Under review as a conference paper at ICLR 2021

DCT-SNN: USING DCT TO DISTRIBUTE SPATIAL
INFORMATION OVER TIME FOR LEARNING LOW-
LLATENCY SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) offer a promising alternative to traditional deep
learning frameworks, since they provide higher computational efficiency due to
event-driven information processing. SNNs distribute the analog values of pixel
intensities into binary spikes over time. However, the most widely used input
coding schemes, such as Poisson based rate-coding, do not leverage the additional
temporal learning capability of SNNs effectively. Moreover, these SNNs suffer
from high inference latency which is a major bottleneck to their deployment. To
overcome this, we propose a scalable time-based encoding scheme that utilizes
the Discrete Cosine Transform (DCT) to reduce the number of timesteps required
for inference. DCT decomposes an image into a weighted sum of sinusoidal basis
images. At each time step, a single frequency base, taken in order and modulated
by its corresponding DCT coefficient, is input to an accumulator that generates
spikes upon crossing a threshold. We use the proposed scheme to learn DCT-
SNN, a low-latency deep SNN with leaky-integrate-and-fire neurons, trained using
surrogate gradient descent based backpropagation. We achieve top-1 accuracy
of 89.94%, 68.3% and 52.43% on CIFAR-10, CIFAR-100 and TinylmageNet,
respectively using VGG architectures. Notably, DCT-SNN performs inference
with 2-14X reduced latency compared to other state-of-the-art SNNs, while
achieving comparable accuracy to their standard deep learning counterparts. The
dimension of the transform allows us to control the number of timesteps required
for inference. Additionally, we can trade-off accuracy with latency in a principled
manner by dropping the highest frequency components during inference.

1 INTRODUCTION

Deep Learning networks have tremendously improved state-of-the-art performance for many tasks
such as object detection, classification and natural language processing (Krizhevsky et al., 2012;
Hinton et al., [2012; [Deng & Liu, 2018). However, such architectures are extremely energy-
intensive (Li et al., 2016) and hence require custom architectures and training methodologies for
edge deployment (Howard et al.| |2017). To address this, Spiking Neural Networks (SNNs) have
emerged as a promising alternative to traditional deep learning architectures (Maass, (1997} Roy
et al., 2019). SNNs are bio-plausible networks inspired from the learning mechanisms observed in
mammalian brains. They are analogous in structure to standard networks, but perform computation
in the form of spikes instead of fully analog values, as done in standard networks. For the rest of this
paper, we refer to standard networks as Analog Neural Networks (ANNSs) to distinguish them from
their spiking counterparts with digital (spiking) inputs.The input and the correspondingly generated
activations in SNNs are all binary spikes and inference is performed by accumulating the spikes over
time. This can be visualized as distributing the one step inference of ANNSs into a multi-step, very
sparse inference scheme in the SNN.

The primary source of energy efficiency of SNNs comes from the fact that very few neurons
spike at any given timestep. This event driven computation and the replacement of every
multiply—accumulate (MAC) operation in the ANN by an addition in SNN allows SNNs to infer
with lesser energy. This energy benefit can be further enhanced using custom SNN implementations
with architectural modifications (Ju et al.| [2020). (L1 et al., 2017)) have released a spiking version
of the CIFAR-10 dataset based on inputs from neuromorphic sensors. IBM has designed a non-
commercial processor ‘TrueNorth’ (F. Akopyan et al.| [2015), and Intel has designed its equivalent
‘Loihi’ (Davies et al., 2018), that can train and infer on SNNs, and |[Blouw et al.| (2019) have shown

Under review as a conference paper at ICLR 2021

SNNs implemented on Loihi to be two orders of magnitude more efficient than an equivalent ANN
running on GPU for keywork spotting. However, a major challenge still to be addressed is that
the accumulation of spikes over timesteps results in a higher inference latency in SNNs. Energy
efficiency at the cost of too high a latency would still hamper real-time deployment. Consequently,
reduction of timesteps required for inference in SNNs is an active field of research. One of the
factors that significantly affects the number of timesteps needed is the encoding scheme that converts
pixels into spikes over the timesteps. Currently, the most common encoding scheme is Poisson spike
generation (Rueckauer et al., [2017), where the spikes at the input are generated as a Poisson spike
train, with the mean spiking rate proportional to the pixel intensity. This scheme does not encode
anything meaningful in the temporal axis and each timestep is the same as any other. Moreover,
networks trained using this scheme suffer from high inference latency (Rueckauer et al., [2017).
Temporal coding schemes such as phase (Kim et al.l 2018)) or burst (Park et al., 2019) coding have
been introduced to better encode temporal information into the spike trains, but they still incur high
latency and require a large number of spikes for inference. Another related temporal method is
time-to-first-spike (TTFS) coding (Zhang et al.| [2019} |Park et al., [2020). They limit the number of
spikes per neuron but the high latency problem still persists. Relative timing of spikes to encode
information has been used in (Comsa et al.| (2020), but the results are only reported for simple tasks
like MNIST and its scalability to deeper architectures such as VGG and more complex datasets like
CIFAR remains unclear.

In this paper, we propose a novel encoding scheme to convert pixels into spikes over time. The
proposed scheme utilizes a block-wise matrix multiplication to decompose spatial information into
a weighted sum of basis, and then reverses the transform to allow reconstruction of the input over
multiple timesteps. These bases, taken one per timestep, modulated by the weights from the forward
transform are then presented to the spike generating layer. The spike generator sums the contribution
of all bases seen until the current timestep, as shown in Figure [I} Though any invertible matrix
can be utilized as the transform, the ideal transform follows the properties of energy compaction
and orthonormality of bases as outlined in Section 3.1. We motivate Discrete Cosine Transform
(DCT) as the ideal choice, since it is data independent, with orthogonal bases ordered by their
contribution to spectral energy. Each timestep gets the information corresponding to a single base,
starting from the zero frequency component at the first timestep. Each subsequent step refines the
input representation progressively. At the end of the cycle, the entire pixel value has passed through
the spike generating neuron. Thus, this methodology successfully distributes the pixel value over
all the timesteps in a meaningful manner. Choosing the appropriate dimensions of the transform
provides a fine grained control on the number of timesteps used for inference. We use the proposed
scheme to learn DCT-SNN, a spiking version of an ANN and show that it cuts down the timesteps
needed to infer an image taken from CIFAR-10, CIFAR-100 and TinylmageNet datasets from 100
to 48, 125 to 48 and 250 to 48, respectively, while achieving comparable accuracy to the state-of-
the-art Poisson encoded SNNs. Additionally, ordering the frequencies bases being input at each
timestep provides a principled way of trading off accuracy for a reduced number of timesteps during
inference, if desired, by dropping the least important (highest frequency) components.

To summarize, the main contributions of this work are as follows,

e A novel input encoding scheme for SNNs is introduced wherein each timestep of computation
encodes distinct information, unlike other rate-encoding methods.

e The proposed encoding scheme is used to learn DCT-SNN, which is able to infer with 2-14X
lower timesteps compared to other state-of-the-art SNNs, while achieving comparable accuracy.

e The proposed technique is, to the best of our knowledge, the first work that leverages frequency
domain learning for SNNs on vision applications.

e To the best of our knowledge, this is the first work that orders timesteps by significance to
reconstruction. This provides an option to trade-off accuracy for faster inference by trimming
some of the later frequency components, which is non-trivial to perform in other SNNs.

2 RELATED WORKS

Learning ANNs in the frequency domain. Successful learning for vision tasks in the frequency
domain has been demonstrated in ANNs in several works. These utilize the DCT coefficients directly
available from JPEG compression method (Wallace, |1992)) without performing the decompression

Under review as a conference paper at ICLR 2021

steps. Conventional CNNs were used with DCT coefficients as input for image classification in
Ulicny & Dahyot] (2017) and [Rajesh et al. (2019). [Ehrlich & Davis| (2019) proposed a model
conversion algorithm to apply pretrained spatial domain networks to JPEG images. Wavelet features
are utilized in [Williams & Li| (2016) to train CNN-based classifiers. However, these methods
suffer a small accuracy degradation compared to learning in spatial domain. DCT features were
used effectively for large scale classification and instance segmentation tasks in |Xu et al.[(2020).
Although such frequency domain approaches have proved fruitful in ANNS, it is unexplored in SNNs
despite the conversion of spatial bases of the image to temporal bases in the frequency domain being
intuitively related to distributing the analog pixel values in ANNs to spikes over time in SNNs.
There exist three prominent line of works for training SNNs, namely using spike-timing-dependent
plasticity rules (STDP), ANN-SNN conversion and training from scratch. While STDP-based local
learning (Diehl & Cookl [2015} | Xu et al.| 2020) is more bio-plausible, scaling such algorithms
beyond MNIST type of tasks has been challenging. So, the following discussion focuses mainly
on conversion and backpropagation based works.

ANN-SNN Conversion. The most common approach of training rate-coded deep SNNss is to first
train an ANN and then convert it to an SNN for finetuning. (Diehl et al., 2015} |Sengupta et al.,
2019;|Cao et al., [2015). Usually, the ANNs are trained with some limitations to facilitate this, such
as not using bias, batch-norm or average pooling layers, though some works are able to bypass these
constraints (Rueckauer et al., |2017). To convert ANNs to SNNs successfully, it is critical to adjust
the threshold of Integrate-and-Fire (IF) / Leaky IF (LIF) neurons properly. The authors in Sengupta
et al.| (2019) recommend computing the layerwise thresholds as the maximum pre-activation of the
neurons. This results in high accuracy but incurs high inference latency (2000-2500 timesteps).
Alternatively, Rueckauer et al.| (2017 choose a certain percentile of the pre-activation distribution
as the threshold, reducing inference latency and improving robustness. The difference between these
works and ours lie in the significance we attach to the timesteps.

Backpropagation from Scratch and Hybrid Training. Another approach to training SNNs is
learning from scratch using backpropagation, which is challenging due to the non-differentiability
of the spike function at the time of spike. Surrogate gradient based optimization (Neftci et al.,
2019) has been utilized to circumvent this issue and implement backpropagation in SNNs effectively
(Lee et al.l 2020; Huh & Sejnowski, 2018). Surrogate gradient based backpropagation on the
membrane potential at only a single timestep was proposed in|Zenke & Ganguli| (2018). Shrestha &
Orchard| (2018)) compute the gradients using the difference between the membrane potential and the
threshold, but only demonstrate on MNIST using shallow architectures. [Wu et al.| (2018) perform
backpropagation through time (BPTT) on SNNs with a surrogate gradient defined on the membrane
potential as it is continuous-valued. Overall, SNNs trained with BPTT using such surrogate-
gradients have been shown to achieve high accuracy and low latency (~100-125 timesteps), but the
training is very compute intensive compared to conversion techniques. Rathi et al.| (2020) propose
a combination of both methods, where a pre-trained ANN serves as initialization for subsequent
surrogate gradient learning in the SNN domain. This hybrid approach improves upon conversion by
reducing latency and speeding up convergence. However, this is orthogonal to the encoding scheme
and can be used to improve the performance of any rate-coded scheme. In this work, we adopt the
hybrid training method to train the SNNs. The key distinction of our method lies in how the pixel
values are encoded over time, which is described next.

3 ENCODING SCHEME

An ideal encoding scheme to convert pixel values into spikes over time should capture relevant
information in the temporal statistics of the data. Additionally, the total spike activity over all
the timesteps at the input neuron should correspond to the pixel intensity. Our encoding scheme
deconstructs the image into a weighted sum of basis functions. We invert this transform to
reconstruct the image over time steps. Each basis function, taken one per timestep and modulated by
the weights from the deconstruction is input to an Integrate-and-Fire (IF) neuron, which accumulates
the input over timesteps and fires when accumulation crosses its threshold.

3.1 A GENERIC 1-D TRANSFORM TO DISTRIBUTE PIXELS OVER TIME

1-D transformation. For simplicity, we first consider a one dimensional transform over the entire
input pixel space. Let us consider a single D-dimensional image, X € R'*P. We transform this
image using a transform matrix 7" into a new coordinate system, where 7' € RP* P The transformed

Under review as a conference paper at ICLR 2021

=1 - =
+ X1
X e Y =2 Mo R =

11 R

X

3
T = BLLLT]=
1 - X3)
T T, | T[T, T T, +
T, t=4
L= =] Aol [Tl] =
X4)
= t=5 +
Y LT Tel- T =
X(S) =X
Forward Transform: Reverse Transform: t
Deconstruction of X Time-Spread X® — Z Y To; x@_ x
X-T=Y Reconstruction of X foye |

Figure 1: 1-D Encoding Scheme: On the left we show the Forward Transform. T represents
the transform matrix that takes the input X into an intermediate coordinate system, resulting in
representation Y. On the right, we show the Inverse Transform that uses Y to reconstruct X over
time. Here 7' = T’. The input image X is reconstructed progressively at each timestep by
summing the basis vectors 7;, modulated by the corresponding coefficient y,, over all previous
timesteps. Since there are 5 bases shown here, X requires 5 timesteps for reconstruction.

vector, Y = XT, whereY € R¥*D_ contains the coefficients of the image in the new coordinate
system. This is shown pictorially for d = 5 in Figure [T} Assume that 7 is a full rank matrix and
let us consider T—! € RP*D the inverse transformation matrix that takes us back into the original
coordinate system. For reasons clarified shortly, assume that T is an orthonormal matrix with its
inverse equal to its transpose, T~! = T”. The forward transform represents deconstruction of the
input X into a weighted sum of basis vectors, represented by the rows of T~!, or columns of T as
shown in Figure[I] These bases are referenced by T,,n = 1,2....d. If we input one basis function
per timestep to the SNN, we get intermediate representations of the input at timestep t, X () by
modulating the ¢-th basis by its corresponding weight from the forward transform, summed over all

previous timesteps. Summing over all bases allows us to reconstruct X. Mathematically,
t

XW=%"y,T, and X9W=X,
n=1
The analog value of X (*) is the input to the spike generator at each timestep and is converted to
spikes using IF neurons as shown in Figure 2] Hence, we have successfully distributed the input X
over d timesteps, with each timestep carrying information over our chosen bases. In the next section,
we discuss the desirable properties of the bases for deconstructing X.

Desirable Properties of the Basis Vectors. The columns of the transform matrix 7' contain
the bases to deconstruct X. Since we use one basis per timestep, we want each base to offer
non-interfering information about X. This is captured by the orthonormality constraint on T.
Orthonormal columns avoid cancellation of information between timesteps, and relate the forward
and reverse transforms by a transpose operation. The second constraint on T is that the bases be
ranked by a measure of the information they carry. This allows each basis function to successively
refine the representation per timestep. It is desirable to have the bulk of the information focused in
the earlier timesteps, with fine-grained information added by the later steps. This ordering of bases
allows us to drop bases in a principled manner to trade off accuracy for latency during inference.

Transforms that Satisfy Constraints. There are two widely used transforms that satisfy these
properties: the DCT transform (Ahmed et all, [1974) and the Karhunen-Logve transform (Dony]
2001)), also known as Principal Component Analysis (PCA). DCT decomposes an image
into a linear combination of sinusoidal frequencies, ranked by spectral energy. PCA uses the
eigenvectors of the covariance matrix of the inputs as the bases, ranked by the amount of variance

Under review as a conference paper at ICLR 2021

tl tZ ta td t5
Figure 2: Spike generation with 1-D DCT
basis functions input per timestep (shown
vertically). The neuron spikes when the
accumulated value crosses a threshold.

-
1Y
=
3]
&
]
=

X
5
&

LY
2

*

b
)
Al
S

1
RERNEEEE

Figure 3: 8 x 8 2-D DCT bases on the left and PCA
bases for CIFAR-10 on the right. The DCT bases
are ranked in a zig-zag fashion starting from top left
to the bottom right and the PCA bases are ranked in
significance from left to right and top to bottom.

4
g
AN
IR
-]
R
SER

MEERME Y

.

they explain. DCT is commonly used in JPEG Compression and PCA in dimensionality reduction,
by approximating the later components. However, PCA results in dataset dependent bases, whereas
the DCT bases are pre-determined, avoiding extra computation. The 1-D DCT transform uses the
following equation to take the pixel values x,, into DCT coefficients X}, using sinusoidal bases.

iy T 1
X = Z Ty, COS {N (n—f— 2) k}

n=0

k=0,...,N—1. (1)

Conversion of pixels denoted by S5, to DCT coefficients F,,, for an M x NN block is shown by:

L ife=0
- vz o
Ca { 1 else @
M-1N-1
P 2z + 1 2+ 1
F.,, = WC’UCU a;o ;chos (mr Wi)cos <v7r 5N) 3)

The sinusoidal bases can be entered as the columns of a transformation matrix 7". The forward
transform is then computed as Y = T X T’ and the reverse transform is computed as X = T'YT.
A comparison of the results for DCT, PCA, a random orthonormal transform without ranked bases,
and a random non-orthonormal non-ranked transform is shown in Table[I] For the rest of the paper,
we use the dataset agnostic DCT. Additionally, the conversion of spatial to temporal frequency in
DCT lends itself intuitively to the concept of distributing spatial information in ANNSs into spikes
over time.

3.2 2-D DISCRETE COSINE TRANSFORM

We now extend the scheme to 2-D. The 2-D DCT is just the 1-D DCT applied first along the
width channel and then along the length channel. Images are high dimensional, resulting in large
transformation matrices 7". This is undesirable since the number of DCT bases (or the dimension of
T dictates the number of timesteps required to reconstruct the image. To tackle this, similar to JPEG
compression scheme, we first convert the image from RGB to YCbCr domain, and then take blocks
of size n x n and perform 2-D DCT on these blocks, getting 2 ordered frequency components. We
replace the n X n pixel block with the equivalently reshaped frequency coefficients. An n x n block
requires n? timesteps for perfect reconstruction of the pixel block. Small values of n allow us to
reconstruct the images by summing over only a few basis images. In standard JPEG compression,
8 x 8 blocks are used, resulting in the 64 basis images shown in Figure 3] Similarly, the bases
obtained from PCA on the training dataset of CIFAR-10 are also shown. Empirically, we find that
block sizes of 4 x 4 converge to the best accuracy with the lowest number of timesteps. We usually
need to run 3 full cycles to achieve convergence to best accuracy, amounting to 4 x 4 x 3 = 48
timesteps. In each of the 3 cycles, we repeat the 16 DCT coefficients and bases, to allow time for
spike propagation to the deeper layers. This is discussed in further detail in Section 4. Unlike the
JPEG compression scheme, to improve accuracy we utilize an overlapped DCT scheme, where the

Under review as a conference paper at ICLR 2021

Table 1: Accuracy of Table 2: Accuracy(%), with timesteps indicated in parenthesis. -p and
VGGS5 on CIFAR-10, -d represent training with pixels and DCT coefficients, respectively

with DCT block size =
VGG9 VGG11 VGG13

ax4 Configuration ~JEAR’10 CIFAR-100 TinylmageNet
Transform Accuracy ANN-p 91.3 69.7 56.9
Matrix (%) 45.
Random 647 ANN-d 90.4 66.4 53'%
90.1 (175)
Unranked 833 SNN-p 88.9 (100) 67.8 (125) 53 (250)
Orthonormal
PCA 238 SNN-d 8 8829 (91 ;)O) 65 é 8(225) 5424;163 ((2152(2))
DCT 83.5 DCT-SNN (48) (48) 51.45 (48)

“ANN without batchnorm and maxpool to facilitate conversion
» ANN with batchnorm and maxpool

blocks of pixels overlap. This is equivalent to performing convolution with a kernel size of 4 and a
stride of 2, and increases our input dimensions by 4x. To counter this, we add an additional 2 x 2
average pooling layer before the linear layers.

3.3 CONVERSION FROM ANN AND THRESHOLD SELECTION FOR SPIKES

In our scheme, the SNN trains on intermediate pixel representations, and hence we utilize an ANN
trained with pixel intensities (rather than DCT coefficients) for initialization. The threshold of the
IF neuron at the spike generator significantly affects the timesteps required for spike propagation
to deeper layers. This IF neuron, as shown in Figure [2] receives the bases modulated by the
DCT coefficients and accumulates them over timesteps, firing when the accumulation crosses the
threshold. We allow for both positive and negative spikes to account for the positive and negative
cycles of the sinusoidal bases. Similar to the hidden layer neurons, the threshold is chosen as a
percentile of the accumulation at the spike generator neurons. We obtained best results by using 6.5
and 93.5 percentile of the accumulation as thresholds for negative and positive spikes, respectively.

4 EXPERIMENTS AND RESULTS

We implement DCT-SNN by incorporating the proposed encoding scheme with surrogate-gradient
based learning using LIF neurons. Starting with a pretrained ANN, we copy the weights to the SNN
and select the 99.9 percentile of the pre-activation distribution at each layer as its threshold. The
details of the learning methodology and hyperparameters of training are given in appendix section
A.1 and A.2. The implementation is provided as part of the supplementary material.

Choice of Transformation. We first analyze the performance of DCT-SNN trained on different
choices of transformation matrices (denoted as 7' in section 3.1). Table [T] shows the results for
a VGGS network trained on CIFAR-10. With a random 7', the network does converge but with
much lower accuracy than the ANN. Next, to avoid interference between different bases, we use
a random orthonormal T". Table [I] shows that the accuracy improves by ~ 20% compared to non-
orthonormal case. However, this choice of T' does not perform energy compaction. Ranking bases
by their contribution to reconstruction allows us to trade off accuracy for latency during inference.
To incorporate this, we experiment with the transformation matrix generated by performing PCA on
4 x 4 blocks of the inputs from the training dataset. While this satisfies both the desired properties
and gives the best performance, it is a data-dependent transform. Therefore, we utilize the fixed
DCT matrix, and find that it performs at par with PCA, while additionally being data-agnostic. For
all subsequent analysis, we use DCT as the choice of transformation.

Effect of Block Size and Overlap. Having chosen DCT to determine the bases of our encoding
scheme, we tune the block size and stride. The results are shown in Fig. E} ‘DCT-x’ denotes a
network trained on inputs transformed with DCT of blocksize z, and ‘ov’ refers to overlap among
the DCT blocks. Reducing the blocksize from 16 to 4 improves accuracy consistently. Moreover,
since a blocksize of = requires z timesteps to pass one information of cycle, smaller blocksizes
benefit from a lesser requirement of timesteps per cycle. The results on different block sizes with

Under review as a conference paper at ICLR 2021

SN accuracy for varying DCT configurations
Accuracy vs Timesteps for DCT and Poisson Encoding

95 ANN =91.3 100
90 TTTTTETTEETEETEETTT L
X 85) 899 __ 80
> X
g ¥ 80.7 Z 60
5 715 [E 60 8
< 70 : g 0
< ~-DCT-SNN
65 20
-o-Poisson-SNN
60 0
16x16 (256) 8x8(64) 8x8(128) 4x4(48) 4xdov (48) 0 20 40 60 80 100 120 140 160 180
mm SNN Accuracy = <=ANN Accuracy Timesteps
Figure 4: Accuracy(%) for VGG9 on CIFAR10 Figure 5: Accuracy(%) for VGG9 on CIFAR10
with varying DCT blocksize (timesteps) with varying timesteps

timesteps required in parenthesis are shown in Fig.] We empirically find that DCT-2 is unable
to converge, and that overlapped version of DCT-4 with a stride of 2 outperforms all other cases.
Hence, we utilize this scheme for all further experiments.

Number of Cycles for Information Propagation. The next design parameter is the number of
timesteps per forward pass. The performance of DCT-SNN trained with different timesteps is shown
in Fig.[3] In the scheme DCT-4, one full cycle amounts to 16 timesteps. The network converges to
89.94% accuracy with 48 timesteps and 88.41% accuracy with just 32 timesteps. Since performance
saturates after 3 cycles (48 timesteps), we choose 48 as the number of timesteps to train DCT-SNN
on CIFAR-10 and CIFAR-100. However, for deeper networks and larger datasets, larger timesteps
might yield further improvements, as shown in Table 2] for TinyImagenet with VGG13. Notably, the
accuracy of Poisson-encoded networks drops severely below 45 timesteps (Fig. [5), whereas DCT-
SNN suffers a minimal drop even with 28 timesteps. In particular, Poisson does not converge for 32
timesteps or lesser, whereas we achieve less than 2% accuracy drop at 32 timesteps.

Results on CIFAR and TinyImageNet. The experimental results using the proposed scheme for
CIFAR and TinyImageNet datasets are shown in Table[2] DCT-SNN performs comparably to SNNs
trained with Poisson-encoded pixels, but requires lesser than half the timesteps. We also compare our
results with SNNs trained on Poisson-encoded DCT coefficients and show that our method performs
better, presumably due to the reconstruction of pixels over time. To demonstrate the scalability of
the proposed algorithm, we apply it to the TinyImagenet dataset. SNNs with Poisson-encoded pixels
require ~ 250 timesteps to converge, whereas our method can converge to comparable accuracy in
125 timesteps. Allowing for a 1% drop in accuracy, our method converges with even 48 timesteps.

Performance Comparison. We collect reported results for different state-of-the-art SNNs and
compare our performance in Table[3] DCT-SNN performs better than or comparably to the reported
accuracy of the these methods, while achieving lower latency for inference. report
CIFAR10 results with 30 timesteps for a shallow network with 2 convolutional and 2 fully-connected
layers with 50.7% accuracy. We implement the same net with DCT-SNN and achieved 68.1%
accuracy with 28 timesteps. Next, we compare with methods that expose analog pixel intensities
directly to the first convolutional layer, instead of spikes. In a subsequent work,
achieve 90.53% accuracy on CIFAR-10 using just 12 timesteps on a network with 5 convolutional
and 2 fully connected layers. After each conv layer, the binary activations go through a channel-
wise normalization (termed as neunorm in the paper). This makes the binary activations essentially
analog, as can be seen from Eqn. (9) and (10) in |Wu et al.| (2019b). It is unclear whether the
efficiency of 12 timesteps is arising due to their encoding scheme, because of the proposed channel-
wise normalization resulting in analog computation (MAC instead of just accumulation) at each
layer, or their voting scheme based on class-wise populations. We believe that the analog nature of
computation at each layer makes this network closer to ANNs than SNNs, resulting in the significant
reduction in timesteps, especially since their network is shown to converge to a good accuracy in a
single timestep.

We also compare with two works that train ANNs on DCT coefficients. [Ehrlich' & Davis| (2019)
report ANNs with 72.5% and 38.5% accuracy on CIFAR-10 and CIFAR-100, respectively and
[Ulicny & Dahyot] (2017) report 86.35% accuracy on CIFAR-10. DCT-SNN reaches upto ~ 90%
accuracy for CIFAR-10, as seen in Table 2] achieved by performing DCT on blocks of size 4 x 4
with an overlap of 2, unlike the standard JPEG scheme of 8 x 8 with no overlap. However, this does
not train in the frequency domain unlike [Ehrlich & Davis| (2019), since after passing the modulated

Under review as a conference paper at ICLR 2021

Table 3: Comparison of DCT-SNN to other reported results. SGB denotes Surrogate-Gradient Based
backprop, Hybrid denotes pretrained ANN followed by SNN fine-tuning, TTFS denotes Time-To-
First-Spike scheme, TL denotes tandem learning and (xC, yL) denotes an architecture with x Conv
layers and y Linear layers.

Reference Dataset Training Architecture Accuracy(%) Timesteps
* (Hunsberger & Eliasmith[[2015) ~ CIFAR10 Conversion 2C, 2L 82.95 6000
a (Cao et al| 2015) CIFARI10 Conversion 3C, 2L 77.43 400
(Sengupta et al.,|2019) CIFAR10 Conversion VGG16 91.55 2500
(Lee et al.;[2020) CIFAR10 SGB VGG9 90.45 100
"~ (Rueckauer et al.|[2017) CIFAR10 Conversion 4C, 2L 90.85 400
~(Rathi et al[[2020) CIFAR10 Hybrid VGGY 90.5 100
(Park et al.|[2020) CIFAR10 TTFS VGG16 914 680
(Park et al.:2019) CIFARI10 Burst-coding VGG16 91.4 1125
(Kim et al|[2018) CIFARIO Phase-coding VGG16 91.2 1500
(Wu et al[[2018) CIFAR10 SGB 2C, 2L 50.7 30
(Wu et al[[2019b) CIFAR10 SGB 5C, 2L 90.53 12
(Wu et al.|[2019a) CIFAR10 TL(LIF) 5C, 2L 89.04 8
This work CIFAR10 DCT-SNN VGGY 89.94 48
"~ (Lu & Senguptal,2020) CIFARI00 Conversion VGG15 63.2 62
~ (Rathi et al[[2020) CIFAR100 Hybrid VGGI11 67.9 125
(Park et al.|[2020) CIFAR100 TTFS VGG16 68.8 680
(Park et al.l [2019) CIFAR100 Burst-coding VGGI6 68.77 3100
(Kim et al.; 2018) CIFAR100 Phase-coding VGG16 68.6 8950
This work CIFAR100 DCT-SNN VGG11 68.3 48
This work TinyImagenet DCT-SNN VGG13 5243 125

bases through the network, we have passed the equivalent information of the input image in the
pixel domain. To verify that our method is trainable via backpropagation from scratch, we trained a
VGGY9 SNN from scratch for CIFAR-10, which gives 84.9% accuracy with 48 timesteps. We show
a more detailed comparison with other encoding schemes in Appendix section A.5.

Accuracy-Latency Trade-off. The ranking of bases in our scheme allows us to drop the least
significant components. In Figure [§] we show the effect the ranking of bases has on accuracy
by performing inference on VGG9 DCT-SNN trained on CIFAR-10 for 48 timesteps using all
16 frequencies. A minimum of 16 timesteps (1 cycle) are required for spike propagation to the
deeper layers, and hence any configuration with timesteps lesser than 16 cannot infer correctly. We
provide 2 cycles of inputs on the test data. The first cycle uses all 16 components, and the next
adds successively higher frequencies. Due to the fact that the bulk of the information is contained
in the earlier timesteps, we are able to get good accuracy (73.9% out of 88.6%) with just the first 4
bases. Successive components add more refined information, and therefore the accuracy saturates,
as evident from Figure [f] To the best of our knowledge, this is the first work that demonstrates
a principled tradeoff between inference accuracy and latency on a trained network. Results for
networks trained with limited frequencies are shown in Appendix A.3. The effect of changing the
order of inputting frequencies is shown in Appendix section A.6.

Computational Efficiency. The floating-point (FP) MAC operations in ANN are replaced by FP
additions in SNN. The cost of a MAC operation (4.6pJ) is 5.1x compared to an addition (0.9p.J)
(Horowitz, |2014)) in 45nm CMOS technology. The expressions representing the computational cost
in the form of operations per layer in an ANN, #ANN,,, are given in Appendix A.4. The number
of operations per layer in an equivalent DCT-SNN are related to #ANN,, by the layer’s spike-rate.

#DCT-SNN,ps, 1. = spike rate; X #ANNgps 1.,
where spike ratey, is the average number of spikes per neuron per image over all timesteps in layer
L. The layerwise spike rates for CIFAR-10 and CIFAR-100 using DCT-SNN are shown in Fig.
The overall average spike rate considering all layers for both cases is well below 5.1 (relative cost

of MAC to addition), indicating the energy benefits of DCT-SNN over the corresponding ANN. For
the DCT-SNN, there are additional MAC operations for 2 full precision matrix multiplications in

Under review as a conference paper at ICLR 2021

Limiting Frequencies in Cycle2 During VGG9 CIFAR-10 DCT-SNN
100 Inference Average Spike Rate : 3.35

[
(=

Spike Rate
wn

2% C1=16; C1=16; C1=16;
i;‘. 60 c2=8 C2=12 C2=16 0
g4 CTOTE S OO
i 20 VGG11 CIFAR-100 DCT-SNN
10 —
0 =0 Average Spike Rate : 2.94
15 20 25 30 35

Total Timesteps

Spike Rate

(=)

Figure 6: Accuracy-latency tradeoff durin

intgerence; VGG9 tre}llined 0311 CIFAR-10 witﬁ OV RGN QO Q&

all 16 frequencies for 48 timesteps. During Layer

inference, cyclel uses all 16 frequencies, cycle2 Figure 7: DCT-SNN layerwise spike rate. C and
uses limited, ordered frequencies. FC denote Conv and Fully Connected layers.

the preprocessing step (the forward and reverse transforms). We denote these as Encoder,ps. This
computation is needed for only one cycle (16 timesteps), since the other 2 cycles just repeat the same
bases and coefficients. The overhead is negligible when compared to the number of operations over
all the layers across all timesteps. We compute the energy benefits of DCT-SNN over ANN, « as ,

_ EANN _ ZL #ANNOPS,L *4.6 (4)
Epcrsny #Encoderops *4.6 + ZL #DCT—SNNOPS,L x0.9

The values of « are 1.52 and 1.74 for VGG9-CIFAR10 and VGG11-CIFAR100, respectively,
demonstrating that DCT-SNN provides improved energy efficiency over its ANN counterpart.
Similar to |Park et al| (2020), the cost of memory access has not been considered in this
evaluation, since it depends on the hardware architecture and system configurations. This efficiency
metric « can be further enhanced by reducing the encoder overhead by approximating the DCT
transformation with integer transform (IT). IT can be performed with just shift and add operations.
We implemented IT-based encoding for a VGG9 SNN on CIFAR-10 and obtained 89.2% accuracy
with 48 timesteps.

(0%

5 CONCLUSION

Bio-plausible SNNs offer a promising energy-efficient alternative to ANNs. The inputs to SNNs
are available as spikes over time, instead of analog pixel values. The SNN derives efficiency from
the sparsity of spikes per timestep, combined with their event-driven computation. However, the
spike distribution over timesteps causes SNNs to have a high inference latency. The most widely
used Poisson based rate encoding scheme does not encode any meaningful information into the
temporal axis of SNNs, and requires a large number of timesteps for inference. To address this,
we propose a new encoding scheme that can be used to distribute spatial pixel information over
timesteps in an ordered fashion. The proposed scheme utilizes a linear transform in the form of an
invertible matrix, with columns that serve as basis of representation distribution. The input pixels are
reconstructed over time by summing these bases modulated by the coefficients from the intermediate
representation. At each step, we feed in the product of one of these bases and the corresponding DCT
coefficient, by order of their contribution, to an integrate-and-fire neuron at the input layer. As we
cycle through all bases, the neuron receives the total pixel value spread over all timesteps. The ideal
properties of the bases are orthonormality to avoid interference with each other, and ordering by
their contribution to reconstruction of the pixel intensities. The choice of the transformation matrix
are thus PCA and DCT. We chose DCT due to the frequency bases being dataset-agnostic. We get
best performance with 2-D DCT on 4 x 4 blocks of the input, resulting in 16 basis frequencies.
We show that passing these 16 bases through the SNN cyclically a few times gives DCT-SNN
comparable accuracy to their ANN counterparts, with less than half the number of timesteps required
to learn other state-of-the-art SNNs. Additionally, ranking these bases differentiates one timestep
from another. Consequently, we are able to drop the least important bases (and therefore, timesteps)
and still infer, albeit with lower accuracy. This principled trade-off between inference accuracy and
latency is a promising direction for deploying SNNs on edge devices.

Under review as a conference paper at ICLR 2021

REFERENCES

Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. Discrete cosine transform. [EEE transactions
on Computers, 100(1):90-93, 1974.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. In Advances in Neural
Information Processing Systems, pp. 787-797, 2018.

Michael Beyeler, Nikil D Dutt, and Jeffrey L Krichmar. Categorization and decision-making in a
neurobiologically plausible spiking network using a stdp-like learning rule. Neural Networks, 48:
109-124, 2013.

Peter Blouw, Xuan Choo, Eric Hunsberger, and Chris Eliasmith. Benchmarking keyword
spotting efficiency on neuromorphic hardware. In Proceedings of the 7th Annual Neuro-inspired
Computational Elements Workshop, pp. 1-8, 2019 .

Yonggiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113(1):54-66,
2015.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura,
P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk,
B. Jackson, and D. S. Modha. Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 34(10):1537-1557, 2015 . doi: 10.1109/TCAD.2015.2474396.

Tulia M Comsa, Thomas Fischbacher, Krzysztof Potempa, Andrea Gesmundo, Luca Versari, and
Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic function. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8529-8533. IEEE, 2020.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82-99, 2018 .

Li Deng and Yang Liu. Deep learning in natural language processing. Springer, 2018.

Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. ieee, 2015.

R Dony et al. Karhunen-loeve transform. The transform and data compression handbook, 1:1-34,
2001.

Max Ehrlich and Larry S Davis. Deep residual learning in the jpeg transform domain. In Proceedings
of the IEEFE International Conference on Computer Vision, pp. 3484-3493, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256, 2010.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82-97, 2012.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10-14.
IEEE, 2014.

10

Under review as a conference paper at ICLR 2021

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Dongsung Huh and Terrence J Sejnowski. Gradient descent for spiking neural networks. In
Advances in Neural Information Processing Systems, pp. 1433-1443, 2018.

Eric Hunsberger and Chris Eliasmith. Spiking deep networks with lif neurons. arXiv preprint
arXiv:1510.08829, 2015.

Xiping Ju, Biao Fang, Rui Yan, Xiaoliang Xu, and Huajin Tang. An fpga implementation of deep
spiking neural networks for low-power and fast classification. Neural Computation, 32(1):182—
204, 2020.

Saeed Reza Kheradpisheh and Timothée Masquelier. S4nn: temporal backpropagation for spiking
neural networks with one spike per neuron. [International Journal of Neural Systems, 30(6):
2050027, 2020 .

Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep neural networks with
weighted spikes. Neurocomputing, 311:373-386, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pp. 1097—
1105, 2012.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik
Roy. Enabling spike-based backpropagation for training deep neural network architectures.
Frontiers in Neuroscience, 14, 2020.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017 .

Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. Evaluating the energy efficiency of
deep convolutional neural networks on cpus and gpus. In 2016 IEEE international conferences
on big data and cloud computing (BDCloud), social computing and networking (SocialCom),
sustainable computing and communications (SustainCom)(BDCloud-SocialCom-SustainCom),
pp. 477-484. IEEE, 2016.

Sen Lu and Abhronil Sengupta. Exploring the connection between binary and spiking neural
networks. arXiv preprint arXiv:2002.10064, 2020.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659-1671, 1997.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks. IEEE Signal Processing Magazine, 36:61-63, 2019.

Seongsik Park, Seijoon Kim, Hyeokjun Choe, and Sungroh Yoon. Fast and efficient information
transmission with burst spikes in deep spiking neural networks. In 2019 56th ACM/IEEE Design
Automation Conference (DAC), pp. 1-6. IEEE, 2019.

Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn: Deep spiking neural
networks with time-to-first-spike coding. arXiv preprint arXiv:2003.11741, 2020.

Bulla Rajesh, Mohammed Javed, Shubham Srivastava, et al. Dct-compcnn: A novel image
classification network using jpeg compressed dct coefficients. In 2019 IEEE Conference on
Information and Communication Technology, pp. 1-6. IEEE, 2019.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=BlxSperKvH.

11

https://openreview.net/forum?id=B1xSperKvH
https://openreview.net/forum?id=B1xSperKvH

Under review as a conference paper at ICLR 2021

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607-617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to efficient event-driven networks for image
classification. Frontiers in neuroscience, 11:682, 2017.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In
Advances in Neural Information Processing Systems, pp. 1412-1421, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Andrew Stephan, Brian Gardner, Steven J Koester, and Andre Gruning. Supervised learning in
temporally-coded spiking neural networks with approximate backpropagation. arXiv preprint
arXiv:2007.13296, 2020.

Matej Ulicny and Rozenn Dahyot. On using cnn with dct based image data. In Proceedings of the
19th Irish Machine Vision and Image Processing conference IMVIP, 2017.

G. K. Wallace. The jpeg still picture compression standard. IEEE Transactions on Consumer
Electronics, 38(1):xviii—xxxiv, 1992.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550-1560, 1990.

Travis Williams and Robert Li. Advanced image classification using wavelets and convolutional
neural networks. In 2016 15th IEEE international conference on machine learning and
applications (ICMLA), pp. 233-239. IEEE, 2016.

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem
learning rule for efficient and rapid inference on deep spiking neural networks. arXiv, pp. arXiv—
1907, 2019a.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1311-1318, 2019b.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Qi Xu, Yu Qi, Hang Yu, Jiangrong Shen, Huajin Tang, and Gang Pan. Csnn: An augmented spiking
based framework with perceptron-inception. In IJCAI, pp. 1646-1652, 2018.

Qi Xu, Jianxin Peng, Jiangrong Shen, Huajin Tang, and Gang Pan. Deep covdensesnn: A
hierarchical event-driven dynamic framework with spiking neurons in noisy environment. Neural
Networks, 121:512-519, 2020.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
frequency domain. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1740-1749, 2020.

Qiang Yu, Huajin Tang, Kay Chen Tan, and Haizhou Li. Rapid feedforward computation by
temporal encoding and learning with spiking neurons. IEEE transactions on neural networks
and learning systems, 24(10):1539-1552, 2013.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514—1541, 2018.

Lei Zhang, Shengyuan Zhou, Tian Zhi, Zidong Du, and Yunji Chen. Tdsnn: From deep neural
networks to deep spike neural networks with temporal-coding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 1319-1326, 2019.

12

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 OVERALL TRAINING METHODOLOGY
A.1.1 SPIKING NEURON MODEL

In this work, we employ the bio-plausible Leaky Integrate and Fire (LIF) model (Hunsberger &
Eliasmith, |2015)), which is described by-

au
dt
where U denotes the membrane potential, I is the input current representing the weighted summation
of spike-inputs, 7,,, indicates the time constant for membrane potential decay, R represents

membrane leakage path resistance, V;, is the firing threshold and U...4; is resting potential. The
discretized version of Eqn. [5]implemented in our work is given as-

—(U = Urest) + RI, U <V, (&)

Tm

ub = Ml + Zwij0§' —vpol (6)
J
a1
t—1_) 1, ifu T >
% = { 0, otherwise)

where v is the membrane potential, subscripts ¢ and j represent the post and pre-neuron, respectively,

t denotes timestep, A is the leak constant= efm w;; represents the weight of connection between
the i-th and j-th neuron, o is the output spike, and vy, is the firing threshold. As evident from Eqn.[6]
whenever u crosses this threshold, it is reduced by the amount v, implementing a soft-reset. We
implement the proposed DCT-SNN using the model described above with our encoding scheme, the
code for our work is submitted as part of the supplementary material.

A.1.2 SURROGATE-GRADIENT BASED LEARNING

To train deep SNNs, we use surrogate-gradient based backpropagation which performs both the
temporal as well as the spatial credit assignment of errors. Spatial credit assignment is achieved
by spatial error distribution across all layers, while for temporal credit assignment, we unroll the
network in time and employ backpropagation through time (BPTT) (Werbos, |1990). The output
layer neuronal dynamics is given as-

t t—1 t
u; =u; =+ Z W;j05, ®)
J

here the w;s correspond to the membrane potential of i-th neuron of final (L-th) layer. The final
layer neurons do not spike, rather we just accumulate their potential over time for classification
purpose. These accumulated outputs are passed through a softmax layer to obtain the class-
wise probability distribution and then the cross-entropy between the true output and the network’s
predicted distribution is used as loss for backpropagation. The governing equations are-

L==Y yilog(z), ©)
Ui
%= = (10)
Z]kvzl etk

where L is the loss function, y denotes true output, z is the prediction, T is the total number of
timesteps and N is the number of classes. The derivative of the loss w.r.t. to the membrane potential
of the neurons in the final layer is given as-

0L

7’1—‘ =
ou;

Zi = Yi, (1)

and the weight updates at the output layer are done as-

Wij, L = Wij,1, — NAw;; 1, (12)

13

Under review as a conference paper at ICLR 2021

oL oL auiT OL «~ Oul

where 7 is the learning rate, and wl 1 is the welght between i-th neuron at layer L and j-th neuron
at layer L — 1 at timestep t. Since the output layer neurons are non-spiking, the non-differentiability
is not an issue here. On the other hand, the hidden layer parameter update is given by-

oL oL 80tk 8Utk
Aw;jp = = ’ - k=2,3,..L—-1 14
Wigok aw” & 00Z & 6‘uZ & owt (14

z_]k

where oﬁy i 1s the spike-generating function (Eqn. 7), k is layer index. We approximate the gradient
of this function w.r.t. its input using the linear surrogate-gradient (Bellec et al., 2018) as-

9 max{0,1— |00y, (15)
ou Vth

where + is a hyperparameter chosen as 0.3 in this work.

Algorithm 1 Procedure of spike-based backpropagation learning for an iteration.

Input: pixel-based mini-batch of input (X) - target (Y') pairs, total number of timesteps (7),
number of layers (L), pre-trained ANN weights (W), membrane potential (UU), membrane
leak constant (\), array of layer-wise firing thresholds (V};), dct block-size b, number of
freq. component to train with f
Initialize: U/ =0, Vi=1,...,L
/I M= generate dct encoded-inputs for the current mini-batch data for b * b timesteps
// Forward Phase
fort < 1toT do
Ot = M[t%f]; I/ here M[x] denotes the dct-encoded inputs sampled from frequency index x
for/ < 2to L —1do
// membrane potential integrates weighted sum of spike-inputs
U =Uj - WisOf
if U} >V}, then
/I if membrane potential exceeds V;;,, a neuron fires a spike
Ol =1, Ul =Ul -V,
else
/I else, membrane potential decays exponentially
Ol =0, Ul =XxU}
end if
end for
// final layer neurons do not fire
Ut =U; "+ W 0%,
end for
//calculate loss, Loss=cross-entropy(UZ, Y')
// Backward Phase
fort < T to1ldo
for/ < L —1to1do
/I evaluate partial derivatives of loss with respect to weight by unrolling the network over
time
dLoss 0O} dU}
AW} = daLg; 907 oW?

end for
end for

A.1.3 WEIGHT INITIALIZATION AND THRESHOLD BALANCING

A key component in successful implementation of SNNs is proper initialization of weights and
thresholds. As mentioned in section 2 of the main manuscript, we first pre-train an analogous ANN
and copy the weights to the SNN for finetuning. It is critical to balance the layerwise neuronal
thresholds to achieve satisfactory performance in SNNs. One approach is to choose the maximum

14

Under review as a conference paper at ICLR 2021

o
N -80
) -70

1]

o

]

-60

R

E

F -50
o~
m

40

36

Frequencies Retained

Figure 8: Training Accuracy with Limited Frequencies.

input to the neurons computed over all timesteps at each layer as the threshold at that corresponding
layer (Sengupta et al, [2019). However, empirically, we have found this scheme to be unstable
(training did not converge in some cases due to spike-vanishing in the deeper layers), hence we select
the 99.9 percentile of the pre-activation distribution at each layer to be that layer’s threshold. Again,
such threshold balancing has been argued to be more robust (Rueckauer et al.,[2017). Notably, the
threshold computation has to be performed one layer at a time and sequentially from first layer to
the end. Having initialized the SNN as discussed above, we perform the surrogate-gradient based
learning, the details of which is depicted in Algorithm 1. In addition, next we also provide the
experimental details in appendix section A.2.

A.2 EXPERIMENTAL DETAILS
A.2.1 DATASETS AND MODELS

We perform our experiments on VGG9 for CIFAR10 dataset, VGG11 for CIFAR100 and VGG13
for TinyImagenet. Some comparisons with other encoding schemes are done using VGGS.

A.2.2 TRAINING PARAMETERS

For all datasets, we follow some standard data augmentation techniques such as padding by 4 pixels
on each side, and a 32 x 32 crop is randomly sampled from the padded image or its horizontally
flipped version (with 0.5 probability of flipping). While testing, the original 32 x 32 images are
used. Both training and testing data are normalized using 0.5 as mean and standard deviation for
all channels. For training the ANNs, we use cross-entropy loss with stochastic gradient descent
optimization (weight decay=0.0001, mometum=0.9). In the ANN domain, VGG5, VGG9 and
VGGI1 are trained for a total of 300 epochs, with an initial learning rate of 0.1, which is divided
by 10 at each 100-th epoch. VGGI13 with Tinylmagenet is trained with similar learning rate
schedule, but with initial learning rate of 0.01. The ANNSs are trained with some architectural
constraints to avoid significant loss during subsequent ANN-SNN conversion (Diehl et al, 2015}
Sengupta et al,2019). The ANNs do not have bias terms as it increases the difficulty of threshold
balancing. Again, batch-normalization is not used, rather dropout (Srivastava et al.} [2014) is used
as the regularizer and a constant dropout mask is used across all timesteps while training in SNN
domain. Furthermore, average-pooling is used to reduce the feature map size since max-pooling
causes significant information loss in SNNs (Diehl et al.l 2015). During training the ANN, the
weights are initialized using Xavier initialization (Glorot & Bengiol 2010). After conversion, for
training in the SNN domain, networks are trained for 20-30 epochs with cross-entropy loss and
adam optimizer (weight decay=0.0005). Initial learning rate is kept at 0.0001, which is halved every
5 or 6 epochs. The leak constant A is chosen as 0.9901 for all simulations.

15

Under review as a conference paper at ICLR 2021

A.3 TRAINING WITH CURTAILED FREQUENCIES
We show the effect of training with limited frequencies in Figure [8] The frequencies are repeated
cyclically until the specified number of timesteps. For instance, the accuracy for 8 frequencies given

3 times each (24 timesteps) is 69.7%. We note that during training, there is no benefit to dropping
frequencies at iso-latency requirements.

A.4 COMPUTATIONAL COST

The equations for calculating the number of operations in a particular layer of an ANN are given by

#ANNgps = {

kuw X kp, X Cin X hoyt X Wout X Cout, Conv layer
Tin X Nout, Linear layer

where k, (k) denote filter width (height), c¢;,(cout) is number of input (output) channels,
hout (Wout) s the height (width) of the output feature map, and n;, () is the number of input
(output) nodes.

A.5 PERFORMANCE COMPARISON WITH DIFFERENT ENCODING SCHEMES

A.5.1 PERFORMANCE COMPARISON WITH TEMPORAL ENCODING SCHEMES ON MNIST

Table 4: Accuracy of various temporal encoding schemes on MNIST

Reference Accuracy(%) Timesteps
(Kheradpisheh & Masquelier} 2020) 97.4 256
(Comsa et al.} [2020) 97.9 not reported
(Stephan et al| [2020) 85 10
Yu et al.| [2013) 78 100
Xu et al. |2018]) 87 not reported
(Beyeler et al.}[2013) 91.6 500
This work 98.54 16
This work 86.7 2
This work 97.3 5

To further compare the performance of the proposed DCT-SNN encoding scheme with recent
temporal methods on MNIST, we implement it on a shallow network with just 1 hidden layer
consisting of 784-100-10 neurons (all fully-connected). The results are reported in Table] As
can be seen, our methods outperforms these recent temporal methods in terms of accuracy and also
converges at much lower timesteps.

A.5.2 PERFORMANCE COMPARISON WITH DIFFERENT ENCODING SCHEMES ON CIFAR

To further compare our results with other reported works in terms of timesteps required at iso-
accuracy level, we depict the inference curve across different timesteps in Fig. [0] The figure is
adopted from Fig. 6 of and demonstrates the results of “T2FSNN” encoding
scheme, which is a temporal encoding scheme and other rate and temporal encoding schemes such
as “Rate” , “Phase” [2018), and “Burst” coding
[2019). The left graph in Fig. [9]is recreated for CIFAR-10, and shows ~ 200 timesteps for the
fastest convergence among these encoding methods, in contrast, we achieve ~ 90% accuracy in just
48 timesteps, saturating far earlier than any of these methods. From Fig. 6 of (2020),
we can tell that the best version of “T2FSNN” first reaches 90% roughly at 240 steps, “Burst”
at 300, “Phase” at 425, and “Rate” at 1200 timesteps, showing that we reduce latency by orders of
magnitude, resulting in convergence at much fewer timesteps. The network is slightly different here,

16

Under review as a conference paper at ICLR 2021

CIFAR-10 Accuracy vs Time steps CIFAR-100 Accuracy vs Time steps
90 = Jp—r — = DCT-SNN
et —— TTFS
80 . 65 N -« Rate
=70 8 . = : — Phase
2 / .~ — TTFS L ,/ ! Tz — Burst
= /) J | :
<. 60 < ... Rate = | | 60
g / / = Phase ® . I
g so . — Burst []
a / /. urst 3 55 I ..
S 40 R — - DCT-ShN I+ 100 _~200,+°
< < o*
30 P 50
o] e
=t a5
25 50 75 100 125 150 175 200 0 500 1000 1500 2000 2500 3000
Time step Time step

Figure 9: Accuracy versus Latency curve for various coding schemes, the values for TTFS (Park|
2020), Phase (Kim et al., [2018]), Burst (Park et al., 2019) and rate (Rueckauer et al] 2017)
have been adopted from [Park et al| (2020).

ours is VGGY and the network used in (2020) is VGG16, but in our opinion, that affects
final convergence accuracy more than it affects orders of magnitude of timesteps for inference.
Similarly, we exceed 68% accuracy in 48 timesteps when training a VGG11 on CIFAR100. The
graph on the right in Fig.] shows the convergence statistics for VGG16 on CIFAR100 using
“T2FSNN”, “Burst”, “Phase” and ‘“Rate”. The best version of “T2FSNN” reaches 68% roughly
at 500 steps, “Burst” at 1500, “Phase” at 2000, and “Rate” does not go above 60% in even 3000
timesteps.

A.6 TRAINING WITH INTERLEAVED AND INTERMITTENT FREQUENCIES

In this section, we analyze the effect of training with (a) interleaved and (b) intermittent frequencies,
instead of all 16 frequency components given in a cyclic order.

For the interleaved case, instead of giving input as frequencies 0,1,2,...15,0,1,2,....15,0,1,2,... 15
we input them as 0,0,0,1,1,1,2,2,2,15,15,15. So, one specific basis is repeated for 3 subsequent
timesteps before giving the next frequency as input. Our original cyclic scheme gave the best
reported accuracy of 89.94% and the interleaved scheme only achieved 79.7%. A similar cyclic
vs interleaving experiment was done with the frequencies limited to top 8, repeated for 3 cycles (24
timesteps). The cyclic scheme achieved 69.7% and the interleaved achieved 53.73%. We believe this
drop is due to the resetting of membrane potential as it fires between timesteps, causing temporal
dependency to be incorporated between different timesteps and interleaving cannot leverage this
dependency. Additionally, since the earlier DCT coefficients contain most of the energy, the spikes
at the later timesteps start dying out with interleaved frequencies.

Next, we tried giving intermittent frequencies such as (0,2,5,7,9,10,12,15) given cyclically for 6
cycles (48 timesteps) and got 84.4%, an expected drop from 89.9% with all frequencies for 3 cycles
(equivalent 48 timesteps) since we are only giving partial information for reconstruction.

As an additional experiment to re-emphasize that our ordering is beneficial, we give only the top
8 frequencies for the same number of cycles as the previous experiment (6 cycles, 48 timesteps)
and get 87.2%, which is 3% better than the scheme with intermittent frequencies, validating the
importance of ordering timesteps.

17

	Introduction
	Related Works
	Encoding Scheme
	A Generic 1-D Transform to Distribute Pixels over Time
	2-D Discrete Cosine Transform
	Conversion from ANN and Threshold Selection for Spikes

	Experiments and Results
	Conclusion
	Appendix
	Overall Training Methodology
	Spiking Neuron Model
	surrogate-gradient based learning
	weight initialization and threshold balancing

	Experimental details
	Datasets and Models
	Training Parameters

	Training with Curtailed Frequencies
	Computational Cost
	Performance Comparison with Different Encoding Schemes
	Performance Comparison with Temporal Encoding Schemes on MNIST
	Performance Comparison with Different Encoding Schemes on CIFAR

	Training with Interleaved and Intermittent Frequencies

