colors and row-making tasks use 4. Table 2: Simulation Metrics. Higher task and

color grasping success percentages are better. A
lower average number of actions per trial is better.

Task Model Task % Color % Actions
Rows RL only 10% 31.2% 15.3
Rows UNet 10% 32.5% 19.2
Rows TFMR 53% 76.7% 12.3
Stacks RL only 0% 13.0% NaN
Stacks UNet 0% 15.2% NaN
Stacks TFMR 29% 78.6% 11.6

Table 1 shows the visual goal prediction met-
rics for all model variants trained on one or both
tasks. We see that the Transformer-based mod-
els (TFMR) uniformly out-perform the UNet
baseline across all metrics, often by large mar-
gins. For both UNet and Transformer archi-
tectures, training on two tasks simultaneously
covers a broader range of semantically differ-
ent examples with a corresponding increase in
performance on all metrics. Notably, these ex-
amples differ by task: firstly, row-making uses a subset of the colors available in stacking. Secondly,
while the grasp data across both tasks is roughly identical, the data for place masks is quite different.
For example, both “stack the blue block on the red block” and “move the blue block next to the red
block” result in grasp masks over the blue block, but whereas the place mask for stacking picks out
the block on which to stack (the red block), the row mask specifies a location near the target block.
Thus, it is noteworthy that combining tasks benefits not only the block accuracy, but also the IES.

6

Table 2 shows the task completion percentage for the best UNet and Transformer models (trained
on both tasks) in the simulated environment, as well as the percentage of successful grasps that
picked up the correct color, and the average number of actions taken to complete a successful trial.
In the aggregate, we see that high performance on VGP metrics does not translate to equivalent
performance in the simulation environment. For example, both for stacking and row-making, the
percentage of correct color grasps is substantially lower that the VGP equivalent metric, block ac-
curacy. For the Transformer model, this may be due to the imprecision of the patch-wise tiling of
the image: when heuristically combined with a common-sense mask, a patch may cover multiple
adjacent blocks. This is an inherent limitation of our approach. When compared to the RL-only and
UNet baselines, our Transformer-based model succeeds in significantly more trials. Additionally,
the mean number of actions across successful trials is lower, indicating that the Transformer-based
masks result in fewer actions per successful trial. Note that for stacking, both baselines succeeded
on 0 out of the 100 trials; due to toppling and occlusion, stacking poses a significantly harder task
than row-making, and it is harder to recover from a misplaced block, even if the trial is not ended.
We see that even a fairly high block accuracy and low IES are insufficient for high task performance.
This highlights the one of the main challenges of multistep tasks: small error rates compound across
multiple actions, yielding low task performance. A full error analysis is given in Appendix B.3

59
8

11
96

17
94

23
92

29
90

35
88

41
86

47
84

53
82

59
80

0.0

0.5

1.0
Data Ablation

rows
stacks

Real Images

IE
S

Figure 3: IES as a function of the % of
real fine-tuning data used. IES is error
measured in blocks, lower is better.

Transfer to Real Images – In Figure 3, we plot the
IES of row-making and stacking models when trained
on increasing subsets of real data. We see that for both
rows and stacks, performance improves slightly as we in-
crease the amount of training data, with diminishing re-
turns after 30% of the available data (1794 examples) are
used. Given that Transformers typically require several
orders of magnitude more data to reach good performance
[45, 40, 46], the fact that our architecture can be trained
with mere thousands of simulated training examples, and
successfully finetuned with even fewer real examples, extracted from only a few hundred real im-
ages, represents a significant achievement. For a proof-of-concept demonstration of our model run-
ning on a real robot, see Appendix B.4 and the supplementary materials.
Compositionality – By generating held-out data splits as described in Section 4.3, we can test
the ability of our model to generalize compositionally, i.e. to recombine known symbols in new
contexts. A model with compositional color representations will be able to combine colors across
contexts; for example, if it has seen red blocks in the context of green blocks, it should generalize to
a blue block context. We would therefore expect the model to perform roughly on par with a model
trained on a i.i.d. data split, where all contexts are seen at train time. Conversely, if the model has
learned to interpret each utterance atomically, we should expect much lower held-out performance.

Table 3: VGP metrics on a held-out sub-
set of unseen color pairs. Baseline mod-
els trained on a randomly-shuffled split.
Task Data Split Block Acc. IES
Stacks Random 85.7% 0.4
Rows Random 89.1% 1.7
Stacks Unseen 84.8 % 0.6
Rows Unseen 84.3% 1.3

Our results are reported in Table 3. Both rows and stacks
see a slight drop in block accuracy from the baseline.
Nevertheless, the lack of a large gap between the base-
line and the held-out conditions suggests that the model
has largely learned to generalize compositionally to un-
seen block combinations. This suggests that, although the
model certainly has the capacity to memorize 23 combi-
nations, and although it is not trained to perform compo-
sitional reasoning, it learns to bind symbols to percepts in
a way that generalizes across contexts (i.e. “red block” refers to one particular block, independent of
its context). These results are promising but limited to simulated language; accordingly, in Section
5.2 we evaluate our model with real language data.
5.2 Naturalistic Language Commands with Complex Scenes
In this experiment we model the naturalistic data described in Section 4.4, where state representa-
tions are coupled instead with diverse crowdsourced commands, in contrast to the template gener-
ated commands in Section 5.1. We train models on state representations (cf. Section 4.4) as well as
birds-eye color and depth images. This highlights the flexibility of our model: we are able to train
from images and from state representations with no modifications to the architecture.

Large pre-trained encoders have been shown to encode useful linguistic features at a number of
levels of analysis [47, 48, 49]; accordingly, we make use of bert-base-cased [50] as an input
feature, contrasting it with GloVe [51] word embeddings. Tuning and metrics are as in Sec. 5.1.

7

Table 4: VGP metrics show that best Transformer mod-
els out-perform UNet, both on state and image inputs.

Model Input k Block Acc. IES
UNet + GloVe State 1 56.5% 3.2
UNet + GloVe Image 1 63.4% 3.1
TFMR + GloVe State 2 88.4% 2.1
TFMR + GloVe Image 2 88.7% 2.8
TFMR + BERT State 4 90.5% 2.1
TFMR + BERT Image 2 83.6 3.4

Table 4 shows the VGP metrics for models
trained from image-like representations of
the state (described in Section 4.4) as well
as from images. For brevity, only the
best model for each embedding type is re-
ported, with full results in Appendix C.5.
On state representations, the Transformer-
based models show a clear advantage over
the baseline, with IES being substantially
lower for both Transformer models. When using GloVe embeddings with state representation input,
2 × 2 patches resulted in the best performance; a patch size of 4 yielded the best results for BERT
embeddings. Overall, while the BERT-based model has slightly higher block accuracy, the IES are
equal between the two models when trained on state representations. While these metrics measure
per-step performance, these results suggest that our masking model can be applied to real as well as
simulated language.

In Table 4, we also see that the performance shifts substantially when changing the input from state
to images. While the baseline improves slightly in IES, the Transformers’ performance decreases
dramatically. These results stand in contrast to those in Section 5.1, where a Transformer trained
on images unequivocally outperformed the baseline. Nevertheless, the best Transformer model still
outperforms the baseline. We speculate that the baseline models may perform better here because
the architecture was developed for image segmentation problems. Interestingly, while a BERT-based
Transformer performed well when trained from state, the same models’ performance here is greatly
diminished. Improving the Transformer’s real-world performance is a direction for future work.

Data Translation and Filtering In Section 5.1, we observed that high performance in a static eval-
uation against a dataset did not entail equally high performance when using a realistic robot for
multi-step tasks in a simulated environment. In its current form, the blocks dataset can only be eval-
uated using static metrics. Furthermore, the images provided in the dataset are taken from a fixed 45
degree projection, and our method assumes access to birds-eye images. To obtain birds-eye images
of the environment and to facilitate further research into combining rich, naturalistic language with
action in manipulation tasks, we translate the dataset into the same environment used in Section 5.1,
and filter the dataset to only physically feasible examples; this process is described in Section 4.4.

Table 5: VGP metrics for models trained on images
of the physically feasible subset of the blocks dataset.
∗ indicates significant improvement over UNet as per
the Wilcoxon ranked-sign test.

Model Input k Block Acc. IES
UNet + GloVe Image 1 56.4 3.0
TFMR + GloVe Image 2 84.4∗ 3.0
TFMR + BERT Image 2 78.9∗ 3.6

Table 5 reports the VGP metrics on the the
physically feasible subset of the data for the
Transformer models. Firstly, we see that
performance decreases across most met-
rics. However, for UNet, IES improves on
the physically feasible subset. In contrast,
the Transformer models decrease in perfor-
mance across both metrics. Nevertheless,
the Transformer model still performs on par
with the baseline on IES, and substantially better on block accuracy. These results suggest that the
physically feasible subset is more challenging to model, even when evaluating the models statically.
In other words, even when the evaluation and models are physically unconstrained, modeling only
physically feasible scenes may be harder than modeling all scenes. This result highlights the diffi-
culty of developing embodied agents and the importance of testing them in realistic environments.

6 Conclusion

We have presented a general approach to multi-step rearrangement and manipulation tasks that fac-
torizes each step into learning how to act and learning where to act. To decide where to act, we
have presented a Transformer-based model for converting state representations and natural language
instructions to masks over an action space that learns with remarkably few examples. We have
shown the ability of our model to act in a realistic simulated environment for two multi-step block
rearrangement tasks, and naturally learn a compositional mapping from text to actions in a percep-
tual space. We have demonstrated that our model performs well under both these realistic physical
assumptions and with real and complex natural language via a dataset of crowdsourced instructions.

8

7 Acknowledgements

We thank the anonymous reviewers and the area chair for their input and engagement. We would
also like to thank Benjamin Van Durme, Tae Soo Kim, and Jonathan Jones for their helpful feedback.
This material is based upon work supported by NSF Award #1763705 and by the Office of Naval
Research under grant N00014-19-1-2076. Elias Stengel-Eskin is supported by an NSF GRFP.

References
[1] S. Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3), 1990.

[2] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager. CoSTAR: Instructing collab-
orative robots with behavior trees and vision. ICRA, 2017. URL https://arxiv.org/
abs/1611.06145.

[3] A. Hundt, V. Jain, C.-H. Lin, C. Paxton, and G. D. Hager. The costar block stacking dataset:
Learning with workspace constraints. IROS, 2019, 2019.

[4] D. Misra, J. Langford, and Y. Artzi. Mapping instructions and visual observations to actions
with reinforcement learning. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1004–1015, 2017.

[5] V. Blukis, N. Brukhim, A. Bennett, R. A. Knepper, and Y. Artzi. Following high-level
navigation instructions on a simulated quadcopter with imitation learning. arXiv preprint
arXiv:1806.00047, 2018.

[6] V. Blukis, Y. Terme, E. Niklasson, R. A. Knepper, and Y. Artzi. Learning to map natural
language instructions to physical quadcopter control using simulated flight. In Conference on
Robot Learning (CoRL), 2019.

[7] V. Blukis, R. A. Knepper, and Y. Artzi. Few-shot object grounding and mapping for natural
language robot instruction following. arXiv preprint arXiv:2011.07384, 2020.

[8] V. Blukis, Y. Terme, E. Niklasson, R. A. Knepper, and Y. Artzi. Learning to map natural
language instructions to physical quadcopter control using simulated flight. In CoRL, 2020.

[9] A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, and G. D. Hager. “Good
Robot!”: Efficient reinforcement learning for multi-step visual tasks with sim to real transfer.
IEEE RA-L, 5(4), 2020.

[10] Y. Bisk, K. J. Shih, Y. Choi, and D. Marcu. Learning interpretable spatial operations in a rich
3d blocks world. In AAAI, 2018.

[11] Y. Bisk, D. Yuret, and D. Marcu. Natural language communication with robots. In NAACL
HLT 2016, 2016.

[12] S. Gubbi Venkatesh, A. Biswas, R. Upadrashta, V. Srinivasan, P. Talukdar, and B. Am-
rutur. Spatial reasoning from natural language instructions for robot manipulation.
arXiv:2012.13693, 2020.

[13] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy
sketches. In ICML’17 Proceedings of the 34th International Conference on Machine Learning
- Volume 70, pages 166–175, 2017.

[14] J. Oh, S. Singh, H. Lee, and P. Kohli. Zero-shot task generalization with multi-task deep
reinforcement learning. In ICML’17 Proceedings of the 34th International Conference on
Machine Learning - Volume 70, pages 2661–2670, 2017.

[15] E. A. Brooks, J. Rajendran, R. L. Lewis, and S. Singh. Reinforcement learning of implicit and
explicit control flow in instructions. arXiv preprint arXiv:2102.13195, 2021.

[16] Y. Jiang, S. Gu, K. P. Murphy, and C. Finn. Language as an abstraction for hierarchical deep
reinforcement learning. In Advances in Neural Information Processing Systems, volume 32,
pages 9414–9426, 2019.

9

https://arxiv.org/abs/1611.06145
https://arxiv.org/abs/1611.06145

[17] B. Gangopadhyay, H. Soora, and P. Dasgupta. Hierarchical program-triggered reinforcement
learning agents for automated driving. arXiv preprint arXiv:2103.13861, 2021.

[18] S.-H. Sun, T.-L. Wu, and J. J. Lim. Program guided agent. In International Conference on
Learning Representations, 2019.

[19] I. Perera, J. Allen, C. M. Teng, and L. Galescu. Building and learning structures in a situated
blocks world through deep language understanding. In SPLU 2018, 2018.

[20] P. Goyal, S. Niekum, and R. Mooney. Using natural language for reward shaping in reinforce-
ment learning. In IJCAI 2019, 2019.

[21] P. Goyal, S. Niekum, and R. J. Mooney. Pixl2r: Guiding reinforcement learning using natural
language by mapping pixels to rewards. arXiv preprint arXiv:2007.15543, 2020.

[22] T.-J. Fu and W. Y. Wang. Semi-supervised policy initialization for playing games with lan-
guage hints. In NAACL 2021. ACL, June 2021.

[23] D. Bahdanau, F. Hill, J. Leike, E. Hughes, A. Hosseini, P. Kohli, and E. Grefenstette. Learn-
ing to understand goal specifications by modelling reward. In International Conference on
Learning Representations, 2018.

[24] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. B. Amor. Language-
conditioned imitation learning for robot manipulation tasks. Neurips 2020, 2020.

[25] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data. In
RSS 2021: Robotics: Science and Systems, 2021.

[26] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for
robotic manipulation. CoRL, 2020.

[27] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. Concept2robot: Learning manipula-
tion concepts from instructions and human demonstrations. In Proceedings of RSS, 2020.

[28] T. Nguyen, N. Gopalan, R. Patel, M. Corsaro, E. Pavlick, and S. Tellex. Robot object retrieval
with contextual natural language queries. arXiv preprint arXiv:2006.13253, 2020.

[29] N. Gopalan, E. Rosen, G. Konidaris, and S. Tellex. Simultaneously learning transferable sym-
bols and language groundings from perceptual data for instruction following. Robotics: Sci-
ence and Systems XVI, 2020.

[30] J. Roh, C. Paxton, A. Pronobis, A. Farhadi, and D. Fox. Conditional driving from natural
language instructions. Conference on Robot Learning, pages 540–551, 2019.

[31] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In MICCAI. Springer, 2015.

[32] M. Q. Mohammed, K. L. Chung, and C. S. Chyi. Review of deep reinforcement learning-based
object grasping: Techniques, open challenges, and recommendations. IEEE Access, 8, 2020.

[33] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser. Learning synergies
between pushing and grasping with self-supervised deep reinforcement learning. In IROS.
IEEE, 2018.

[34] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-
based robotic manipulation. CoRL, 2018.

[35] I. Akinola, J. Varley, and D. Kalashnikov. Learning precise 3d manipulation from multiple
uncalibrated cameras. In ICRA, 2020.

[36] S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-loop
grasping from low-cost demonstrations. In IEEE RA-L, volume 5, 2020.

10

[37] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

[38] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for dense prediction. arXiv
preprint arXiv:2103.13413, 2021.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Neurips, 2017.

[40] T. Q. Nguyen and J. Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

[41] B. Lake and M. Baroni. Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In ICML. PMLR, 2018.

[42] B. M. Lake, T. Linzen, and M. Baroni. Human few-shot learning of compositional instructions.
arXiv preprint arXiv:1901.04587, 2019.

[43] L. Ruis, J. Andreas, M. Baroni, D. Bouchacourt, and B. M. Lake. A benchmark for systematic
generalization in grounded language understanding. arXiv preprint arXiv:2003.05161, 2020.

[44] M. L. Gray and S. Suri. Ghost work: How to stop Silicon Valley from building a new global
underclass. Eamon Dolan Books, 2019.

[45] M. Popel and O. Bojar. Training tips for the transformer model. arXiv preprint
arXiv:1804.00247, 2018.

[46] A. Araabi and C. Monz. Optimizing transformer for low-resource neural machine translation.
arXiv preprint arXiv:2011.02266, 2020.

[47] J. Hewitt and P. Liang. Designing and interpreting probes with control tasks. In EMNLP-
IJCNLP, 2019.

[48] I. Tenney, D. Das, and E. Pavlick. Bert rediscovers the classical nlp pipeline. In ACL, 2019.

[49] G. Jawahar, B. Sagot, and D. Seddah. What does bert learn about the structure of language?
In ACL, 2019.

[50] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL HLT. ACL, 2019.

[51] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.
In EMNLP, 2014.

[52] E. Rohmer, S. P. N. Singh, and M. Freese. Coppeliasim (formerly v-rep): a versatile and
scalable robot simulation framework. In IROS 2013, 2013. www.coppeliarobotics.com.

[53] P. Khullar, K. Majmundar, and M. Shrivastava. NoEl: An annotated corpus for noun ellipsis in
English. In LREC 2020, 2020.

11

A Model

A.1 Transformer

Figure 4 shows a schematic of our Transformer-based VGP model, run on real robot data. The
inputs are a bird’s eye color image (and depth image) and a language command. The image is tiled
into an array of non-overlapping square patches, which are flattened into a one-dimensional list by
concatenating each row of tiles. The tokens of the language command are then concatenated to
the end of that list. This concatenated input is passed through a shared set of Transformer encoder
layers, which encodes the dependencies between words and the image. The output of the shared
Transformer is then passed to two identical Transformer encoders with separate parameters, one
for predicting a grasp mask, and one for predicting a place mask. This bifurcation is based on the
observation that there are commonalities between producing the two types of masks (e.g. localizing
colors, delineating blocks) but that the final tasks of producing grasp and place masks are distinct.

A.2 Hyperparameters

The number of shared and combined layers is treated as a hyperparameter n ∈ [0, 2, 4, 6], as
well as the number of warmup steps w ∈ [100, 400, 1000, 4000], the dropout probability p ∈
[0.25, 0.33, 0.40], and the loss weight ratio γ ∈ [0.01, 0.1, 0.2]. Each model has a hidden dimension
of 256 and a feed-forward dimension of 512. Due to the larger number of hyperparameters, we
sample 70 random parameter configurations.

stack the
blue block
on the red

block

…[SEP] stack the blue block on the red block

Shared Transformer
Grasp Transformer Place Transformer

Figure 4: Our Transformer-based Visual Goal Prediction model, as run on real robot data. It takes
an image and an instruction as input, then produces separate masks for grasping and placing.

A.3 Q-Learning

Our model relies on a learned function from states and actions to expected rewards, Q(st, a). This
function is learned in the context of a Markov Decision Process (S,A, P,R, γ) composed of a set
of states S, a set of actions A, a transition function P : S × S × A → R, a reward function
R : S×A→ R, and a discount factor γ, where 0 ≤ γ ≤ 1. At time t, an agent observes state St and
chooses action at = π(st), where π is a policy. The function Q, approximating the expected reward
for each state-action pair, can be used to extract a deterministic policy π that maximizes the expected
reward: π(st) = argmaxQ(st, a),∀a ∈ A. We learn Q to maximize the reward R over time by
minimizing |Q(st, at)− yt|, where yt = R(st+1, at) + γQ(st+1, π(st+1)). In a multi-step task, the
definition of R has a major impact on the learning efficiency of the agent. Specifically, relying on a
single reward at the end of a task yields a very sparse reward signal and results in inefficient learning.
In the multi-step tasks considered here (stacking and row-making) there are intermediate subtasks
that naturally lend themselves to reward shaping, i.e. providing smaller intermediate rewards to
the agent when the chosen action reflects an incremental progression towards the goal state. The
SPOT-Q algorithm, introduced by Hundt et al. [9], uses intermediate rewards to shape the learning
of Q(st, a) for row-making and stacking. We use SPOT-Q to learn the function Q(st, a). Given a

12

pixel-wise n × n state space of an image and two actions (grasp and place), this function can be
expressed as a tensor Q ∈ Rn×n×2.

B Experiment 1

B.1 Combination Heuristics

In the case of stacking, following Hundt et al. [9], we intersect each mask with a common-sense
mask that assigns a value of 0 where there are no blocks (i.e. an empty space cannot be the location
of a grasp or a place). For row-making, we allow placing in empty locations, but intersect the grasp
mask with a common-sense mask. For place and grasp actions in stacking, and grasp actions in
row-making, we then find the maximum location s∗ in mask M : s∗ = argmaxM . Because the
reconstruction function copies a patch value across all of its pixels, for a patch size of p there will
be p2 pixels with the value of s∗. We intersect this patch with the common-sense mask to find the
single block with the highest value in M . For place actions in row-making, we simply threshold M
to obtain a set of valid patches to intersect with the Q values. Both processes produce binary masks.

B.2 Simulation

We use the CopelliaSim simulator [52] for experiments involving a simulated robot.

Figure 5: Simulation Environment

Images All real images were collected via a UR-
5 robot, Robotiq 2f-85 2-finger gripper, and Prime-
sense Carmine RGB-D camera. All of these con-
ditions are different from the simulator, except the
UR5. The images were collected under varied
lighting conditions. The data is saved in the same
file format as the experiments in Tables 1 and 2.
with a birds-eye view, 224× 224 RBG and depth-
map images, etc.

Early Termination The step-by-step nature of
the instructions means that the agent is sometimes
unable to reverse course: for example, if the first
instruction were “stack the green block on the blue
block” but the agent mistakenly grasped the red
block and placed it on the green block, the green
block would become unreachable. Since neither the Q-value model nor the language understand-
ing model were trained on unstacking tasks, there would be no way to reverse course here without
adding an external observer. Thus, in these cases, we terminate the trial. Similarly, if the stack is
toppled, we terminate the trial, as without an external observer we cannot determine which step of
the process we have regressed to, as the partial toppling of stacks is not unusual. Because blocks are
typically not occluded in row-making, we do not need these heuristics, and the only way for a trial
to fail is by timing out after 30 actions.

Simulator For experiments involving a simulated robot, the CopelliaSim simulator [52] was used.
The simulated agent collects observations via a fixed RGB-D camera, whose images are project
to a birds-eye view. The agent operates over a discretized spatial and angular action space, and
movement to a particular location and angle is performed by an inverse kinematics solver built into
the simulator.

B.3 Error analysis

As mentioned in §5.1, stacking tasks may terminate early for a number of reasons, including irre-
versible actions that make a successful stack impossible. We conduct an error analysis to determine
what percentage of the failures are due to errors in the perception/reasoning component (i.e. the
masking) and what percentage are due to physical failures of the grasping arm. We find that 61.97%
of the failures could be attributed to timing out after 30 actions. Qualitatively, we found that this

13

often happens when a block tumbles outside of the work area, rendering it impossible to grasp. An-
other 7.04% can be attributed to toppled stacks, where a stack height of 2 or 3 was reached before a
place action destroyed the whole stack, ending the trial. Finally, 30.99% were due to incorrect block
orderings which occluded crucial blocks; this is due to the 21.42% of grasp actions that picked up
the incorrect block.

B.4 Proof-of-Concept

Due to restrictions induced by the ongoing COVID-19 crisis, we were unable to run sufficient tri-
als to include quantitative real results. Nevertheless, we include a proof-of-concept demonstration
video in which we run the Transformer-based masking model with a real robot arm to successfully
complete a real stack in the bottom to top order green, yellow, blue, red.

C Experiment 2

C.1 Data Translation and Preprocessing

Note that in the original dataset, 4.82% of the examples have multiple blocks moving in a single
frame. As this breaks the assumptions made in § 1, we ignore these examples both while training
and evaluating.

For training, we convert the 64×64 state image grids into binary masks, where all elements are zero
except the pixels corresponding to the block which is moved.

C.2 Data Filtering

We filter out physically infeasible examples, which are typically due to unstable structures toppling
or blocks being placed in overlapping areas. Because the images captured from the simulated envi-
ronment are of a lower resolution than the originals, many of these logos are difficult to read in the
simulated images; to aid with block discrimination, we assign a color to each block in addition to its
logo. Table 6 reports the same statistics given in Bisk et al. [10] on the filtered subset of the data.

Dataset Configs Types Tokens Utterances Mean Length
Bisk et al. [10] 100 1,820 233,544 12,975 18.0

Physically Feasible 100 1,434 133,083 7,398 18.0
Table 6: Dataset Statistics for feasible subset of the Bisk et al. [10] data

C.3 Dataset Ambiguity

A remaining limitation of the dataset is that some descriptions are ambiguous and not reliably ac-
tionable, since annotators did not attempt to execute the described actions. Some of the natural
language descriptions are ambiguous, as depicted in Fig. 7.

C.4 Qualitative Error Analysis

Based on our results in Tables 4, we qualitatively examine some of the errors made by the
Transformer-based model, where we observe several patterns. Looking at the validation examples
with the highest IES, we observe that they often correspond to instances where the source block was
mis-identified, leading the wrong block to be moved, and yielding a large IES. More interestingly,
in the cases where the correct block was moved, the instruction often contains higher-order concepts
as well as linguistic complexities such as ellipsis. For example, in Figure 6 there is a reference to a
“disconnected square”, which is a rare, higher-order geometric concept. In addition, the subsequent
clause lacks an explicit reference back to the square; the annotator chose to leave this reference
as implicit, given that the square is raised to a salient position by the previous clause. This type of
noun-phrase ellipsis is common in natural language [53], and reflects the type of advanced pragmatic
reasoning required to handle natural language.

Other examples of a higher-order concept instruction that the model performs poorly on are: “Take
the Mercedes Benz block on the Burger King block without hiding the right top edge” (hiding),

14

“There is a disconnected “square” at the bottom.
Place Shell on top of the lower left corner.”

Figure 6: A particularly challenging example for the model. Not only does this involve a higher-
order concept (disconnected square) but it also incorporates noun-phrase ellipsis.

“Add Shell as the second block in the four-block row.”

Figure 7: Ambiguous command makes reference to future steps: a row of 4 is later constructed, but
at the time of construction, the agent has no access to this information.

“targt [sic] goes 1/2 under Adidas with the right side hanging off” (hanging), and “take the Stella
Artois block and place it on top of the Nvidia block, lined up perfectly” (perfectly). The model also
struggles with long coreference chains, even when the anaphora are explicit, e.g. “Place the block
that is to the right of the Starbucks block and make it the highest block on the board by placing it on
the Mercedes block. It should be in line with the bottom block.”

15

C.5 Full results for Experiment 2

Table 7: Full VGP results for the blocks dataset

Model Embedding Recon. Loss Input k Block Acc. IES
UNet GloVe Yes State 1 55.3 3.3
UNet GloVe No State 1 56.5 3.2
UNet GloVe Yes Image 1 53.6 3.1
UNet GloVe No Image 1 63.4 3.1
Transformer GloVe Yes State 4 90.7 2.2
Transformer GloVe No State 4 92.8 2.3
Transformer GloVe Yes State 2 90.8 2.3
Transformer GloVe No State 2 88.4 2.1
Transformer BERT Yes State 4 88.9 2.6
Transformer BERT No State 4 90.5 2.1
Transformer BERT Yes State 2 89.0 2.4
Transformer BERT No State 2 78.7 2.8
Transformer GloVe Yes Image 4 88.9 3.4
Transformer GloVe No Image 4 85.5 3.6
Transformer GloVe Yes Image 2 79.3 3.2
Transformer GloVe No Image 2 88.7 2.8
Transformer BERT Yes Image 4 89.5 3.5
Transformer BERT No Image 4 72.1 3.8
Transformer BERT Yes Image 2 90.1 3.3
Transformer BERT No Image 2 83.7 3.1

Table 8: Full VGP results for the blocks dataset on the physically feasible subset.

Model Embedding Recon. Loss Input k Block Acc. IES
UNet GloVe Yes State 1 47.8 3.1
UNet GloVe No State 1 49.1 3.1
UNet GloVe Yes Image 1 45.5 3.0
UNet GloVe No Image 1 56.4 3.0
Transformer GloVe Yes State 4 88.2 2.4
Transformer GloVe No State 4 90.3 2.4
Transformer GloVe Yes State 2 89.1 2.6
Transformer GloVe No State 2 85.1 2.4
Transformer BERT Yes State 4 86.8 2.7
Transformer BERT No State 4 88.3 2.2
Transformer BERT Yes State 2 88.4 2.6
Transformer BERT No State 2 72.0 3.0
Transformer GloVe Yes Image 4 86.3 3.4
Transformer GloVe No Image 4 83.0 3.7
Transformer GloVe Yes Image 2 75.7 3.2
Transformer GloVe No Image 2 84.4 3.0
Transformer BERT Yes Image 4 88.3 3.7
Transformer BERT No Image 4 66.2 3.7
Transformer BERT Yes Image 2 88.5 3.4
Transformer BERT No Image 2 86.3 3.5

16

	1 Introduction
	2 Related Work
	3 Models
	4 Datasets and Resources
	4.1 Simulation Experiments with Synthetic Commands
	4.2 Transfer to Real Images
	4.3 Compositionality
	4.4 Naturalistic Language Commands with Complex Scenes

	5 Experiments
	5.1 Simulation Experiments with Synthetic Commands
	5.2 Naturalistic Language Commands with Complex Scenes

	6 Conclusion
	7 Acknowledgements
	A Model
	A.1 Transformer
	A.2 Hyperparameters
	A.3 Q-Learning

	B Experiment 1
	B.1 Combination Heuristics
	B.2 Simulation
	B.3 Error analysis
	B.4 Proof-of-Concept

	C Experiment 2
	C.1 Data Translation and Preprocessing
	C.2 Data Filtering
	C.3 Dataset Ambiguity
	C.4 Qualitative Error Analysis
	C.5 Full results for Experiment 2

